mirror of https://github.com/CGAL/cgal
Merge branch 'master' of https://github.com/CGAL/cgal into Mesh-3-edge-distance-criterium-aclement
This commit is contained in:
commit
00514ec7dc
|
|
@ -60,7 +60,7 @@ jobs:
|
|||
content: 'rocket'
|
||||
})
|
||||
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
name: "checkout branch"
|
||||
if: steps.get_round.outputs.result != 'stop'
|
||||
with:
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ jobs:
|
|||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- name: install dependencies
|
||||
run: |
|
||||
.github/install.sh
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ jobs:
|
|||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- name: install dependencies
|
||||
run: sudo apt-get install -y libboost-dev libboost-program-options-dev libmpfr-dev libeigen3-dev
|
||||
- name: configure all
|
||||
|
|
@ -25,7 +25,7 @@ jobs:
|
|||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- name: install dependencies
|
||||
run: sudo bash -e .github/install.sh
|
||||
- name: configure all
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ jobs:
|
|||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- name: delete directory
|
||||
run: |
|
||||
set -x
|
||||
|
|
|
|||
|
|
@ -9,7 +9,7 @@ jobs:
|
|||
batch_1:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- name: install dependencies
|
||||
run: .github/install.sh
|
||||
- name: run1
|
||||
|
|
@ -17,7 +17,7 @@ jobs:
|
|||
batch_2:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- name: install dependencies
|
||||
run: .github/install.sh
|
||||
- name: run2
|
||||
|
|
@ -25,7 +25,7 @@ jobs:
|
|||
batch_3:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- name: install dependencies
|
||||
run: .github/install.sh
|
||||
- name: run3
|
||||
|
|
@ -33,7 +33,7 @@ jobs:
|
|||
batch_4:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- name: install dependencies
|
||||
run: .github/install.sh
|
||||
- name: run4
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@
|
|||
messages: ${{ steps.cat_output.outputs.message }}
|
||||
steps:
|
||||
- name: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
- name: run script
|
||||
run: |
|
||||
chmod +x ./Scripts/developer_scripts/list_cgal_workflows_last_run.sh
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ jobs:
|
|||
reuse:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- name: REUSE version
|
||||
uses: fsfe/reuse-action@v2
|
||||
with:
|
||||
|
|
|
|||
|
|
@ -11,7 +11,9 @@ and the primitives stored in the AABB tree.
|
|||
|
||||
\cgalRefines{SearchGeomTraits_3}
|
||||
|
||||
\cgalHasModel All models of the concept `Kernel`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{All models of the concept `Kernel`}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>`
|
||||
\sa `CGAL::AABB_tree<AABBTraits>`
|
||||
|
|
|
|||
|
|
@ -12,11 +12,13 @@ The concept `AABBPrimitive` describes the requirements for the primitives stored
|
|||
|
||||
The `Primitive` type can be, e.g., a wrapper around a `Handle`. Assume for instance that the input objects are the triangle faces of a mesh stored as a `CGAL::Polyhedron_3`. The `Datum` would be a `Triangle_3` and the `Id` would be a polyhedron `Face_handle`. Method `datum()` can return either a `Triangle_3` constructed on the fly from the face handle or a `Triangle_3` stored internally. This provides a way for the user to trade memory for efficiency.
|
||||
|
||||
\cgalHasModel `CGAL::AABB_primitive<Id,ObjectPropertyMap,PointPropertyMap,Tag_false,CacheDatum>`
|
||||
\cgalHasModel `CGAL::AABB_segment_primitive<Iterator,CacheDatum>`
|
||||
\cgalHasModel `CGAL::AABB_triangle_primitive<Iterator,CacheDatum>`
|
||||
\cgalHasModel `CGAL::AABB_halfedge_graph_segment_primitive<HalfedgeGraph,VertexPointPMap,Tag_false,CacheDatum>`
|
||||
\cgalHasModel `CGAL::AABB_face_graph_triangle_primitive<FaceGraph,VertexPointPMap,Tag_false,CacheDatum>`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::AABB_primitive<Id,ObjectPropertyMap,PointPropertyMap,Tag_false,CacheDatum>}
|
||||
\cgalHasModels{CGAL::AABB_segment_primitive<Iterator,CacheDatum>}
|
||||
\cgalHasModels{CGAL::AABB_triangle_primitive<Iterator,CacheDatum>}
|
||||
\cgalHasModels{CGAL::AABB_halfedge_graph_segment_primitive<HalfedgeGraph,VertexPointPMap,Tag_false,CacheDatum>}
|
||||
\cgalHasModels{CGAL::AABB_face_graph_triangle_primitive<FaceGraph,VertexPointPMap,Tag_false,CacheDatum>}
|
||||
\cgalHasModelsEnd
|
||||
*/
|
||||
|
||||
class AABBPrimitive {
|
||||
|
|
|
|||
|
|
@ -21,9 +21,11 @@ The `Datum` would be a `Triangle_3` and the `Id` a `std::size_t`. The shared dat
|
|||
`std::vector<Triangle_3>`.
|
||||
The method `datum(const Shared_data&)` then returns a triangle from the vector.
|
||||
|
||||
\cgalHasModel `CGAL::AABB_primitive<Id,ObjectPropertyMap,PointPropertyMap,Tag_true,CacheDatum>`
|
||||
\cgalHasModel `CGAL::AABB_halfedge_graph_segment_primitive<HalfedgeGraph,VertexPointPMap,Tag_true,CacheDatum>`
|
||||
\cgalHasModel `CGAL::AABB_face_graph_triangle_primitive<FaceGraph,VertexPointPMap,Tag_true,CacheDatum>`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::AABB_primitive<Id,ObjectPropertyMap,PointPropertyMap,Tag_true,CacheDatum>}
|
||||
\cgalHasModels{CGAL::AABB_halfedge_graph_segment_primitive<HalfedgeGraph,VertexPointPMap,Tag_true,CacheDatum>}
|
||||
\cgalHasModels{CGAL::AABB_face_graph_triangle_primitive<FaceGraph,VertexPointPMap,Tag_true,CacheDatum>}
|
||||
\cgalHasModelsEnd
|
||||
*/
|
||||
|
||||
class AABBPrimitiveWithSharedData {
|
||||
|
|
|
|||
|
|
@ -9,7 +9,9 @@ define the Intersection_distance functor.
|
|||
|
||||
\cgalRefines{AABBGeomTraits}
|
||||
|
||||
\cgalHasModel All models of the concept `Kernel`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{All models of the concept `Kernel`}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>`
|
||||
\sa `CGAL::AABB_tree<AABBTraits>`
|
||||
|
|
|
|||
|
|
@ -7,7 +7,9 @@ The concept `AABBRayIntersectionTraits` is a refinement of the concept
|
|||
`AABBTraits` it also requires function objects to calculate the
|
||||
distance of an intersection along a ray.
|
||||
|
||||
\cgalHasModel `CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `CGAL::AABB_tree<AABBTraits>`
|
||||
\sa `AABBPrimitive`
|
||||
|
|
|
|||
|
|
@ -5,7 +5,9 @@
|
|||
|
||||
The concept `AABBTraits` provides the geometric primitive types and methods for the class `CGAL::AABB_tree<AABBTraits>`.
|
||||
|
||||
\cgalHasModel `CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\cgalRefines{SearchGeomTraits_3}
|
||||
|
||||
|
|
|
|||
|
|
@ -33,7 +33,7 @@ namespace CGAL {
|
|||
* while the AABB tree holding the primitive is in use.
|
||||
* The triangle type of the primitive (`Datum`) is `CGAL::Kernel_traits< boost::property_traits< VertexPointPMap >::%value_type >::%Kernel::Triangle_3`.
|
||||
*
|
||||
* \cgalModels `AABBPrimitiveWithSharedData`
|
||||
* \cgalModels{AABBPrimitiveWithSharedData}
|
||||
*
|
||||
*\tparam FaceGraph is a model of the face graph concept.
|
||||
*\tparam VertexPointPMap is a property map with `boost::graph_traits<FaceGraph>::%vertex_descriptor`
|
||||
|
|
|
|||
|
|
@ -41,8 +41,10 @@ namespace CGAL {
|
|||
* of `VertexPointPMap` (using the `Kernel_traits` mechanism).
|
||||
* The segment type of the primitive (`Datum`) is `CGAL::Kernel_traits< boost::property_traits< VertexPointPMap >::%value_type >::%Kernel::Segment_3`.
|
||||
*
|
||||
* \cgalModels `AABBPrimitive` if `OneHalfedgeGraphPerTree` is `CGAL::Tag_false`,
|
||||
* and `AABBPrimitiveWithSharedData` if `OneHalfedgeGraphPerTree` is `CGAL::Tag_true`.
|
||||
* \cgalModelsBareBegin
|
||||
* \cgalModelsBare{`AABBPrimitive` if `OneHalfedgeGraphPerTree` is `CGAL::Tag_false`}
|
||||
* \cgalModelsBare{`AABBPrimitiveWithSharedData` if `OneHalfedgeGraphPerTree` is `CGAL::Tag_true`}
|
||||
* \cgalModelsBareEnd
|
||||
*
|
||||
* \tparam HalfedgeGraph is a model of the halfedge graph concept.
|
||||
* as key type and a \cgal Kernel `Point_3` as value type.
|
||||
|
|
|
|||
|
|
@ -42,7 +42,7 @@ namespace CGAL {
|
|||
/// AABB tree is built should not be deleted while the AABB tree
|
||||
/// is in use.
|
||||
///
|
||||
/// \cgalModels `AABBPrimitive`
|
||||
/// \cgalModels{AABBPrimitive}
|
||||
/// \tparam GeomTraits must provide a \c %Point_3
|
||||
/// type, used as \c Point, and a \c %Segment_3 type, used as \c
|
||||
/// Datum and constructible from two arguments of type \c
|
||||
|
|
|
|||
|
|
@ -35,7 +35,7 @@ namespace CGAL {
|
|||
/// the polyhedron from which the AABB tree is built should not be
|
||||
/// deleted while the AABB tree is in use.
|
||||
///
|
||||
/// \cgalModels `AABBPrimitive`
|
||||
/// \cgalModels{AABBPrimitive}
|
||||
/// \tparam GeomTraits must provides a \c %Point_3
|
||||
/// type, used as \c Point, and a \c %Triangle_3 type, used as \c
|
||||
/// Datum and constructible from three arguments of type \c
|
||||
|
|
|
|||
|
|
@ -53,8 +53,10 @@ public:
|
|||
* The two property maps which are template parameters of the class enable to get the datum and the reference point of
|
||||
* the primitive from the identifier. The last template parameter controls whether the primitive class holds a copy of the datum.
|
||||
*
|
||||
* \cgalModels `AABBPrimitive` if `ExternalPropertyMaps` is `CGAL::Tag_false`.
|
||||
* \cgalModels `AABBPrimitiveWithSharedData` if `ExternalPropertyMaps` is `CGAL::Tag_true`.
|
||||
* \cgalModelsBareBegin
|
||||
* \cgalModelsBare{`AABBPrimitive` if `ExternalPropertyMaps` is `CGAL::Tag_false`}
|
||||
* \cgalModelsBare{`AABBPrimitiveWithSharedData` if `ExternalPropertyMaps` is `CGAL::Tag_true`}
|
||||
* \cgalModelsBareEnd
|
||||
*
|
||||
* \tparam ObjectPropertyMap is a model of `ReadablePropertyMap` with `Id` as
|
||||
* `key_type`. It must be a model of `CopyConstructible`, `DefaultConstructible`, and `CopyAssignable`.
|
||||
|
|
|
|||
|
|
@ -54,7 +54,7 @@ namespace internal {
|
|||
* The iterator from which the primitive is built should not be invalided
|
||||
* while the AABB tree holding the primitive is in use.
|
||||
*
|
||||
* \cgalModels `AABBPrimitive`
|
||||
* \cgalModels{AABBPrimitive}
|
||||
*
|
||||
* \tparam GeomTraits is a traits class providing the nested type `Point_3` and `Segment_3`.
|
||||
* It also provides the functor `Construct_source_3` that has an operator taking a `Segment_3`
|
||||
|
|
|
|||
|
|
@ -149,9 +149,8 @@ class AABB_tree;
|
|||
/// computations, and it handles points as query type for distance
|
||||
/// queries.
|
||||
///
|
||||
/// \cgalModels AABBTraits
|
||||
/// \cgalModels AABBRayIntersectionTraits
|
||||
|
||||
/// \cgalModels{AABBTraits,AABBRayIntersectionTraits}
|
||||
///
|
||||
/// \tparam GeomTraits must be a model of the concept \ref AABBGeomTraits,
|
||||
/// and provide the geometric types as well as the intersection tests and computations.
|
||||
/// \tparam Primitive provide the type of primitives stored in the AABB_tree.
|
||||
|
|
|
|||
|
|
@ -55,7 +55,7 @@ namespace internal {
|
|||
* The iterator from which the primitive is built should not be invalided
|
||||
* while the AABB tree holding the primitive is in use.
|
||||
*
|
||||
* \cgalModels `AABBPrimitive`
|
||||
* \cgalModels{AABBPrimitive}
|
||||
*
|
||||
* \tparam GeomTraits is a traits class providing the nested type `Point_3` and `Triangle_3`.
|
||||
* It also provides the functor `Construct_vertex_3` that has an operator taking a `Triangle_3`
|
||||
|
|
|
|||
|
|
@ -28,7 +28,7 @@ namespace CGAL {
|
|||
// the TriangleMesh from which the AABB tree is built should not be
|
||||
// deleted while the AABB tree is in use.
|
||||
//
|
||||
// \cgalModels `AABBPrimitive`
|
||||
// \cgalModels{AABBPrimitive}
|
||||
// \tparam GeomTraits must provides a \c %Point_3
|
||||
// type, used as \c Point, and a \c %Triangle_3 type, used as \c
|
||||
// Datum and constructible from three arguments of type \c
|
||||
|
|
|
|||
|
|
@ -11,7 +11,9 @@ together with a few geometric predicates and constructions on these objects.
|
|||
|
||||
\cgalRefines{DelaunayTriangulationTraits_3}
|
||||
|
||||
\cgalHasModel All models of `Kernel`.
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{All models of the concept `Kernel`}
|
||||
\cgalHasModelsEnd
|
||||
*/
|
||||
class AdvancingFrontSurfaceReconstructionTraits_3
|
||||
{
|
||||
|
|
|
|||
|
|
@ -169,8 +169,8 @@ Every \cgal `Kernel` comes with two <I>real number types</I>
|
|||
(number types embeddable into the real numbers). One of them is a
|
||||
`FieldNumberType`, and the other a `RingNumberType`. The
|
||||
coordinates of the basic kernel objects (points, vectors, etc.) come
|
||||
from one of these types (the `FieldNumberType` in case of Cartesian
|
||||
kernels, and the `RingNumberType` for Homogeneous kernels).
|
||||
from one of these types (the `FieldNumberType` in case of %Cartesian
|
||||
kernels, and the `RingNumberType` for %Homogeneous kernels).
|
||||
|
||||
The concept `FieldNumberType` combines the requirements of the
|
||||
concepts `Field` and `RealEmbeddable`, while
|
||||
|
|
@ -277,4 +277,3 @@ subsequent chapters.
|
|||
|
||||
*/
|
||||
} /* namespace CGAL */
|
||||
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@ namespace CGAL {
|
|||
|
||||
An instance of `Algebraic_structure_traits` is a model of `AlgebraicStructureTraits`, where <span class="textsc">T</span> is the associated type.
|
||||
|
||||
\cgalModels `AlgebraicStructureTraits`
|
||||
\cgalModels{AlgebraicStructureTraits}
|
||||
|
||||
*/
|
||||
template< typename T >
|
||||
|
|
@ -22,7 +22,7 @@ namespace CGAL {
|
|||
Tag indicating that a type is a model of the
|
||||
`EuclideanRing` concept.
|
||||
|
||||
\cgalModels `DefaultConstructible`
|
||||
\cgalModels{DefaultConstructible}
|
||||
|
||||
\sa `EuclideanRing`
|
||||
\sa `AlgebraicStructureTraits`
|
||||
|
|
@ -38,7 +38,7 @@ struct Euclidean_ring_tag : public Unique_factorization_domain_tag {
|
|||
|
||||
Tag indicating that a type is a model of the `Field` concept.
|
||||
|
||||
\cgalModels `DefaultConstructible`
|
||||
\cgalModels{DefaultConstructible}
|
||||
|
||||
\sa `Field`
|
||||
\sa `AlgebraicStructureTraits`
|
||||
|
|
@ -54,7 +54,7 @@ struct Field_tag : public Integral_domain_tag {
|
|||
|
||||
Tag indicating that a type is a model of the `FieldWithKthRoot` concept.
|
||||
|
||||
\cgalModels `DefaultConstructible`
|
||||
\cgalModels{DefaultConstructible}
|
||||
|
||||
\sa `FieldWithKthRoot`
|
||||
\sa `AlgebraicStructureTraits`
|
||||
|
|
@ -70,7 +70,7 @@ struct Field_with_kth_root_tag : public Field_with_sqrt_tag {
|
|||
|
||||
Tag indicating that a type is a model of the `FieldWithRootOf` concept.
|
||||
|
||||
\cgalModels `DefaultConstructible`
|
||||
\cgalModels{DefaultConstructible}
|
||||
|
||||
\sa `FieldWithRootOf`
|
||||
\sa `AlgebraicStructureTraits`
|
||||
|
|
@ -86,7 +86,7 @@ struct Field_with_root_of_tag : public Field_with_kth_root_tag {
|
|||
|
||||
Tag indicating that a type is a model of the `FieldWithSqrt` concept.
|
||||
|
||||
\cgalModels `DefaultConstructible`
|
||||
\cgalModels{DefaultConstructible}
|
||||
|
||||
\sa `FieldWithSqrt`
|
||||
\sa `AlgebraicStructureTraits`
|
||||
|
|
@ -102,7 +102,7 @@ struct Field_with_sqrt_tag : public Field_tag {
|
|||
|
||||
Tag indicating that a type is a model of the `IntegralDomain` concept.
|
||||
|
||||
\cgalModels `DefaultConstructible`
|
||||
\cgalModels{DefaultConstructible}
|
||||
|
||||
\sa `IntegralDomain`
|
||||
\sa `AlgebraicStructureTraits`
|
||||
|
|
@ -118,7 +118,7 @@ struct Integral_domain_tag : public Integral_domain_without_division_tag {
|
|||
|
||||
Tag indicating that a type is a model of the `IntegralDomainWithoutDivision` concept.
|
||||
|
||||
\cgalModels `DefaultConstructible`
|
||||
\cgalModels{DefaultConstructible}
|
||||
|
||||
\sa `IntegralDomainWithoutDivision`
|
||||
|
||||
|
|
@ -133,7 +133,7 @@ struct Integral_domain_without_division_tag {
|
|||
|
||||
Tag indicating that a type is a model of the `UniqueFactorizationDomain` concept.
|
||||
|
||||
\cgalModels `DefaultConstructible`
|
||||
\cgalModels{DefaultConstructible}
|
||||
|
||||
\sa `UniqueFactorizationDomain`
|
||||
\sa `AlgebraicStructureTraits`
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@ namespace CGAL {
|
|||
An instance of `Fraction_traits` is a model of `FractionTraits`,
|
||||
where `T` is the associated type.
|
||||
|
||||
\cgalModels `FractionTraits`
|
||||
\cgalModels{FractionTraits}
|
||||
|
||||
*/
|
||||
template< typename T >
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@ namespace CGAL {
|
|||
|
||||
An instance of `Real_embeddable_traits` is a model of `RealEmbeddableTraits`, where <span class="textsc">T</span> is the associated type.
|
||||
|
||||
\cgalModels `RealEmbeddableTraits`
|
||||
\cgalModels{RealEmbeddableTraits}
|
||||
|
||||
*/
|
||||
template< typename T >
|
||||
|
|
|
|||
|
|
@ -28,7 +28,9 @@ algebraic operations within that structure.
|
|||
\sa `CGAL::Field_with_kth_root_tag`
|
||||
\sa `CGAL::Field_with_root_of_tag`
|
||||
|
||||
\cgalHasModel `CGAL::Algebraic_structure_traits<T>`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::Algebraic_structure_traits<T>}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
*/
|
||||
|
||||
|
|
|
|||
|
|
@ -5,20 +5,22 @@
|
|||
The concept `FieldNumberType` combines the requirements of the concepts
|
||||
`Field` and `RealEmbeddable`.
|
||||
A model of `FieldNumberType` can be used as a template parameter
|
||||
for Cartesian kernels.
|
||||
for %Cartesian kernels.
|
||||
|
||||
\cgalRefines{Field,RealEmbeddable}
|
||||
|
||||
\cgalHasModel float
|
||||
\cgalHasModel double
|
||||
\cgalHasModel `CGAL::Gmpq`
|
||||
\cgalHasModel `CGAL::Interval_nt`
|
||||
\cgalHasModel `CGAL::Interval_nt_advanced`
|
||||
\cgalHasModel `CGAL::Lazy_exact_nt<FieldNumberType>`
|
||||
\cgalHasModel `CGAL::Quotient<RingNumberType>`
|
||||
\cgalHasModel `leda_rational`
|
||||
\cgalHasModel `leda_bigfloat`
|
||||
\cgalHasModel `leda_real`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{float}
|
||||
\cgalHasModels{double}
|
||||
\cgalHasModels{CGAL::Gmpq}
|
||||
\cgalHasModels{CGAL::Interval_nt}
|
||||
\cgalHasModels{CGAL::Interval_nt_advanced}
|
||||
\cgalHasModels{CGAL::Lazy_exact_nt<FieldNumberType>}
|
||||
\cgalHasModels{CGAL::Quotient<RingNumberType>}
|
||||
\cgalHasModels{leda_rational}
|
||||
\cgalHasModels{leda_bigfloat}
|
||||
\cgalHasModels{leda_real}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `RingNumberType`
|
||||
\sa `Kernel`
|
||||
|
|
@ -32,4 +34,3 @@ public:
|
|||
/// @}
|
||||
|
||||
}; /* end FieldNumberType */
|
||||
|
||||
|
|
|
|||
|
|
@ -8,7 +8,9 @@ A model of `FractionTraits` is associated with a type `Type`.
|
|||
In case the associated type is a `Fraction`, a model of `FractionTraits` provides the relevant functionality for decomposing and re-composing as well
|
||||
as the numerator and denominator type.
|
||||
|
||||
\cgalHasModel `CGAL::Fraction_traits<T>`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::Fraction_traits<T>}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `FractionTraits_::Decompose`
|
||||
\sa `FractionTraits_::Compose`
|
||||
|
|
|
|||
|
|
@ -6,9 +6,11 @@
|
|||
A model of the concept `FromIntConstructible` is required
|
||||
to be constructible from int.
|
||||
|
||||
\cgalHasModel int
|
||||
\cgalHasModel long
|
||||
\cgalHasModel double
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{int}
|
||||
\cgalHasModels{long}
|
||||
\cgalHasModels{double}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
*/
|
||||
|
||||
|
|
|
|||
|
|
@ -7,7 +7,9 @@ A model of `RealEmbeddableTraits` is associated to a number type
|
|||
`Type` and reflects the properties of this type with respect
|
||||
to the concept `RealEmbeddable`.
|
||||
|
||||
\cgalHasModel `CGAL::Real_embeddable_traits<T>`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::Real_embeddable_traits<T>}
|
||||
\cgalHasModelsEnd
|
||||
*/
|
||||
|
||||
class RealEmbeddableTraits {
|
||||
|
|
|
|||
|
|
@ -6,23 +6,25 @@
|
|||
The concept `RingNumberType` combines the requirements of the concepts
|
||||
`IntegralDomainWithoutDivision` and `RealEmbeddable`.
|
||||
A model of `RingNumberType` can be used as a template parameter
|
||||
for Homogeneous kernels.
|
||||
for homogeneous kernels.
|
||||
|
||||
\cgalRefines{IntegralDomainWithoutDivision,RealEmbeddable}
|
||||
|
||||
\cgalHasModel \cpp built-in number types
|
||||
\cgalHasModel `CGAL::Gmpq`
|
||||
\cgalHasModel `CGAL::Gmpz`
|
||||
\cgalHasModel `CGAL::Interval_nt`
|
||||
\cgalHasModel `CGAL::Interval_nt_advanced`
|
||||
\cgalHasModel `CGAL::Lazy_exact_nt<RingNumberType>`
|
||||
\cgalHasModel `CGAL::MP_Float`
|
||||
\cgalHasModel `CGAL::Gmpzf`
|
||||
\cgalHasModel `CGAL::Quotient<RingNumberType>`
|
||||
\cgalHasModel `leda_integer`
|
||||
\cgalHasModel `leda_rational`
|
||||
\cgalHasModel `leda_bigfloat`
|
||||
\cgalHasModel `leda_real`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{\cpp built-in number types}
|
||||
\cgalHasModels{CGAL::Gmpq}
|
||||
\cgalHasModels{CGAL::Gmpz}
|
||||
\cgalHasModels{CGAL::Interval_nt}
|
||||
\cgalHasModels{CGAL::Interval_nt_advanced}
|
||||
\cgalHasModels{CGAL::Lazy_exact_nt<RingNumberType>}
|
||||
\cgalHasModels{CGAL::MP_Float}
|
||||
\cgalHasModels{CGAL::Gmpzf}
|
||||
\cgalHasModels{CGAL::Quotient<RingNumberType>}
|
||||
\cgalHasModels{leda_integer}
|
||||
\cgalHasModels{leda_rational}
|
||||
\cgalHasModels{leda_bigfloat}
|
||||
\cgalHasModels{leda_real}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `FieldNumberType`
|
||||
|
||||
|
|
@ -32,4 +34,3 @@ class RingNumberType {
|
|||
public:
|
||||
|
||||
}; /* end RingNumberType */
|
||||
|
||||
|
|
|
|||
|
|
@ -27,7 +27,7 @@ approximation of an algebraic real root is a slightly modified
|
|||
(filtered) version of the one presented in \cgalCite{abbott-qir-06}. The
|
||||
method has quadratic convergence.
|
||||
|
||||
\cgalModels `AlgebraicKernel_d_1`
|
||||
\cgalModels{AlgebraicKernel_d_1}
|
||||
|
||||
\sa `AlgebraicKernel_d_1`
|
||||
\sa `Polynomial_d`
|
||||
|
|
|
|||
|
|
@ -47,7 +47,7 @@ above. `ROOT` should be one of the integer types. See also the
|
|||
documentation of `Sqrt_extension<NT,ROOT>`.
|
||||
\cgalAdvancedEnd
|
||||
|
||||
\cgalModels `AlgebraicKernel_d_2`
|
||||
\cgalModels{AlgebraicKernel_d_2}
|
||||
|
||||
\sa `AlgebraicKernel_d_1`
|
||||
\sa `AlgebraicKernel_d_2`
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ rational univariate polynomial root isolation. It is a model of the
|
|||
isolate integer polynomials, the operations of this kernel have the
|
||||
overhead of converting the polynomials to integer.
|
||||
|
||||
\cgalModels `AlgebraicKernel_d_1`
|
||||
\cgalModels{AlgebraicKernel_d_1}
|
||||
|
||||
\sa `Algebraic_kernel_rs_gmpz_d_1`
|
||||
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ This univariate algebraic kernel uses the Rs library to perform
|
|||
integer univariate polynomial root isolation. It is a model of the
|
||||
`AlgebraicKernel_d_1` concept.
|
||||
|
||||
\cgalModels `AlgebraicKernel_d_1`
|
||||
\cgalModels{AlgebraicKernel_d_1}
|
||||
|
||||
\sa `Algebraic_kernel_rs_gmpz_d_1`
|
||||
|
||||
|
|
|
|||
|
|
@ -8,8 +8,10 @@ algebraic functionalities on univariate polynomials of general degree \f$ d\f$.
|
|||
|
||||
\cgalRefines{CopyConstructible,Assignable}
|
||||
|
||||
\cgalHasModel `CGAL::Algebraic_kernel_rs_gmpz_d_1`
|
||||
\cgalHasModel `CGAL::Algebraic_kernel_rs_gmpq_d_1`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::Algebraic_kernel_rs_gmpz_d_1}
|
||||
\cgalHasModels{CGAL::Algebraic_kernel_rs_gmpq_d_1}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `AlgebraicKernel_d_2`
|
||||
|
||||
|
|
|
|||
|
|
@ -16,7 +16,7 @@ if `Alpha_shape_face_base_2` is intended to be used with an alpha-shape class ba
|
|||
\link Tag_true `Tag_true`\endlink, triggers exact comparisons between alpha values. See the description
|
||||
provided in the documentation of `Alpha_shape_2` for more details. The default value is \link Tag_false `Tag_false`\endlink.
|
||||
|
||||
\cgalModels `AlphaShapeFace_2`
|
||||
\cgalModels{AlphaShapeFace_2}
|
||||
|
||||
\sa `Triangulation_face_base_2`
|
||||
\sa `Regular_triangulation_face_base_2`
|
||||
|
|
|
|||
|
|
@ -17,7 +17,7 @@ if `Alpha_shape_vertex_base_2` is intended to be used with an alpha-shape class
|
|||
\link Tag_true `Tag_true`\endlink, triggers exact comparisons between alpha values. See the description
|
||||
provided in the documentation of `Alpha_shape_2` for more details. The default value is \link Tag_false `Tag_false`\endlink.
|
||||
|
||||
\cgalModels `AlphaShapeVertex_2`
|
||||
\cgalModels{AlphaShapeVertex_2}
|
||||
|
||||
\sa `Triangulation_vertex_base_2`
|
||||
\sa `Regular_triangulation_vertex_base_2`
|
||||
|
|
|
|||
|
|
@ -9,7 +9,9 @@ The concept `AlphaShapeFace_2` describes the requirements for the base face of a
|
|||
RegularTriangulationFaceBase_2 if the underlying triangulation of the alpha shape is a regular triangulation,
|
||||
Periodic_2TriangulationFaceBase_2 if the underlying triangulation of the alpha shape is a periodic triangulation}
|
||||
|
||||
\cgalHasModel `CGAL::Alpha_shape_face_base_2` (templated with the appropriate triangulation face base class).
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::Alpha_shape_face_base_2 (templated with the appropriate triangulation face base class)}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
*/
|
||||
class AlphaShapeFace_2 {
|
||||
|
|
|
|||
|
|
@ -9,8 +9,10 @@ class of the underlying Delaunay triangulation of a basic alpha shape.
|
|||
\cgalRefines{DelaunayTriangulationTraits_2 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
|
||||
Periodic_2DelaunayTriangulationTraits_2 if the underlying triangulation of the alpha shape is a periodic Delaunay triangulation}
|
||||
|
||||
\cgalHasModel All models of `Kernel`.
|
||||
\cgalHasModel Projection traits such as `CGAL::Projection_traits_xy_3<K>`.
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{All models of `Kernel`}
|
||||
\cgalHasModelsBare{Projection traits such as `CGAL::Projection_traits_xy_3<K>`}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `CGAL::Exact_predicates_inexact_constructions_kernel` (recommended kernel)
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -9,7 +9,9 @@ The concept `AlphaShapeVertex_2` describes the requirements for the base vertex
|
|||
RegularTriangulationVertexBase_2 if the underlying triangulation of the alpha shape is a regular triangulation,
|
||||
Periodic_2TriangulationVertexBase_2 if the underlying triangulation of the alpha shape is a periodic triangulation}
|
||||
|
||||
\cgalHasModel `CGAL::Alpha_shape_vertex_base_2` (templated with the appropriate triangulation vertex base class).
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{`CGAL::Alpha_shape_vertex_base_2` (templated with the appropriate triangulation vertex base class)}
|
||||
\cgalHasModelsEnd
|
||||
*/
|
||||
class AlphaShapeVertex_2 {
|
||||
public:
|
||||
|
|
|
|||
|
|
@ -9,8 +9,10 @@ of the underlying regular triangulation of a weighted alpha shape.
|
|||
|
||||
\cgalRefines{RegularTriangulationTraits_2 if the underlying triangulation of the alpha shape is a regular triangulation.}
|
||||
|
||||
\cgalHasModel All models of `Kernel`.
|
||||
\cgalHasModel Projection traits such as `CGAL::Projection_traits_xy_3<K>`.
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{All models of `Kernel`,}
|
||||
\cgalHasModelsBare{Projection traits such as `CGAL::Projection_traits_xy_3<K>`}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `CGAL::Exact_predicates_inexact_constructions_kernel` (recommended kernel)
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -19,7 +19,7 @@ provided in the documentation of `Alpha_shape_3` for more details. The default v
|
|||
must be \link Tag_true `Tag_true`\endlink if the underlying triangulation of the alpha shape to be used is a regular triangulation
|
||||
and \link Tag_false `Tag_false`\endlink otherwise. The default is \link Tag_false `Tag_false`\endlink.
|
||||
|
||||
\cgalModels `AlphaShapeCell_3`
|
||||
\cgalModels{AlphaShapeCell_3}
|
||||
|
||||
\sa `Delaunay_triangulation_cell_base_3`
|
||||
\sa `Regular_triangulation_cell_base_3`
|
||||
|
|
|
|||
|
|
@ -19,7 +19,7 @@ provided in the documentation of `Alpha_shape_3` for more details. The default v
|
|||
must be \link Tag_true `Tag_true`\endlink if the underlying triangulation of the alpha shape to be used is a regular triangulation
|
||||
and \link Tag_false `Tag_false`\endlink otherwise. The default is \link Tag_false `Tag_false`\endlink.
|
||||
|
||||
\cgalModels `AlphaShapeVertex_3`
|
||||
\cgalModels{AlphaShapeVertex_3}
|
||||
|
||||
\sa `Triangulation_vertex_base_3`
|
||||
\sa `Regular_triangulation_vertex_base_3`
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@ to the `Alpha_shape_3` class.
|
|||
By default, it is instantiated with `Delaunay_triangulation_cell_base_3<Traits>`,
|
||||
which is appropriate for basic alpha shapes.
|
||||
|
||||
\cgalModels `FixedAlphaShapeCell_3`
|
||||
\cgalModels{FixedAlphaShapeCell_3}
|
||||
|
||||
\sa `Alpha_shape_cell_base_3`
|
||||
\sa `Delaunay_triangulation_cell_base_3`
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@ to the `Alpha_shape_3` class.
|
|||
By default, it is instantiated with `Triangulation_vertex_base_3<Traits>`,
|
||||
which is appropriate for basic alpha shapes.
|
||||
|
||||
\cgalModels `FixedAlphaShapeVertex_3`
|
||||
\cgalModels{FixedAlphaShapeVertex_3}
|
||||
|
||||
\sa `Alpha_shape_vertex_base_3`
|
||||
\sa `Triangulation_vertex_base_3`
|
||||
|
|
|
|||
|
|
@ -9,7 +9,9 @@ The concept `AlphaShapeCell_3` describes the requirements for the base cell of a
|
|||
RegularTriangulationCellBase_3 if the underlying triangulation of the alpha shape is a regular triangulation,
|
||||
Periodic_3TriangulationDSCellBase_3 if the underlying triangulation of the alpha shape is a periodic triangulation}
|
||||
|
||||
\cgalHasModel `CGAL::Alpha_shape_cell_base_3` (templated with the appropriate triangulation cell base class).
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{`CGAL::Alpha_shape_cell_base_3` (templated with the appropriate triangulation cell base class)}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `CGAL::Alpha_status`
|
||||
|
||||
|
|
|
|||
|
|
@ -10,7 +10,9 @@ of the underlying Delaunay triangulation of a basic alpha shape.
|
|||
\cgalRefines{DelaunayTriangulationTraits_3 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
|
||||
Periodic_3DelaunayTriangulationTraits_3 if the underlying triangulation of the alpha shape is a periodic Delaunay triangulation}
|
||||
|
||||
\cgalHasModel All models of `Kernel`.
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{All models of `Kernel`}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `CGAL::Exact_predicates_inexact_constructions_kernel` (recommended kernel)
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -9,7 +9,9 @@ The concept `AlphaShapeVertex_3` describes the requirements for the base vertex
|
|||
RegularTriangulationVertexBase_3 if the underlying triangulation of the alpha shape is a regular triangulation.
|
||||
Periodic_3TriangulationDSVertexBase_3 if the underlying triangulation of the alpha shape is a periodic triangulation}
|
||||
|
||||
\cgalHasModel `CGAL::Alpha_shape_vertex_base_3` (templated with the appropriate triangulation vertex base class).
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{`CGAL::Alpha_shape_vertex_base_3` (templated with the appropriate triangulation vertex base class)}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `CGAL::Alpha_status`
|
||||
|
||||
|
|
|
|||
|
|
@ -9,7 +9,9 @@ The concept `FixedAlphaShapeCell_3` describes the requirements for the base cell
|
|||
RegularTriangulationCellBase_3 if the underlying triangulation of the alpha shape is a regular triangulation,
|
||||
Periodic_3TriangulationDSCellBase_3 if the underlying triangulation of the alpha shape is a periodic triangulation}
|
||||
|
||||
\cgalHasModel `CGAL::Fixed_alpha_shape_cell_base_3` (templated with the appropriate triangulation cell base class).
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{`CGAL::Fixed_alpha_shape_cell_base_3` (templated with the appropriate triangulation cell base class)}
|
||||
\cgalHasModelsEnd
|
||||
*/
|
||||
class FixedAlphaShapeCell_3 {
|
||||
public:
|
||||
|
|
|
|||
|
|
@ -10,7 +10,9 @@ of the underlying Delaunay triangulation of a basic alpha shape with a fixed val
|
|||
\cgalRefines{DelaunayTriangulationTraits_3 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
|
||||
Periodic_3DelaunayTriangulationTraits_3 if the underlying triangulation of the alpha shape is a periodic Delaunay triangulation}
|
||||
|
||||
\cgalHasModel All models of `Kernel`.
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{All models of `Kernel`}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa CGAL::Exact_predicates_inexact_constructions_kernel (recommended kernel)
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -9,7 +9,9 @@ The concept `FixedAlphaShapeVertex_3` describes the requirements for the base ve
|
|||
RegularTriangulationVertexBase_3 if the underlying triangulation of the alpha shape is a regular triangulation,
|
||||
Periodic_3TriangulationDSVertexBase_3 if the underlying triangulation of the alpha shape is a periodic triangulation}
|
||||
|
||||
\cgalHasModel `CGAL::Fixed_alpha_shape_vertex_base_3` (templated with the appropriate triangulation vertex base class).
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{`CGAL::Fixed_alpha_shape_vertex_base_3` (templated with the appropriate triangulation vertex base class)}
|
||||
\cgalHasModelsEnd
|
||||
*/
|
||||
|
||||
class FixedAlphaShapeVertex_3 {
|
||||
|
|
|
|||
|
|
@ -9,7 +9,9 @@ for the geometric traits class of the underlying regular triangulation of a weig
|
|||
\cgalRefines{RegularTriangulationTraits_3 if the underlying triangulation of the alpha shape is a regular triangulation,
|
||||
Periodic_3RegularTriangulationTraits_3 if the underlying triangulation of the alpha shape is a periodic regular triangulation}
|
||||
|
||||
\cgalHasModel All models of `Kernel`.
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{All models of `Kernel`}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `CGAL::Exact_predicates_inexact_constructions_kernel` (recommended kernel)
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -10,7 +10,9 @@ of the underlying regular triangulation of a weighted alpha shape.
|
|||
\cgalRefines{RegularTriangulationTraits_3 if the underlying triangulation of the alpha shape is a regular triangulation,
|
||||
Periodic_3RegularTriangulationTraits_3 if the underlying triangulation of the alpha shape is a periodic regular triangulation}
|
||||
|
||||
\cgalHasModel All models of `Kernel`.
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{All models of `Kernel`}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `CGAL::Exact_predicates_inexact_constructions_kernel` (recommended kernel)
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -9,10 +9,12 @@ The concept `AlphaWrapOracle` defines the requirements for an Alpha Wrap <em>Ora
|
|||
that answers a number of queries over the input of the algorithm.
|
||||
The oracle is the template parameter of the class `CGAL::Alpha_wraps_3_::Alpha_wrap_3`.
|
||||
|
||||
\cgalHasModel `CGAL::Alpha_wraps_3_::Point_set_oracle`
|
||||
\cgalHasModel `CGAL::Alpha_wraps_3_::Segment_soup_oracle`
|
||||
\cgalHasModel `CGAL::Alpha_wraps_3_::Triangle_mesh_oracle`
|
||||
\cgalHasModel `CGAL::Alpha_wraps_3_::Triangle_soup_oracle`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::Alpha_wraps_3_::Point_set_oracle}
|
||||
\cgalHasModels{CGAL::Alpha_wraps_3_::Segment_soup_oracle}
|
||||
\cgalHasModels{CGAL::Alpha_wraps_3_::Triangle_mesh_oracle}
|
||||
\cgalHasModels{CGAL::Alpha_wraps_3_::Triangle_soup_oracle}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
*/
|
||||
template <typename GeomTraits>
|
||||
|
|
|
|||
|
|
@ -11,7 +11,9 @@ you require Kernel. Stitch_borders doesn't even have clear geometric traits requ
|
|||
The concept `AlphaWrapTraits_3` defines the requirements for the geometric traits class
|
||||
of an alpha wrap oracle.
|
||||
|
||||
\cgalHasModel Any 3D %kernel is a model of this traits concept.
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModelsBare{Any 3D %kernel is a model of this traits concept}
|
||||
\cgalHasModelsEnd
|
||||
*/
|
||||
|
||||
class AlphaWrapTraits_3
|
||||
|
|
|
|||
|
|
@ -12,3 +12,4 @@ create_single_source_cgal_program("triangle_soup_wrap.cpp")
|
|||
create_single_source_cgal_program("point_set_wrap.cpp")
|
||||
create_single_source_cgal_program("wrap_from_cavity.cpp")
|
||||
create_single_source_cgal_program("mixed_inputs_wrap.cpp")
|
||||
create_single_source_cgal_program("volumetric_wrap.cpp")
|
||||
|
|
|
|||
|
|
@ -16,9 +16,9 @@ using K = CGAL::Exact_predicates_inexact_constructions_kernel;
|
|||
using Point_3 = K::Point_3;
|
||||
using Segment_3 = K::Segment_3;
|
||||
|
||||
using Face = std::array<std::size_t, 3>;
|
||||
using Segments = std::vector<Segment_3>;
|
||||
using Points = std::vector<Point_3>;
|
||||
using Face = std::array<std::size_t, 3>;
|
||||
using Faces = std::vector<Face>;
|
||||
|
||||
using Mesh = CGAL::Surface_mesh<Point_3>;
|
||||
|
|
|
|||
|
|
@ -0,0 +1,173 @@
|
|||
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
|
||||
#include <CGAL/Surface_mesh.h>
|
||||
|
||||
#include <CGAL/alpha_wrap_3.h>
|
||||
|
||||
#include <CGAL/tetrahedral_remeshing.h>
|
||||
#include <CGAL/Tetrahedral_remeshing/Remeshing_cell_base_3.h>
|
||||
#include <CGAL/Tetrahedral_remeshing/Remeshing_vertex_base_3.h>
|
||||
#include <CGAL/Simplicial_mesh_cell_base_3.h>
|
||||
#include <CGAL/Simplicial_mesh_vertex_base_3.h>
|
||||
|
||||
#include <CGAL/Polygon_mesh_processing/bbox.h>
|
||||
#include <CGAL/Polygon_mesh_processing/IO/polygon_mesh_io.h>
|
||||
#include <CGAL/property_map.h>
|
||||
#include <CGAL/Real_timer.h>
|
||||
|
||||
#include <CGAL/Delaunay_triangulation_3.h>
|
||||
#include <CGAL/draw_triangulation_3.h>
|
||||
|
||||
#include <CGAL/IO/Triangulation_off_ostream_3.h>
|
||||
#include <CGAL/IO/File_medit.h>
|
||||
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
|
||||
namespace PMP = CGAL::Polygon_mesh_processing;
|
||||
namespace AW3i = CGAL::Alpha_wraps_3::internal;
|
||||
|
||||
using K = CGAL::Exact_predicates_inexact_constructions_kernel;
|
||||
using Point_3 = K::Point_3;
|
||||
|
||||
using Points = std::vector<Point_3>;
|
||||
using Face = std::array<std::size_t, 3>;
|
||||
using Faces = std::vector<Face>;
|
||||
|
||||
using Mesh = CGAL::Surface_mesh<Point_3>;
|
||||
|
||||
// If we provide a triangulation, AW3 uses its Gt, so we have to make the Gt stack explicit
|
||||
using Gtb = AW3i::Alpha_wrap_AABB_geom_traits<K>; // provides Ball_3
|
||||
using Gt = CGAL::Robust_circumcenter_filtered_traits_3<Gtb>; // better inexact constructions (not mandatory)
|
||||
|
||||
// Since we are going to use tetrahedral remeshing on the underlying triangulation,
|
||||
// we need special vertex and cell base types that meets the requirements of the
|
||||
// tetrahedral remeshing concepts
|
||||
using Vbbb = AW3i::Alpha_wrap_triangulation_vertex_base_3<K>;
|
||||
using Vbb = CGAL::Simplicial_mesh_vertex_base_3<K, int, int, int, int, Vbbb>;
|
||||
using Vb = CGAL::Tetrahedral_remeshing::Remeshing_vertex_base_3<K, Vbb>;
|
||||
|
||||
using Cbbb = AW3i::Alpha_wrap_triangulation_cell_base_3<K>;
|
||||
using Cbb = CGAL::Simplicial_mesh_cell_base_3<K, int, int, Cbbb>;
|
||||
using Cb = CGAL::Tetrahedral_remeshing::Remeshing_cell_base_3<K, Cbb>;
|
||||
|
||||
using Tds = CGAL::Triangulation_data_structure_3<Vb, Cb>;
|
||||
|
||||
using Delaunay_triangulation = CGAL::Delaunay_triangulation_3<Gt, Tds, CGAL::Fast_location>;
|
||||
|
||||
// because the Fast_location does all kinds of rebinding shenanigans + T3_hierarchy is in the stack...
|
||||
using Triangulation = CGAL::Triangulation_3<typename Delaunay_triangulation::Geom_traits,
|
||||
typename Delaunay_triangulation::Triangulation_data_structure>;
|
||||
|
||||
using Facet = Triangulation::Facet;
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
// Read the input
|
||||
const std::string filename = (argc > 1) ? argv[1] : CGAL::data_file_path("meshes/bull.off");
|
||||
std::cout << "Reading " << filename << "..." << std::endl;
|
||||
|
||||
Points points;
|
||||
Faces faces;
|
||||
if(!CGAL::IO::read_polygon_soup(filename, points, faces) || faces.empty())
|
||||
{
|
||||
std::cerr << "Invalid input." << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
std::cout << "Input: " << points.size() << " vertices, " << faces.size() << " faces" << std::endl;
|
||||
|
||||
// Compute the alpha and offset values
|
||||
const double relative_alpha = (argc > 2) ? std::stod(argv[2]) : 20.;
|
||||
const double relative_offset = (argc > 3) ? std::stod(argv[3]) : 600.;
|
||||
|
||||
CGAL::Bbox_3 bbox;
|
||||
for(const Point_3& p : points)
|
||||
bbox += p.bbox();
|
||||
|
||||
const double diag_length = std::sqrt(CGAL::square(bbox.xmax() - bbox.xmin()) +
|
||||
CGAL::square(bbox.ymax() - bbox.ymin()) +
|
||||
CGAL::square(bbox.zmax() - bbox.zmin()));
|
||||
|
||||
const double alpha = diag_length / relative_alpha;
|
||||
const double offset = diag_length / relative_offset;
|
||||
std::cout << "alpha: " << alpha << ", offset: " << offset << std::endl;
|
||||
|
||||
// Construct the wrap
|
||||
CGAL::Real_timer t;
|
||||
t.start();
|
||||
|
||||
using Oracle = CGAL::Alpha_wraps_3::internal::Triangle_soup_oracle<K>;
|
||||
|
||||
Oracle oracle(K{});
|
||||
oracle.add_triangle_soup(points, faces, CGAL::parameters::default_values());
|
||||
|
||||
CGAL::Alpha_wraps_3::internal::Alpha_wrap_3<Oracle, Delaunay_triangulation> aw3(oracle);
|
||||
Mesh wrap;
|
||||
aw3(alpha, offset, wrap);
|
||||
|
||||
t.stop();
|
||||
std::cout << "Result: " << num_vertices(wrap) << " vertices, " << num_faces(wrap) << " faces" << std::endl;
|
||||
std::cout << "Took " << t.time() << " s." << std::endl;
|
||||
|
||||
// Get the interior tetrahedrization
|
||||
auto dt = aw3.triangulation();
|
||||
|
||||
// Save the result
|
||||
std::string input_name = std::string(filename);
|
||||
input_name = input_name.substr(input_name.find_last_of("/") + 1, input_name.length() - 1);
|
||||
input_name = input_name.substr(0, input_name.find_last_of("."));
|
||||
std::string output_name = input_name
|
||||
+ "_" + std::to_string(static_cast<int>(relative_alpha))
|
||||
+ "_" + std::to_string(static_cast<int>(relative_offset)) + ".off";
|
||||
std::cout << "Writing to " << output_name << std::endl;
|
||||
CGAL::IO::write_polygon_mesh(output_name, wrap, CGAL::parameters::stream_precision(17));
|
||||
|
||||
// Remesh the interior of the wrap
|
||||
const Delaunay_triangulation& aw3_dt = aw3.triangulation();
|
||||
const Triangulation& aw3_tr = static_cast<const Triangulation&>(aw3_dt);
|
||||
Triangulation tr = aw3_tr; // intentional copy
|
||||
|
||||
std::cout << "BEFORE: " << tr.number_of_vertices() << " vertices, " << tr.number_of_cells() << " cells" << std::endl;
|
||||
|
||||
// Set up the c3t3 information
|
||||
for(auto v : tr.finite_vertex_handles())
|
||||
v->set_dimension(3);
|
||||
|
||||
for(auto c : tr.finite_cell_handles())
|
||||
{
|
||||
if(c->is_outside())
|
||||
c->set_subdomain_index(0);
|
||||
else
|
||||
c->set_subdomain_index(1);
|
||||
|
||||
// if the neighboring cell has a different outside info, put the vertices
|
||||
// of the common face on the surface boundary
|
||||
for(int i=0; i<4; ++i)
|
||||
{
|
||||
if(c->neighbor(i)->is_outside() != c->is_outside())
|
||||
{
|
||||
c->set_surface_patch_index(i, 1);
|
||||
for(int j=1; j<4; ++j)
|
||||
c->vertex((i+j)%4)->set_dimension(2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::ofstream out_before("before_remeshing.mesh");
|
||||
CGAL::IO::write_MEDIT(out_before, tr);
|
||||
|
||||
// edge length of equilateral triangle with circumradius alpha
|
||||
// const double l = 2 * alpha * 0.8660254037844386; // sqrt(3)/2
|
||||
|
||||
// edge length of regular tetrahedron with circumradius alpha
|
||||
const double l = 1.6329931618554521 * alpha; // sqrt(8/3)
|
||||
|
||||
CGAL::tetrahedral_isotropic_remeshing(tr, l, CGAL::parameters::remesh_boundaries(false));
|
||||
|
||||
std::cout << "AFTER: " << tr.number_of_vertices() << " vertices, " << tr.number_of_cells() << " cells" << std::endl;
|
||||
|
||||
std::ofstream out_after("after_remeshing.mesh");
|
||||
CGAL::IO::write_MEDIT(out_after, tr);
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
// Copyright (c) 2019-2022 Google LLC (USA).
|
||||
// Copyright (c) 2019-2023 Google LLC (USA).
|
||||
// All rights reserved.
|
||||
//
|
||||
// This file is part of CGAL (www.cgal.org).
|
||||
|
|
@ -29,16 +29,25 @@
|
|||
|
||||
#include <CGAL/license/Alpha_wrap_3.h>
|
||||
|
||||
#include <CGAL/Alpha_wrap_3/internal/Alpha_wrap_triangulation_cell_base_3.h>
|
||||
#include <CGAL/Alpha_wrap_3/internal/Alpha_wrap_triangulation_vertex_base_3.h>
|
||||
#include <CGAL/Alpha_wrap_3/internal/Alpha_wrap_AABB_geom_traits.h>
|
||||
#include <CGAL/Alpha_wrap_3/internal/gate_priority_queue.h>
|
||||
#include <CGAL/Alpha_wrap_3/internal/geometry_utils.h>
|
||||
#include <CGAL/Alpha_wrap_3/internal/oracles.h>
|
||||
|
||||
#include <CGAL/Delaunay_triangulation_3.h>
|
||||
#include <CGAL/Triangulation_data_structure_3.h>
|
||||
#include <CGAL/Delaunay_triangulation_cell_base_3.h>
|
||||
#include <CGAL/Delaunay_triangulation_cell_base_with_circumcenter_3.h>
|
||||
#include <CGAL/Robust_weighted_circumcenter_filtered_traits_3.h>
|
||||
|
||||
#include <CGAL/Cartesian_converter.h>
|
||||
#include <CGAL/Simple_cartesian.h>
|
||||
|
||||
#include <CGAL/boost/graph/Euler_operations.h>
|
||||
#include <CGAL/boost/graph/named_params_helper.h>
|
||||
#include <CGAL/Default.h>
|
||||
#include <CGAL/Named_function_parameters.h>
|
||||
#include <CGAL/Modifiable_priority_queue.h>
|
||||
#include <CGAL/Polygon_mesh_processing/bbox.h>
|
||||
|
|
@ -50,16 +59,9 @@
|
|||
#include <CGAL/Polygon_mesh_processing/stitch_borders.h> // only if non-manifoldness is not treated
|
||||
#include <CGAL/property_map.h>
|
||||
#include <CGAL/Real_timer.h>
|
||||
#include <CGAL/Delaunay_triangulation_3.h>
|
||||
#include <CGAL/Triangulation_data_structure_3.h>
|
||||
#include <CGAL/Delaunay_triangulation_cell_base_3.h>
|
||||
#include <CGAL/Triangulation_cell_base_with_info_3.h>
|
||||
#include <CGAL/Delaunay_triangulation_cell_base_with_circumcenter_3.h>
|
||||
#include <CGAL/Triangulation_vertex_base_with_info_3.h>
|
||||
#include <CGAL/Robust_weighted_circumcenter_filtered_traits_3.h>
|
||||
|
||||
#include <array>
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <fstream>
|
||||
#include <functional>
|
||||
#include <iostream>
|
||||
|
|
@ -74,30 +76,11 @@ namespace CGAL {
|
|||
namespace Alpha_wraps_3 {
|
||||
namespace internal {
|
||||
|
||||
template <typename Cb>
|
||||
class Cell_base_with_timestamp
|
||||
: public Cb
|
||||
{
|
||||
std::size_t time_stamp_;
|
||||
namespace {
|
||||
|
||||
public:
|
||||
template <typename... Args>
|
||||
Cell_base_with_timestamp(const Args&... args) : Cb(args...), time_stamp_(-1) { }
|
||||
namespace AW3i = ::CGAL::Alpha_wraps_3::internal;
|
||||
|
||||
Cell_base_with_timestamp(const Cell_base_with_timestamp& other) : Cb(other), time_stamp_(other.time_stamp_) { }
|
||||
|
||||
typedef CGAL::Tag_true Has_timestamp;
|
||||
|
||||
std::size_t time_stamp() const { return time_stamp_; }
|
||||
void set_time_stamp(const std::size_t& ts) { time_stamp_ = ts; }
|
||||
|
||||
template <class TDS>
|
||||
struct Rebind_TDS
|
||||
{
|
||||
typedef typename Cb::template Rebind_TDS<TDS>::Other Cb2;
|
||||
typedef Cell_base_with_timestamp<Cb2> Other;
|
||||
};
|
||||
};
|
||||
} // unnamed namespace
|
||||
|
||||
struct Wrapping_default_visitor
|
||||
{
|
||||
|
|
@ -125,11 +108,34 @@ struct Wrapping_default_visitor
|
|||
void on_alpha_wrapping_end(const AlphaWrapper&) { };
|
||||
};
|
||||
|
||||
template <typename Oracle>
|
||||
template <typename Oracle_,
|
||||
typename Triangulation_ = CGAL::Default>
|
||||
class Alpha_wrap_3
|
||||
{
|
||||
using Oracle = Oracle_;
|
||||
|
||||
// Triangulation
|
||||
using Base_GT = typename Oracle::Geom_traits;
|
||||
using Geom_traits = Robust_circumcenter_filtered_traits_3<Base_GT>;
|
||||
using Default_Gt = CGAL::Robust_circumcenter_filtered_traits_3<Base_GT>;
|
||||
|
||||
using Default_Vb = Alpha_wrap_triangulation_vertex_base_3<Default_Gt>;
|
||||
using Default_Cb = Alpha_wrap_triangulation_cell_base_3<Default_Gt>;
|
||||
using Default_Cbt = Cell_base_with_timestamp<Default_Cb>; // determinism
|
||||
using Default_Tds = CGAL::Triangulation_data_structure_3<Default_Vb, Default_Cbt>;
|
||||
using Default_Triangulation = CGAL::Delaunay_triangulation_3<Default_Gt, Default_Tds, Fast_location>;
|
||||
|
||||
using Triangulation = typename Default::Get<Triangulation_, Default_Triangulation>::type;
|
||||
|
||||
using Cell_handle = typename Triangulation::Cell_handle;
|
||||
using Facet = typename Triangulation::Facet;
|
||||
using Vertex_handle = typename Triangulation::Vertex_handle;
|
||||
using Locate_type = typename Triangulation::Locate_type;
|
||||
|
||||
using Gate = internal::Gate<Triangulation>;
|
||||
using Alpha_PQ = Modifiable_priority_queue<Gate, Less_gate, Gate_ID_PM<Triangulation>, CGAL_BOOST_PAIRING_HEAP>;
|
||||
|
||||
// Use the geom traits from the triangulation, and trust the (advanced) user that provided it
|
||||
using Geom_traits = typename Triangulation::Geom_traits;
|
||||
|
||||
using FT = typename Geom_traits::FT;
|
||||
using Point_3 = typename Geom_traits::Point_3;
|
||||
|
|
@ -143,34 +149,6 @@ class Alpha_wrap_3
|
|||
using SC_Iso_cuboid_3 = SC::Iso_cuboid_3;
|
||||
using SC2GT = Cartesian_converter<SC, Geom_traits>;
|
||||
|
||||
struct Cell_info
|
||||
{
|
||||
bool is_outside = false;
|
||||
};
|
||||
|
||||
enum Vertex_info
|
||||
{
|
||||
DEFAULT = 0,
|
||||
BBOX_VERTEX,
|
||||
SEED_VERTEX
|
||||
};
|
||||
|
||||
using Vb = Triangulation_vertex_base_3<Geom_traits>;
|
||||
using Vbi = Triangulation_vertex_base_with_info_3<Vertex_info, Geom_traits, Vb>;
|
||||
using Cbb = Delaunay_triangulation_cell_base_3<Geom_traits>;
|
||||
using Cb = Delaunay_triangulation_cell_base_with_circumcenter_3<Geom_traits, Cbb>;
|
||||
using Cbi = Triangulation_cell_base_with_info_3<Cell_info, Geom_traits, Cb>;
|
||||
using Cbt = Cell_base_with_timestamp<Cbi>;
|
||||
using Tds = Triangulation_data_structure_3<Vbi, Cbt>;
|
||||
using Dt = Delaunay_triangulation_3<Geom_traits, Tds, Fast_location>;
|
||||
|
||||
using Cell_handle = typename Dt::Cell_handle;
|
||||
using Facet = typename Dt::Facet;
|
||||
using Vertex_handle = typename Dt::Vertex_handle;
|
||||
using Locate_type = typename Dt::Locate_type;
|
||||
|
||||
using Gate = internal::Gate<Dt>;
|
||||
using Alpha_PQ = Modifiable_priority_queue<Gate, Less_gate, Gate_ID_PM<Dt>, CGAL_BOOST_PAIRING_HEAP>;
|
||||
|
||||
protected:
|
||||
const Oracle m_oracle;
|
||||
|
|
@ -179,7 +157,7 @@ protected:
|
|||
FT m_alpha, m_sq_alpha;
|
||||
FT m_offset, m_sq_offset;
|
||||
|
||||
Dt m_dt;
|
||||
Triangulation m_tr;
|
||||
Alpha_PQ m_queue;
|
||||
|
||||
public:
|
||||
|
|
@ -187,7 +165,7 @@ public:
|
|||
Alpha_wrap_3(const Oracle& oracle)
|
||||
:
|
||||
m_oracle(oracle),
|
||||
m_dt(Geom_traits(oracle.geom_traits())),
|
||||
m_tr(Geom_traits(oracle.geom_traits())),
|
||||
// used to set up the initial MPQ, use some arbitrary not-too-small value
|
||||
m_queue(4096)
|
||||
{
|
||||
|
|
@ -197,9 +175,9 @@ public:
|
|||
}
|
||||
|
||||
public:
|
||||
const Geom_traits& geom_traits() const { return m_dt.geom_traits(); }
|
||||
Dt& triangulation() { return m_dt; }
|
||||
const Dt& triangulation() const { return m_dt; }
|
||||
const Geom_traits& geom_traits() const { return m_tr.geom_traits(); }
|
||||
Triangulation& triangulation() { return m_tr; }
|
||||
const Triangulation& triangulation() const { return m_tr; }
|
||||
const Alpha_PQ& queue() const { return m_queue; }
|
||||
|
||||
double default_alpha() const
|
||||
|
|
@ -216,13 +194,13 @@ private:
|
|||
const Point_3& circumcenter(const Cell_handle c) const
|
||||
{
|
||||
// We only cross an infinite facet once, so this isn't going to be recomputed many times
|
||||
if(m_dt.is_infinite(c))
|
||||
if(m_tr.is_infinite(c))
|
||||
{
|
||||
const int inf_index = c->index(m_dt.infinite_vertex());
|
||||
const int inf_index = c->index(m_tr.infinite_vertex());
|
||||
c->set_circumcenter(
|
||||
geom_traits().construct_circumcenter_3_object()(m_dt.point(c, (inf_index+1)&3),
|
||||
m_dt.point(c, (inf_index+2)&3),
|
||||
m_dt.point(c, (inf_index+3)&3)));
|
||||
geom_traits().construct_circumcenter_3_object()(m_tr.point(c, (inf_index+1)&3),
|
||||
m_tr.point(c, (inf_index+2)&3),
|
||||
m_tr.point(c, (inf_index+3)&3)));
|
||||
}
|
||||
|
||||
return c->circumcenter(geom_traits());
|
||||
|
|
@ -418,11 +396,11 @@ private:
|
|||
for(int i=0; i<8; ++i)
|
||||
{
|
||||
const Point_3 bp = SC2GT()(m_bbox.vertex(i));
|
||||
Vertex_handle bv = m_dt.insert(bp);
|
||||
Vertex_handle bv = m_tr.insert(bp);
|
||||
#ifdef CGAL_AW3_DEBUG_INITIALIZATION
|
||||
std::cout << "\t" << bp << std::endl;
|
||||
#endif
|
||||
bv->info() = BBOX_VERTEX;
|
||||
bv->type() = AW3i::Vertex_type:: BBOX_VERTEX;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -433,7 +411,7 @@ private:
|
|||
// that the refinement point is separated from the existing point set.
|
||||
bool cavity_cell_outside_tag(const Cell_handle ch)
|
||||
{
|
||||
CGAL_precondition(!m_dt.is_infinite(ch));
|
||||
CGAL_precondition(!m_tr.is_infinite(ch));
|
||||
|
||||
const Tetrahedron_with_outside_info<Geom_traits> tet(ch, geom_traits());
|
||||
if(m_oracle.do_intersect(tet))
|
||||
|
|
@ -536,8 +514,8 @@ private:
|
|||
// This problem only appears when the seed and icosahedron vertices are close to the offset surface,
|
||||
// which usually happens for large alpha values.
|
||||
|
||||
Vertex_handle seed_v = m_dt.insert(seed_p);
|
||||
seed_v->info() = SEED_VERTEX;
|
||||
Vertex_handle seed_v = m_tr.insert(seed_p);
|
||||
seed_v->type() = AW3i::Vertex_type:: SEED_VERTEX;
|
||||
seed_vs.push_back(seed_v);
|
||||
|
||||
// Icosahedron vertices (see also BGL::make_icosahedron())
|
||||
|
|
@ -573,8 +551,8 @@ private:
|
|||
if(bbox.has_on_unbounded_side(seed_neighbor_p))
|
||||
continue;
|
||||
|
||||
Vertex_handle ico_v = m_dt.insert(seed_neighbor_p, seed_v /*hint*/);
|
||||
ico_v->info() = SEED_VERTEX;
|
||||
Vertex_handle ico_v = m_tr.insert(seed_neighbor_p, seed_v /*hint*/);
|
||||
ico_v->type() = AW3i::Vertex_type:: SEED_VERTEX;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -587,26 +565,26 @@ private:
|
|||
}
|
||||
|
||||
#ifdef CGAL_AW3_DEBUG_INITIALIZATION
|
||||
std::cout << m_dt.number_of_vertices() - 8 /*bbox*/ << " vertice(s) due to seeds" << std::endl;
|
||||
std::cout << m_tr.number_of_vertices() - 8 /*bbox*/ << " vertice(s) due to seeds" << std::endl;
|
||||
#endif
|
||||
|
||||
for(Vertex_handle seed_v : seed_vs)
|
||||
{
|
||||
std::vector<Cell_handle> inc_cells;
|
||||
inc_cells.reserve(64);
|
||||
m_dt.incident_cells(seed_v, std::back_inserter(inc_cells));
|
||||
m_tr.incident_cells(seed_v, std::back_inserter(inc_cells));
|
||||
for(Cell_handle ch : inc_cells)
|
||||
ch->info().is_outside = cavity_cell_outside_tag(ch);
|
||||
ch->is_outside() = cavity_cell_outside_tag(ch);
|
||||
}
|
||||
|
||||
// Might as well go through the full triangulation since only seeds should have been inserted
|
||||
for(Cell_handle ch : m_dt.all_cell_handles())
|
||||
for(Cell_handle ch : m_tr.all_cell_handles())
|
||||
{
|
||||
if(!ch->info().is_outside)
|
||||
if(!ch->is_outside())
|
||||
continue;
|
||||
|
||||
// When the algorithm starts from a manually dug hole, infinite cells are tagged "inside"
|
||||
CGAL_assertion(!m_dt.is_infinite(ch));
|
||||
CGAL_assertion(!m_tr.is_infinite(ch));
|
||||
|
||||
for(int i=0; i<4; ++i)
|
||||
push_facet(std::make_pair(ch, i));
|
||||
|
|
@ -627,17 +605,17 @@ private:
|
|||
// init queue with all convex hull facets
|
||||
bool initialize_from_infinity()
|
||||
{
|
||||
for(Cell_handle ch : m_dt.all_cell_handles())
|
||||
for(Cell_handle ch : m_tr.all_cell_handles())
|
||||
{
|
||||
if(m_dt.is_infinite(ch))
|
||||
if(m_tr.is_infinite(ch))
|
||||
{
|
||||
ch->info().is_outside = true;
|
||||
const int inf_index = ch->index(m_dt.infinite_vertex());
|
||||
ch->is_outside() = true;
|
||||
const int inf_index = ch->index(m_tr.infinite_vertex());
|
||||
push_facet(std::make_pair(ch, inf_index));
|
||||
}
|
||||
else
|
||||
{
|
||||
ch->info().is_outside = false;
|
||||
ch->is_outside() = false;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -659,13 +637,13 @@ public:
|
|||
|
||||
clear(output_mesh);
|
||||
|
||||
CGAL_assertion_code(for(auto cit=m_dt.finite_cells_begin(), cend=m_dt.finite_cells_end(); cit!=cend; ++cit))
|
||||
CGAL_assertion_code(for(auto cit=m_tr.finite_cells_begin(), cend=m_tr.finite_cells_end(); cit!=cend; ++cit))
|
||||
CGAL_assertion(cit->tds_data().is_clear());
|
||||
|
||||
for(auto cit=m_dt.finite_cells_begin(), cend=m_dt.finite_cells_end(); cit!=cend; ++cit)
|
||||
for(auto cit=m_tr.finite_cells_begin(), cend=m_tr.finite_cells_end(); cit!=cend; ++cit)
|
||||
{
|
||||
Cell_handle seed = cit;
|
||||
if(seed->info().is_outside || seed->tds_data().processed())
|
||||
if(seed->is_outside() || seed->tds_data().processed())
|
||||
continue;
|
||||
|
||||
std::queue<Cell_handle> to_visit;
|
||||
|
|
@ -678,7 +656,7 @@ public:
|
|||
while(!to_visit.empty())
|
||||
{
|
||||
const Cell_handle cell = to_visit.front();
|
||||
CGAL_assertion(!cell->info().is_outside && !m_dt.is_infinite(cell));
|
||||
CGAL_assertion(!cell->is_outside() && !m_tr.is_infinite(cell));
|
||||
|
||||
to_visit.pop();
|
||||
|
||||
|
|
@ -690,17 +668,17 @@ public:
|
|||
for(int fid=0; fid<4; ++fid)
|
||||
{
|
||||
const Cell_handle neighbor = cell->neighbor(fid);
|
||||
if(neighbor->info().is_outside)
|
||||
if(neighbor->is_outside())
|
||||
{
|
||||
// There shouldn't be any artificial vertex on the inside/outside boundary
|
||||
// (past initialization)
|
||||
// CGAL_assertion(cell->vertex((fid + 1)&3)->info() == DEFAULT);
|
||||
// CGAL_assertion(cell->vertex((fid + 2)&3)->info() == DEFAULT);
|
||||
// CGAL_assertion(cell->vertex((fid + 3)&3)->info() == DEFAULT);
|
||||
// CGAL_assertion(cell->vertex((fid + 1)&3)->type() == AW3i::Vertex_type:: DEFAULT);
|
||||
// CGAL_assertion(cell->vertex((fid + 2)&3)->type() == AW3i::Vertex_type:: DEFAULT);
|
||||
// CGAL_assertion(cell->vertex((fid + 3)&3)->type() == AW3i::Vertex_type:: DEFAULT);
|
||||
|
||||
points.push_back(m_dt.point(cell, Dt::vertex_triple_index(fid, 0)));
|
||||
points.push_back(m_dt.point(cell, Dt::vertex_triple_index(fid, 1)));
|
||||
points.push_back(m_dt.point(cell, Dt::vertex_triple_index(fid, 2)));
|
||||
points.push_back(m_tr.point(cell, Triangulation::vertex_triple_index(fid, 0)));
|
||||
points.push_back(m_tr.point(cell, Triangulation::vertex_triple_index(fid, 1)));
|
||||
points.push_back(m_tr.point(cell, Triangulation::vertex_triple_index(fid, 2)));
|
||||
faces.push_back({idx, idx + 1, idx + 2});
|
||||
idx += 3;
|
||||
}
|
||||
|
|
@ -722,7 +700,7 @@ public:
|
|||
CGAL_assertion(is_closed(output_mesh));
|
||||
}
|
||||
|
||||
for(auto cit=m_dt.finite_cells_begin(), cend=m_dt.finite_cells_end(); cit!=cend; ++cit)
|
||||
for(auto cit=m_tr.finite_cells_begin(), cend=m_tr.finite_cells_end(); cit!=cend; ++cit)
|
||||
cit->tds_data().clear();
|
||||
|
||||
CGAL_postcondition(!is_empty(output_mesh));
|
||||
|
|
@ -742,7 +720,7 @@ public:
|
|||
std::cout << "> Extract wrap... ()" << std::endl;
|
||||
#endif
|
||||
|
||||
CGAL_assertion_code(for(Vertex_handle v : m_dt.finite_vertex_handles()))
|
||||
CGAL_assertion_code(for(Vertex_handle v : m_tr.finite_vertex_handles()))
|
||||
CGAL_assertion(!is_non_manifold(v));
|
||||
|
||||
clear(output_mesh);
|
||||
|
|
@ -754,26 +732,26 @@ public:
|
|||
std::unordered_map<Vertex_handle, std::size_t> vertex_to_id;
|
||||
std::size_t nv = 0;
|
||||
|
||||
for(auto fit=m_dt.finite_facets_begin(), fend=m_dt.finite_facets_end(); fit!=fend; ++fit)
|
||||
for(auto fit=m_tr.finite_facets_begin(), fend=m_tr.finite_facets_end(); fit!=fend; ++fit)
|
||||
{
|
||||
Facet f = *fit;
|
||||
if(!f.first->info().is_outside)
|
||||
f = m_dt.mirror_facet(f);
|
||||
if(!f.first->is_outside())
|
||||
f = m_tr.mirror_facet(f);
|
||||
|
||||
const Cell_handle c = f.first;
|
||||
const int s = f.second;
|
||||
const Cell_handle nh = c->neighbor(s);
|
||||
if(c->info().is_outside == nh->info().is_outside)
|
||||
if(c->is_outside() == nh->is_outside())
|
||||
continue;
|
||||
|
||||
std::array<std::size_t, 3> ids;
|
||||
for(int pos=0; pos<3; ++pos)
|
||||
{
|
||||
Vertex_handle vh = c->vertex(Dt::vertex_triple_index(s, pos));
|
||||
Vertex_handle vh = c->vertex(Triangulation::vertex_triple_index(s, pos));
|
||||
auto insertion_res = vertex_to_id.emplace(vh, nv);
|
||||
if(insertion_res.second) // successful insertion, never-seen-before vertex
|
||||
{
|
||||
points.push_back(m_dt.point(vh));
|
||||
points.push_back(m_tr.point(vh));
|
||||
++nv;
|
||||
}
|
||||
|
||||
|
|
@ -817,14 +795,14 @@ public:
|
|||
private:
|
||||
bool is_traversable(const Facet& f) const
|
||||
{
|
||||
return less_squared_radius_of_min_empty_sphere(m_sq_alpha, f, m_dt);
|
||||
return less_squared_radius_of_min_empty_sphere(m_sq_alpha, f, m_tr);
|
||||
}
|
||||
|
||||
bool compute_steiner_point(const Cell_handle ch,
|
||||
const Cell_handle neighbor,
|
||||
Point_3& steiner_point) const
|
||||
{
|
||||
CGAL_precondition(!m_dt.is_infinite(neighbor));
|
||||
CGAL_precondition(!m_tr.is_infinite(neighbor));
|
||||
|
||||
typename Geom_traits::Construct_ball_3 ball = geom_traits().construct_ball_3_object();
|
||||
typename Geom_traits::Construct_vector_3 vector = geom_traits().construct_vector_3_object();
|
||||
|
|
@ -920,7 +898,7 @@ private:
|
|||
// e.g. from DT3
|
||||
Facet_queue_status facet_status(const Facet& f) const
|
||||
{
|
||||
CGAL_precondition(!m_dt.is_infinite(f));
|
||||
CGAL_precondition(!m_tr.is_infinite(f));
|
||||
|
||||
#ifdef CGAL_AW3_DEBUG_FACET_STATUS
|
||||
std::cout << "facet status: "
|
||||
|
|
@ -933,10 +911,10 @@ private:
|
|||
const Cell_handle ch = f.first;
|
||||
const int id = f.second;
|
||||
const Cell_handle nh = ch->neighbor(id);
|
||||
if(m_dt.is_infinite(nh))
|
||||
if(m_tr.is_infinite(nh))
|
||||
return TRAVERSABLE;
|
||||
|
||||
if(nh->info().is_outside)
|
||||
if(nh->is_outside())
|
||||
{
|
||||
#ifdef CGAL_AW3_DEBUG_FACET_STATUS
|
||||
std::cout << "Neighbor already outside" << std::endl;
|
||||
|
|
@ -947,8 +925,9 @@ private:
|
|||
// push if facet is connected to artificial vertices
|
||||
for(int i=0; i<3; ++i)
|
||||
{
|
||||
const Vertex_handle vh = ch->vertex(Dt::vertex_triple_index(id, i));
|
||||
if(vh->info() == BBOX_VERTEX || vh->info() == SEED_VERTEX)
|
||||
const Vertex_handle vh = ch->vertex(Triangulation::vertex_triple_index(id, i));
|
||||
if(vh->type() == AW3i::Vertex_type:: BBOX_VERTEX ||
|
||||
vh->type() == AW3i::Vertex_type:: SEED_VERTEX)
|
||||
{
|
||||
#ifdef CGAL_AW3_DEBUG_FACET_STATUS
|
||||
std::cout << "artificial facet due to artificial vertex #" << i << std::endl;
|
||||
|
|
@ -974,7 +953,7 @@ private:
|
|||
|
||||
bool push_facet(const Facet& f)
|
||||
{
|
||||
CGAL_precondition(f.first->info().is_outside);
|
||||
CGAL_precondition(f.first->is_outside());
|
||||
|
||||
// skip if f is already in queue
|
||||
if(m_queue.contains_with_bounds_check(Gate(f)))
|
||||
|
|
@ -986,9 +965,9 @@ private:
|
|||
|
||||
const Cell_handle ch = f.first;
|
||||
const int id = f.second;
|
||||
const Point_3& p0 = m_dt.point(ch, (id+1)&3);
|
||||
const Point_3& p1 = m_dt.point(ch, (id+2)&3);
|
||||
const Point_3& p2 = m_dt.point(ch, (id+3)&3);
|
||||
const Point_3& p0 = m_tr.point(ch, (id+1)&3);
|
||||
const Point_3& p1 = m_tr.point(ch, (id+2)&3);
|
||||
const Point_3& p2 = m_tr.point(ch, (id+3)&3);
|
||||
|
||||
// @todo should prob be the real value we compare to alpha instead of squared_radius
|
||||
const FT sqr = geom_traits().compute_squared_radius_3_object()(p0, p1, p2);
|
||||
|
|
@ -1022,7 +1001,7 @@ private:
|
|||
m_offset = FT(offset);
|
||||
m_sq_offset = square(m_offset);
|
||||
|
||||
m_dt.clear();
|
||||
m_tr.clear();
|
||||
m_queue.clear();
|
||||
|
||||
insert_bbox_corners();
|
||||
|
|
@ -1052,7 +1031,7 @@ private:
|
|||
// const& to something that will be popped, but safe as `ch` && `id` are extracted before the pop
|
||||
const Gate& gate = m_queue.top();
|
||||
const Facet& f = gate.facet();
|
||||
CGAL_precondition(!m_dt.is_infinite(f));
|
||||
CGAL_precondition(!m_tr.is_infinite(f));
|
||||
|
||||
const Cell_handle ch = f.first;
|
||||
const int id = f.second;
|
||||
|
|
@ -1060,11 +1039,11 @@ private:
|
|||
|
||||
#ifdef CGAL_AW3_DEBUG_QUEUE
|
||||
static int fid = 0;
|
||||
std::cout << m_dt.number_of_vertices() << " DT vertices" << std::endl;
|
||||
std::cout << m_tr.number_of_vertices() << " DT vertices" << std::endl;
|
||||
std::cout << m_queue.size() << " facets in the queue" << std::endl;
|
||||
std::cout << "Face " << fid++ << "\n"
|
||||
<< "c = " << &*ch << " (" << m_dt.is_infinite(ch) << "), n = " << &*neighbor << " (" << m_dt.is_infinite(neighbor) << ")" << "\n"
|
||||
<< m_dt.point(ch, (id+1)&3) << "\n" << m_dt.point(ch, (id+2)&3) << "\n" << m_dt.point(ch, (id+3)&3) << std::endl;
|
||||
<< "c = " << &*ch << " (" << m_tr.is_infinite(ch) << "), n = " << &*neighbor << " (" << m_tr.is_infinite(neighbor) << ")" << "\n"
|
||||
<< m_tr.point(ch, (id+1)&3) << "\n" << m_tr.point(ch, (id+2)&3) << "\n" << m_tr.point(ch, (id+3)&3) << std::endl;
|
||||
std::cout << "Priority: " << gate.priority() << std::endl;
|
||||
#endif
|
||||
|
||||
|
|
@ -1080,13 +1059,13 @@ private:
|
|||
std::string face_name = "results/steps/face_" + std::to_string(static_cast<int>(i++)) + ".xyz";
|
||||
std::ofstream face_out(face_name);
|
||||
face_out.precision(17);
|
||||
face_out << "3\n" << m_dt.point(ch, (id+1)&3) << "\n" << m_dt.point(ch, (id+2)&3) << "\n" << m_dt.point(ch, (id+3)&3) << std::endl;
|
||||
face_out << "3\n" << m_tr.point(ch, (id+1)&3) << "\n" << m_tr.point(ch, (id+2)&3) << "\n" << m_tr.point(ch, (id+3)&3) << std::endl;
|
||||
face_out.close();
|
||||
#endif
|
||||
|
||||
if(m_dt.is_infinite(neighbor))
|
||||
if(m_tr.is_infinite(neighbor))
|
||||
{
|
||||
neighbor->info().is_outside = true;
|
||||
neighbor->is_outside() = true;
|
||||
continue;
|
||||
}
|
||||
|
||||
|
|
@ -1100,14 +1079,16 @@ private:
|
|||
// locate cells that are going to be destroyed and remove their facet from the queue
|
||||
int li, lj = 0;
|
||||
Locate_type lt;
|
||||
const Cell_handle conflict_cell = m_dt.locate(steiner_point, lt, li, lj, neighbor);
|
||||
CGAL_assertion(lt != Dt::VERTEX);
|
||||
const Cell_handle conflict_cell = m_tr.locate(steiner_point, lt, li, lj, neighbor);
|
||||
CGAL_assertion(lt != Triangulation::VERTEX);
|
||||
|
||||
// Using small vectors like in Triangulation_3 does not bring any runtime improvement
|
||||
std::vector<Facet> boundary_facets;
|
||||
std::vector<Cell_handle> conflict_zone;
|
||||
boundary_facets.reserve(32);
|
||||
conflict_zone.reserve(32);
|
||||
m_dt.find_conflicts(steiner_point, conflict_cell,
|
||||
|
||||
m_tr.find_conflicts(steiner_point, conflict_cell,
|
||||
std::back_inserter(boundary_facets),
|
||||
std::back_inserter(conflict_zone));
|
||||
|
||||
|
|
@ -1125,7 +1106,7 @@ private:
|
|||
|
||||
for(const Facet& f : boundary_facets)
|
||||
{
|
||||
const Facet mf = m_dt.mirror_facet(f); // boundary facets have incident cells in the CZ
|
||||
const Facet mf = m_tr.mirror_facet(f); // boundary facets have incident cells in the CZ
|
||||
if(m_queue.contains_with_bounds_check(Gate(mf)))
|
||||
m_queue.erase(Gate(mf));
|
||||
}
|
||||
|
|
@ -1133,18 +1114,20 @@ private:
|
|||
visitor.before_Steiner_point_insertion(*this, steiner_point);
|
||||
|
||||
// Actual insertion of the Steiner point
|
||||
Vertex_handle vh = m_dt.insert(steiner_point, lt, conflict_cell, li, lj);
|
||||
vh->info() = DEFAULT;
|
||||
// We could use TDS functions to avoid recomputing the conflict zone, but in practice
|
||||
// it does not bring any runtime improvements
|
||||
Vertex_handle vh = m_tr.insert(steiner_point, lt, conflict_cell, li, lj);
|
||||
vh->type() = AW3i::Vertex_type:: DEFAULT;
|
||||
|
||||
visitor.after_Steiner_point_insertion(*this, vh);
|
||||
|
||||
std::vector<Cell_handle> new_cells;
|
||||
new_cells.reserve(32);
|
||||
m_dt.incident_cells(vh, std::back_inserter(new_cells));
|
||||
m_tr.incident_cells(vh, std::back_inserter(new_cells));
|
||||
for(const Cell_handle& ch : new_cells)
|
||||
{
|
||||
// std::cout << "new cell has time stamp " << ch->time_stamp() << std::endl;
|
||||
ch->info().is_outside = m_dt.is_infinite(ch);
|
||||
ch->is_outside() = m_tr.is_infinite(ch);
|
||||
}
|
||||
|
||||
// Push all new boundary facets to the queue.
|
||||
|
|
@ -1156,25 +1139,25 @@ private:
|
|||
{
|
||||
for(int i=0; i<4; ++i)
|
||||
{
|
||||
if(m_dt.is_infinite(ch, i))
|
||||
if(m_tr.is_infinite(ch, i))
|
||||
continue;
|
||||
|
||||
const Cell_handle nh = ch->neighbor(i);
|
||||
if(nh->info().is_outside == ch->info().is_outside) // not on the boundary
|
||||
if(nh->is_outside() == ch->is_outside()) // not on the boundary
|
||||
continue;
|
||||
|
||||
const Facet boundary_f = std::make_pair(ch, i);
|
||||
if(ch->info().is_outside)
|
||||
if(ch->is_outside())
|
||||
push_facet(boundary_f);
|
||||
else
|
||||
push_facet(m_dt.mirror_facet(boundary_f));
|
||||
push_facet(m_tr.mirror_facet(boundary_f));
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// tag neighbor as OUTSIDE
|
||||
neighbor->info().is_outside = true;
|
||||
neighbor->is_outside() = true;
|
||||
|
||||
// for each finite facet of neighbor, push it to the queue
|
||||
for(int i=0; i<4; ++i)
|
||||
|
|
@ -1188,10 +1171,10 @@ private:
|
|||
visitor.on_flood_fill_end(*this);
|
||||
|
||||
// Check that no useful facet has been ignored
|
||||
CGAL_postcondition_code(for(auto fit=m_dt.finite_facets_begin(), fend=m_dt.finite_facets_end(); fit!=fend; ++fit) {)
|
||||
CGAL_postcondition_code( if(fit->first->info().is_outside == fit->first->neighbor(fit->second)->info().is_outside) continue;)
|
||||
CGAL_postcondition_code(for(auto fit=m_tr.finite_facets_begin(), fend=m_tr.finite_facets_end(); fit!=fend; ++fit) {)
|
||||
CGAL_postcondition_code( if(fit->first->is_outside() == fit->first->neighbor(fit->second)->is_outside()) continue;)
|
||||
CGAL_postcondition_code( Facet f = *fit;)
|
||||
CGAL_postcondition_code( if(!fit->first->info().is_outside) f = m_dt.mirror_facet(f);)
|
||||
CGAL_postcondition_code( if(!fit->first->is_outside()) f = m_tr.mirror_facet(f);)
|
||||
CGAL_postcondition( facet_status(f) == IRRELEVANT);
|
||||
CGAL_postcondition_code(})
|
||||
}
|
||||
|
|
@ -1199,13 +1182,13 @@ private:
|
|||
private:
|
||||
bool is_non_manifold(Vertex_handle v) const
|
||||
{
|
||||
CGAL_precondition(!m_dt.is_infinite(v));
|
||||
CGAL_precondition(!m_tr.is_infinite(v));
|
||||
|
||||
bool is_non_manifold = false;
|
||||
|
||||
std::vector<Cell_handle> inc_cells;
|
||||
inc_cells.reserve(64);
|
||||
m_dt.incident_cells(v, std::back_inserter(inc_cells));
|
||||
m_tr.incident_cells(v, std::back_inserter(inc_cells));
|
||||
|
||||
// Flood one inside and outside CC.
|
||||
// Process both an inside and an outside CC to also detect edge pinching.
|
||||
|
|
@ -1218,7 +1201,7 @@ private:
|
|||
for(Cell_handle ic : inc_cells)
|
||||
{
|
||||
ic->tds_data().clear();
|
||||
if(ic->info().is_outside)
|
||||
if(ic->is_outside())
|
||||
outside_start = ic;
|
||||
else if(inside_start == Cell_handle())
|
||||
inside_start = ic;
|
||||
|
|
@ -1253,7 +1236,7 @@ private:
|
|||
CGAL_assertion(neigh_c->has_vertex(v));
|
||||
|
||||
if(neigh_c->tds_data().processed() ||
|
||||
neigh_c->info().is_outside != curr_c->info().is_outside) // do not cross the boundary
|
||||
neigh_c->is_outside() != curr_c->is_outside()) // do not cross the boundary
|
||||
continue;
|
||||
|
||||
cells_to_visit.push(neigh_c);
|
||||
|
|
@ -1278,7 +1261,7 @@ private:
|
|||
|
||||
bool is_non_manifold(Cell_handle c) const
|
||||
{
|
||||
CGAL_precondition(!m_dt.is_infinite(c));
|
||||
CGAL_precondition(!m_tr.is_infinite(c));
|
||||
|
||||
for(int i=0; i<4; ++i)
|
||||
{
|
||||
|
|
@ -1294,7 +1277,7 @@ private:
|
|||
{
|
||||
// Not the best complexity, but it's not important: this function is purely for information
|
||||
// Better complexity --> see PMP::non_manifold_vertices + throw
|
||||
for(const Vertex_handle v : m_dt.finite_vertex_handles())
|
||||
for(const Vertex_handle v : m_tr.finite_vertex_handles())
|
||||
if(is_non_manifold(v))
|
||||
return true;
|
||||
|
||||
|
|
@ -1307,18 +1290,18 @@ private:
|
|||
bool remove_bbox_vertices()
|
||||
{
|
||||
bool do_remove = true;
|
||||
auto vit = m_dt.finite_vertices_begin();
|
||||
auto vit = m_tr.finite_vertices_begin();
|
||||
for(std::size_t i=0; i<8; ++i)
|
||||
{
|
||||
Vertex_handle v = vit++;
|
||||
|
||||
std::vector<Cell_handle> inc_cells;
|
||||
inc_cells.reserve(64);
|
||||
m_dt.finite_incident_cells(v, std::back_inserter(inc_cells));
|
||||
m_tr.finite_incident_cells(v, std::back_inserter(inc_cells));
|
||||
|
||||
for(Cell_handle c : inc_cells)
|
||||
{
|
||||
if(!c->info().is_outside)
|
||||
if(!c->is_outside())
|
||||
{
|
||||
do_remove = false;
|
||||
break;
|
||||
|
|
@ -1333,11 +1316,11 @@ private:
|
|||
if(!do_remove)
|
||||
return false;
|
||||
|
||||
vit = m_dt.finite_vertices_begin();
|
||||
vit = m_tr.finite_vertices_begin();
|
||||
for(std::size_t i=0; i<8; ++i)
|
||||
{
|
||||
Vertex_handle v = vit++;
|
||||
m_dt.remove(v);
|
||||
m_tr.remove(v);
|
||||
}
|
||||
|
||||
return true;
|
||||
|
|
@ -1355,7 +1338,7 @@ public:
|
|||
// remove_bbox_vertices();
|
||||
|
||||
std::stack<Vertex_handle> non_manifold_vertices; // @todo sort somehow?
|
||||
for(Vertex_handle v : m_dt.finite_vertex_handles())
|
||||
for(Vertex_handle v : m_tr.finite_vertex_handles())
|
||||
{
|
||||
if(is_non_manifold(v))
|
||||
non_manifold_vertices.push(v);
|
||||
|
|
@ -1365,15 +1348,20 @@ public:
|
|||
auto has_artificial_vertex = [](Cell_handle c) -> bool
|
||||
{
|
||||
for(int i=0; i<4; ++i)
|
||||
if(c->vertex(i)->info() == BBOX_VERTEX || c->vertex(i)->info() == SEED_VERTEX)
|
||||
{
|
||||
if(c->vertex(i)->type() == AW3i::Vertex_type:: BBOX_VERTEX ||
|
||||
c->vertex(i)->type() == AW3i::Vertex_type:: SEED_VERTEX)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
};
|
||||
|
||||
auto is_on_boundary = [](Cell_handle c, int i) -> bool
|
||||
{
|
||||
return (c->info().is_outside != c->neighbor(i)->info().is_outside);
|
||||
return (c->is_outside() != c->neighbor(i)->is_outside());
|
||||
};
|
||||
|
||||
auto count_boundary_facets = [&](Cell_handle c, Vertex_handle v) -> int
|
||||
|
|
@ -1395,17 +1383,17 @@ public:
|
|||
// auto sq_circumradius = [&](Cell_handle c) -> FT
|
||||
// {
|
||||
// const Point_3& cc = circumcenter(c);
|
||||
// return geom_traits().compute_squared_distance_3_object()(m_dt.point(c, 0), cc);
|
||||
// return geom_traits().compute_squared_distance_3_object()(m_tr.point(c, 0), cc);
|
||||
// };
|
||||
|
||||
auto sq_longest_edge = [&](Cell_handle c) -> FT
|
||||
{
|
||||
return (std::max)({ squared_distance(m_dt.point(c, 0), m_dt.point(c, 1)),
|
||||
squared_distance(m_dt.point(c, 0), m_dt.point(c, 2)),
|
||||
squared_distance(m_dt.point(c, 0), m_dt.point(c, 3)),
|
||||
squared_distance(m_dt.point(c, 1), m_dt.point(c, 2)),
|
||||
squared_distance(m_dt.point(c, 3), m_dt.point(c, 3)),
|
||||
squared_distance(m_dt.point(c, 2), m_dt.point(c, 3)) });
|
||||
return (std::max)({ squared_distance(m_tr.point(c, 0), m_tr.point(c, 1)),
|
||||
squared_distance(m_tr.point(c, 0), m_tr.point(c, 2)),
|
||||
squared_distance(m_tr.point(c, 0), m_tr.point(c, 3)),
|
||||
squared_distance(m_tr.point(c, 1), m_tr.point(c, 2)),
|
||||
squared_distance(m_tr.point(c, 3), m_tr.point(c, 3)),
|
||||
squared_distance(m_tr.point(c, 2), m_tr.point(c, 3)) });
|
||||
};
|
||||
|
||||
#ifdef CGAL_AW3_DEBUG_MANIFOLDNESS
|
||||
|
|
@ -1450,7 +1438,7 @@ public:
|
|||
|
||||
std::vector<Cell_handle> inc_cells;
|
||||
inc_cells.reserve(64);
|
||||
m_dt.finite_incident_cells(v, std::back_inserter(inc_cells));
|
||||
m_tr.finite_incident_cells(v, std::back_inserter(inc_cells));
|
||||
|
||||
#define CGAL_AW3_USE_BRUTE_FORCE_MUTABLE_PRIORITY_QUEUE
|
||||
#ifndef CGAL_AW3_USE_BRUTE_FORCE_MUTABLE_PRIORITY_QUEUE
|
||||
|
|
@ -1464,10 +1452,10 @@ public:
|
|||
std::sort(cit, cend, comparer);
|
||||
#endif
|
||||
Cell_handle ic = *cit;
|
||||
CGAL_assertion(!m_dt.is_infinite(ic));
|
||||
CGAL_assertion(!m_tr.is_infinite(ic));
|
||||
|
||||
// This is where new material is added
|
||||
ic->info().is_outside = false;
|
||||
ic->is_outside() = false;
|
||||
|
||||
#ifdef CGAL_AW3_DEBUG_DUMP_EVERY_STEP
|
||||
static int i = 0;
|
||||
|
|
@ -1484,14 +1472,14 @@ public:
|
|||
|
||||
std::vector<Vertex_handle> adj_vertices;
|
||||
adj_vertices.reserve(64);
|
||||
m_dt.finite_adjacent_vertices(v, std::back_inserter(adj_vertices));
|
||||
m_tr.finite_adjacent_vertices(v, std::back_inserter(adj_vertices));
|
||||
|
||||
for(Vertex_handle nv : adj_vertices)
|
||||
if(is_non_manifold(nv))
|
||||
non_manifold_vertices.push(nv);
|
||||
}
|
||||
|
||||
CGAL_assertion_code(for(Vertex_handle v : m_dt.finite_vertex_handles()))
|
||||
CGAL_assertion_code(for(Vertex_handle v : m_tr.finite_vertex_handles()))
|
||||
CGAL_assertion(!is_non_manifold(v));
|
||||
}
|
||||
|
||||
|
|
@ -1508,12 +1496,12 @@ private:
|
|||
const Facet& current_f = current_gate.facet();
|
||||
const Cell_handle ch = current_f.first;
|
||||
const int id = current_f.second;
|
||||
const Point_3& p0 = m_dt.point(ch, (id+1)&3);
|
||||
const Point_3& p1 = m_dt.point(ch, (id+2)&3);
|
||||
const Point_3& p2 = m_dt.point(ch, (id+3)&3);
|
||||
const Point_3& p0 = m_tr.point(ch, (id+1)&3);
|
||||
const Point_3& p1 = m_tr.point(ch, (id+2)&3);
|
||||
const Point_3& p2 = m_tr.point(ch, (id+3)&3);
|
||||
const FT sqr = geom_traits().compute_squared_radius_3_object()(p0, p1, p2);
|
||||
|
||||
std::cout << "At Facet with VID " << get(Gate_ID_PM<Dt>(), current_gate) << std::endl;
|
||||
std::cout << "At Facet with VID " << get(Gate_ID_PM<Triangulation>(), current_gate) << std::endl;
|
||||
|
||||
if(current_gate.priority() != sqr)
|
||||
std::cerr << "Error: facet in queue has wrong priority" << std::endl;
|
||||
|
|
@ -1546,13 +1534,13 @@ private:
|
|||
std::size_t nv = 0;
|
||||
std::size_t nf = 0;
|
||||
|
||||
for(auto fit=m_dt.finite_facets_begin(), fend=m_dt.finite_facets_end(); fit!=fend; ++fit)
|
||||
for(auto fit=m_tr.finite_facets_begin(), fend=m_tr.finite_facets_end(); fit!=fend; ++fit)
|
||||
{
|
||||
Cell_handle c = fit->first;
|
||||
int s = fit->second;
|
||||
|
||||
Cell_handle nc = c->neighbor(s);
|
||||
if(only_boundary_faces && (c->info().is_outside == nc->info().is_outside))
|
||||
if(only_boundary_faces && (c->is_outside() == nc->is_outside()))
|
||||
continue;
|
||||
|
||||
std::array<std::size_t, 3> ids;
|
||||
|
|
@ -1562,7 +1550,7 @@ private:
|
|||
auto insertion_res = vertex_to_id.emplace(v, nv);
|
||||
if(insertion_res.second)
|
||||
{
|
||||
vertices_ss << m_dt.point(v) << "\n";
|
||||
vertices_ss << m_tr.point(v) << "\n";
|
||||
++nv;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -36,24 +36,24 @@ struct Tetrahedron_with_outside_info
|
|||
using Triangle_3 = typename Kernel::Triangle_3;
|
||||
|
||||
template <typename CellHandle>
|
||||
Tetrahedron_with_outside_info(const CellHandle ch, const K& k)
|
||||
Tetrahedron_with_outside_info(const CellHandle c, const K& k)
|
||||
{
|
||||
typename K::Construct_bbox_3 bbox = k.construct_bbox_3_object();
|
||||
typename K::Construct_tetrahedron_3 tetrahedron = k.construct_tetrahedron_3_object();
|
||||
typename K::Construct_triangle_3 triangle = k.construct_triangle_3_object();
|
||||
|
||||
m_tet = tetrahedron(ch->vertex(0)->point(), ch->vertex(1)->point(),
|
||||
ch->vertex(2)->point(), ch->vertex(3)->point());
|
||||
m_tet = tetrahedron(c->vertex(0)->point(), c->vertex(1)->point(),
|
||||
c->vertex(2)->point(), c->vertex(3)->point());
|
||||
m_bbox = bbox(m_tet);
|
||||
|
||||
for(int i=0; i<4; ++i)
|
||||
{
|
||||
if(ch->neighbor(i)->info().is_outside)
|
||||
if(c->neighbor(i)->is_outside())
|
||||
m_b.set(i, true);
|
||||
|
||||
m_triangles[i] = triangle(ch->vertex((i+1)& 3)->point(),
|
||||
ch->vertex((i+2)& 3)->point(),
|
||||
ch->vertex((i+3)& 3)->point());
|
||||
m_triangles[i] = triangle(c->vertex((i+1)& 3)->point(),
|
||||
c->vertex((i+2)& 3)->point(),
|
||||
c->vertex((i+3)& 3)->point());
|
||||
m_tbox[i] = bbox(m_triangles[i]);
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -0,0 +1,97 @@
|
|||
// Copyright (c) 2019-2023 Google LLC (USA).
|
||||
// All rights reserved.
|
||||
//
|
||||
// This file is part of CGAL (www.cgal.org).
|
||||
//
|
||||
// $URL$
|
||||
// $Id$
|
||||
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
|
||||
//
|
||||
// Author(s) : Mael Rouxel-Labbé
|
||||
|
||||
#ifndef CGAL_ALPHA_WRAP_TRIANGULATION_CELL_BASE_3_H
|
||||
#define CGAL_ALPHA_WRAP_TRIANGULATION_CELL_BASE_3_H
|
||||
|
||||
#include <CGAL/license/Alpha_wrap_3.h>
|
||||
|
||||
#include <CGAL/Delaunay_triangulation_cell_base_with_circumcenter_3.h>
|
||||
|
||||
namespace CGAL {
|
||||
namespace Alpha_wraps_3 {
|
||||
namespace internal {
|
||||
|
||||
template < typename GT,
|
||||
typename Cb = CGAL::Delaunay_triangulation_cell_base_with_circumcenter_3<GT> >
|
||||
class Alpha_wrap_triangulation_cell_base_3
|
||||
: public Cb
|
||||
{
|
||||
private:
|
||||
bool outside = false;
|
||||
|
||||
public:
|
||||
typedef typename Cb::Vertex_handle Vertex_handle;
|
||||
typedef typename Cb::Cell_handle Cell_handle;
|
||||
|
||||
template < typename TDS2 >
|
||||
struct Rebind_TDS
|
||||
{
|
||||
using Cb2 = typename Cb::template Rebind_TDS<TDS2>::Other;
|
||||
using Other = Alpha_wrap_triangulation_cell_base_3<GT, Cb2>;
|
||||
};
|
||||
|
||||
Alpha_wrap_triangulation_cell_base_3()
|
||||
: Cb()
|
||||
{}
|
||||
|
||||
Alpha_wrap_triangulation_cell_base_3(Vertex_handle v0, Vertex_handle v1,
|
||||
Vertex_handle v2, Vertex_handle v3)
|
||||
: Cb(v0, v1, v2, v3)
|
||||
{}
|
||||
|
||||
Alpha_wrap_triangulation_cell_base_3(Vertex_handle v0, Vertex_handle v1,
|
||||
Vertex_handle v2, Vertex_handle v3,
|
||||
Cell_handle n0, Cell_handle n1,
|
||||
Cell_handle n2, Cell_handle n3)
|
||||
: Cb(v0, v1, v2, v3, n0, n1, n2, n3)
|
||||
{}
|
||||
|
||||
bool is_outside() const { return outside; }
|
||||
bool& is_outside() { return outside; }
|
||||
};
|
||||
|
||||
template <typename Cb>
|
||||
class Cell_base_with_timestamp
|
||||
: public Cb
|
||||
{
|
||||
std::size_t time_stamp_;
|
||||
|
||||
public:
|
||||
using Has_timestamp = CGAL::Tag_true;
|
||||
|
||||
template <class TDS>
|
||||
struct Rebind_TDS
|
||||
{
|
||||
using Cb2 = typename Cb::template Rebind_TDS<TDS>::Other;
|
||||
using Other = Cell_base_with_timestamp<Cb2>;
|
||||
};
|
||||
|
||||
public:
|
||||
template <typename... Args>
|
||||
Cell_base_with_timestamp(const Args&... args)
|
||||
: Cb(args...), time_stamp_(-1)
|
||||
{ }
|
||||
|
||||
Cell_base_with_timestamp(const Cell_base_with_timestamp& other)
|
||||
: Cb(other), time_stamp_(other.time_stamp_)
|
||||
{ }
|
||||
|
||||
public:
|
||||
std::size_t time_stamp() const { return time_stamp_; }
|
||||
void set_time_stamp(const std::size_t& ts) { time_stamp_ = ts; }
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
} // namespace Alpha_wraps_3
|
||||
} // namespace CGAL
|
||||
|
||||
#endif // CGAL_ALPHA_WRAP_TRIANGULATION_CELL_BASE_3_H
|
||||
|
|
@ -0,0 +1,71 @@
|
|||
// Copyright (c) 2019-2023 Google LLC (USA).
|
||||
// All rights reserved.
|
||||
//
|
||||
// This file is part of CGAL (www.cgal.org).
|
||||
//
|
||||
// $URL$
|
||||
// $Id$
|
||||
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
|
||||
//
|
||||
// Author(s) : Mael Rouxel-Labbé
|
||||
|
||||
#ifndef CGAL_ALPHA_WRAP_TRIANGULATION_VERTEX_BASE_3_H
|
||||
#define CGAL_ALPHA_WRAP_TRIANGULATION_VERTEX_BASE_3_H
|
||||
|
||||
#include <CGAL/license/Alpha_wrap_3.h>
|
||||
|
||||
#include <CGAL/Triangulation_vertex_base_3.h>
|
||||
|
||||
namespace CGAL {
|
||||
namespace Alpha_wraps_3 {
|
||||
namespace internal {
|
||||
|
||||
enum class Vertex_type
|
||||
{
|
||||
DEFAULT = 0,
|
||||
BBOX_VERTEX,
|
||||
SEED_VERTEX
|
||||
};
|
||||
|
||||
template <typename GT,
|
||||
typename Vb = Triangulation_vertex_base_3<GT> >
|
||||
class Alpha_wrap_triangulation_vertex_base_3
|
||||
: public Vb
|
||||
{
|
||||
private:
|
||||
Vertex_type vertex_type = Vertex_type::DEFAULT;
|
||||
|
||||
public:
|
||||
using Cell_handle = typename Vb::Cell_handle;
|
||||
using Point = typename Vb::Point;
|
||||
|
||||
template <typename TDS2>
|
||||
struct Rebind_TDS
|
||||
{
|
||||
using Vb2 = typename Vb::template Rebind_TDS<TDS2>::Other;
|
||||
using Other = Alpha_wrap_triangulation_vertex_base_3<GT, Vb2>;
|
||||
};
|
||||
|
||||
public:
|
||||
Alpha_wrap_triangulation_vertex_base_3()
|
||||
: Vb() {}
|
||||
|
||||
Alpha_wrap_triangulation_vertex_base_3(const Point& p)
|
||||
: Vb(p) {}
|
||||
|
||||
Alpha_wrap_triangulation_vertex_base_3(const Point& p, Cell_handle c)
|
||||
: Vb(p, c) {}
|
||||
|
||||
Alpha_wrap_triangulation_vertex_base_3(Cell_handle c)
|
||||
: Vb(c) {}
|
||||
|
||||
public:
|
||||
const Vertex_type& type() const { return vertex_type; }
|
||||
Vertex_type& type() { return vertex_type; }
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
} // namespace Alpha_wraps_3
|
||||
} // namespace CGAL
|
||||
|
||||
#endif // CGAL_ALPHA_WRAP_TRIANGULATION_VERTEX_BASE_3_H
|
||||
|
|
@ -46,7 +46,7 @@ ag.incident_edges(ag.infinite_vertex());
|
|||
ag.incident_edges(ag.infinite_vertex(), f);
|
||||
\endcode
|
||||
|
||||
\cgalModels `DelaunayGraph_2`
|
||||
\cgalModels{DelaunayGraph_2}
|
||||
|
||||
\sa `CGAL::Apollonius_graph_traits_2<K,Method_tag>`
|
||||
\sa `CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>`
|
||||
|
|
|
|||
|
|
@ -37,7 +37,7 @@ The default values for the template parameters are as follows:
|
|||
`FK = CGAL::Simple_cartesian<CGAL::Interval_nt<false> >`,
|
||||
`FM = CM`.
|
||||
|
||||
\cgalModels `ApolloniusGraphTraits_2`
|
||||
\cgalModels{ApolloniusGraphTraits_2}
|
||||
|
||||
\sa `Kernel`
|
||||
\sa `ApolloniusGraphTraits_2`
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ vertex base required by the
|
|||
`Apollonius_graph_hierarchy_vertex_base_2` is templated by a class `Agvb` which must be a model
|
||||
of the `ApolloniusGraphVertexBase_2` concept.
|
||||
|
||||
\cgalModels `ApolloniusGraphHierarchyVertexBase_2`
|
||||
\cgalModels{ApolloniusGraphHierarchyVertexBase_2}
|
||||
|
||||
\sa `CGAL::Apollonius_graph_vertex_base_2<Gt,StoreHidden>`
|
||||
\sa `CGAL::Triangulation_data_structure_2<Vb,Fb>`
|
||||
|
|
|
|||
|
|
@ -20,7 +20,7 @@ default value for `Method_tag` is `CGAL::Integral_domain_without_division_tag`.
|
|||
The way the predicates are evaluated is discussed in
|
||||
\cgalCite{cgal:ke-ppawv-02}, \cgalCite{cgal:ke-rctac-03}.
|
||||
|
||||
\cgalModels `ApolloniusGraphTraits_2`
|
||||
\cgalModels{ApolloniusGraphTraits_2}
|
||||
|
||||
\sa `CGAL::Apollonius_graph_2<Gt,Agds>`
|
||||
\sa `CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>`
|
||||
|
|
|
|||
|
|
@ -24,7 +24,7 @@ discarded. By default `StoreHidden` is set to `true`.
|
|||
By default this parameter is
|
||||
instantiated by `Triangulation_ds_vertex_base_2<>`.
|
||||
|
||||
\cgalModels `ApolloniusGraphVertexBase_2`
|
||||
\cgalModels{ApolloniusGraphVertexBase_2}
|
||||
|
||||
\sa `CGAL::Triangulation_data_structure_2<Vb,Fb>`
|
||||
\sa `CGAL::Apollonius_graph_hierarchy_vertex_base_2<Gt>`
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ The class `Apollonius_site_2` is a model for the concept
|
|||
`ApolloniusSite_2`. It is parametrized by a template parameter
|
||||
`K` which must be a model of the `Kernel` concept.
|
||||
|
||||
\cgalModels `ApolloniusSite_2`
|
||||
\cgalModels{ApolloniusSite_2}
|
||||
|
||||
\cgalHeading{Types}
|
||||
|
||||
|
|
|
|||
|
|
@ -27,7 +27,9 @@ We only describe the additional requirements with respect to the
|
|||
|
||||
\cgalRefines{TriangulationDataStructure_2}
|
||||
|
||||
\cgalHasModel `CGAL::Triangulation_data_structure_2<Vb,Fb>`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::Triangulation_data_structure_2<Vb,Fb>}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `TriangulationDataStructure_2`
|
||||
\sa `ApolloniusGraphVertexBase_2`
|
||||
|
|
|
|||
|
|
@ -19,7 +19,9 @@ next and previous level graphs.
|
|||
`ApolloniusGraphHierarchyVertexBase_2` does not introduce any
|
||||
types in addition to those of `ApolloniusGraphVertexBase_2`.
|
||||
|
||||
\cgalHasModel `CGAL::Apollonius_graph_hierarchy_vertex_base_2<CGAL::Apollonius_graph_vertex_base_2<Gt,StoreHidden> >`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::Apollonius_graph_hierarchy_vertex_base_2<CGAL::Apollonius_graph_vertex_base_2<Gt,StoreHidden> >}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `ApolloniusGraphDataStructure_2`
|
||||
\sa `CGAL::Apollonius_graph_hierarchy_2<Gt,Agds>`
|
||||
|
|
|
|||
|
|
@ -12,8 +12,10 @@ it provides a type `Site_2`, which must be a model of the concept
|
|||
constructions for sites and several function object
|
||||
types for the predicates.
|
||||
|
||||
\cgalHasModel `CGAL::Apollonius_graph_traits_2<K,Method_tag>`
|
||||
\cgalHasModel `CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::Apollonius_graph_traits_2<K,Method_tag>}
|
||||
\cgalHasModels{CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `CGAL::Apollonius_graph_2<Gt,Agds>`
|
||||
\sa `CGAL::Apollonius_graph_traits_2<K,Method_tag>`
|
||||
|
|
|
|||
|
|
@ -12,7 +12,9 @@ sites. The container stores the hidden sites related to the vertex.
|
|||
|
||||
\cgalRefines{TriangulationVertexBase_2}
|
||||
|
||||
\cgalHasModel `CGAL::Apollonius_graph_vertex_base_2<Gt,StoreHidden>`
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{CGAL::Apollonius_graph_vertex_base_2<Gt,StoreHidden>}
|
||||
\cgalHasModelsEnd
|
||||
|
||||
\sa `ApolloniusGraphDataStructure_2`
|
||||
\sa `CGAL::Apollonius_graph_2<Gt,Agds>`
|
||||
|
|
|
|||
|
|
@ -117,8 +117,8 @@ special type of objects. They must, however, supply the relevant
|
|||
traits class, which mainly involves algebraic computations. A traits
|
||||
class also encapsulates the number types used to represent coordinates
|
||||
of geometric objects and to carry out algebraic operations on them. It
|
||||
encapsulates the type of coordinate system used (e.g., Cartesian and
|
||||
Homogeneous), and the geometric or algebraic computation methods
|
||||
encapsulates the type of coordinate system used (e.g., %Cartesian and
|
||||
homogeneous), and the geometric or algebraic computation methods
|
||||
themselves. The precise minimal sets of requirements the actual traits
|
||||
classes must conform to are organized as a hierarchy of concepts; see
|
||||
Section \ref aos_sec-geom_traits.
|
||||
|
|
@ -4780,7 +4780,7 @@ or line segments. The \link Arr_conic_traits_2::Curve_2
|
|||
`Curve_2`\endlink and the derived \link
|
||||
Arr_conic_traits_2::X_monotone_curve_2 `X_monotone_curve_2`\endlink
|
||||
classes also support basic access functions such as `source()`,
|
||||
`target()`, and `orientation()`.
|
||||
`target()`, and `%orientation()`.
|
||||
|
||||
<!-- ------------------------------------------------------------------------- -->
|
||||
\cgalFigureBegin{aos_fig-conics,conics.png}
|
||||
|
|
@ -5067,7 +5067,7 @@ substitute the template parameters `RatKernel`, `AlgKernel`, and
|
|||
the same requirements of the corresponding types used to instantiate
|
||||
the `Arr_conic_traits_2` class template. Here, the use of the
|
||||
`CORE_algebraic_number_traits` class is also recommended with
|
||||
Cartesian kernels instantiated with the `Rational` and `Algebraic`
|
||||
%Cartesian kernels instantiated with the `Rational` and `Algebraic`
|
||||
number types defined by this class. The examples given in this manual
|
||||
use the type definitions listed below. These types are defined in the
|
||||
header file `arr_Bezier.h`.
|
||||
|
|
|
|||
|
|
@ -52,8 +52,7 @@ the `Are_mergeable_2` operation does not enforce the input curves
|
|||
to have the same direction as a precondition. Moreover, `Arr_Bezier_curve_traits_2`
|
||||
supports the merging of curves of opposite directions.
|
||||
|
||||
\cgalModels `ArrangementTraits_2`
|
||||
\cgalModels `ArrangementDirectionalXMonotoneTraits_2`
|
||||
\cgalModels{ArrangementTraits_2,ArrangementDirectionalXMonotoneTraits_2}
|
||||
|
||||
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -22,7 +22,7 @@ the types `leda::integer` and `CORE::BigInt` are supported as well
|
|||
as any instance of `CGAL::Sqrt_extension` that is instantiated with
|
||||
one of the integral types above.
|
||||
|
||||
\cgalModels `ArrangementTraits_2`
|
||||
\cgalModels{ArrangementTraits_2}
|
||||
|
||||
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -21,7 +21,7 @@ namespace CGAL {
|
|||
* `Arr_default_dcel<Traits>`.
|
||||
* </UL>
|
||||
*
|
||||
* \cgalModels `ArrangementBasicTopologyTraits`
|
||||
* \cgalModels{ArrangementBasicTopologyTraits}
|
||||
*
|
||||
* \sa `Arr_default_dcel<Traits>`
|
||||
* \sa `CGAL::Arr_geodesic_arc_on_sphere_traits_2<Kernel,x,y>`
|
||||
|
|
|
|||
|
|
@ -32,8 +32,7 @@ namespace CGAL {
|
|||
* same direction as a precondition. Moreover, `Arr_circle_segment_traits_2`
|
||||
* supports the merging of curves of opposite directions.
|
||||
*
|
||||
* \cgalModels `ArrangementTraits_2`
|
||||
* \cgalModels `ArrangementDirectionalXMonotoneTraits_2`
|
||||
* \cgalModels{ArrangementTraits_2,ArrangementDirectionalXMonotoneTraits_2}
|
||||
*
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
@ -168,7 +167,7 @@ public:
|
|||
|
||||
|
||||
/*! The `Point_2` number-type nested within the traits class represents
|
||||
* a Cartesian point whose coordinates are algebraic numbers of type
|
||||
* a %Cartesian point whose coordinates are algebraic numbers of type
|
||||
* `CoordNT`.
|
||||
*/
|
||||
class Point_2 {
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ This class is a traits class for \cgal arrangements, built on top of a model of
|
|||
concept `CircularKernel`.
|
||||
It provides curves of type `CGAL::Circular_arc_2<CircularKernel>`.
|
||||
|
||||
\cgalModels `ArrangementTraits_2`
|
||||
\cgalModels{ArrangementTraits_2}
|
||||
|
||||
*/
|
||||
template< typename CircularKernel >
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ of both types
|
|||
|
||||
It uses the <A HREF="https://www.boost.org/doc/html/variant.html">std::variant</A>.
|
||||
|
||||
\cgalModels `ArrangementTraits_2`
|
||||
\cgalModels{ArrangementTraits_2}
|
||||
|
||||
*/
|
||||
template< typename CircularKernel >
|
||||
|
|
|
|||
|
|
@ -80,9 +80,7 @@ namespace CGAL {
|
|||
* to have the same direction as a precondition. Moreover, `Arr_conic_traits_2`
|
||||
* supports the merging of curves of opposite directions.
|
||||
*
|
||||
* \cgalModels `ArrangementTraits_2`
|
||||
* \cgalModels `ArrangementLandmarkTraits_2`
|
||||
* \cgalModels `ArrangementDirectionalXMonotoneTraits_2`
|
||||
* \cgalModels{ArrangementTraits_2,ArrangementLandmarkTraits_2,ArrangementDirectionalXMonotoneTraits_2}
|
||||
*
|
||||
* \cgalHeading{Types}
|
||||
*/
|
||||
|
|
@ -274,7 +272,7 @@ public:
|
|||
*/
|
||||
Point_2(const Algebraic& hx, const Algebraic& hy, const Algebraic& hz);
|
||||
|
||||
/*! constructs from Cartesian coordinates.
|
||||
/*! constructs from %Cartesian coordinates.
|
||||
*/
|
||||
Point_2(const Algebraic& x, const Algebraic& y);:
|
||||
|
||||
|
|
|
|||
|
|
@ -21,7 +21,7 @@ both resulting subcurves. In case two (or more) \f$ x\f$-monotone curves
|
|||
overlap, their data sets are consolidated, and are inserted into the set
|
||||
of the \f$ x\f$-monotone curve that represents the overlap.
|
||||
|
||||
\cgalModels `ArrangementTraits_2`
|
||||
\cgalModels{ArrangementTraits_2}
|
||||
|
||||
*/
|
||||
template< typename Traits, typename Data >
|
||||
|
|
|
|||
|
|
@ -49,7 +49,7 @@ namespace CGAL {
|
|||
* `d1` and `d2`. The \f$ x\f$-monotone curve that represents the overlap is
|
||||
* associated with the output of this functor.
|
||||
*
|
||||
* \cgalModels `ArrangementTraits_2`
|
||||
* \cgalModels{ArrangementTraits_2}
|
||||
*/
|
||||
template <typename Tr, typename XData, typename Mrg, typename CData, typename Cnv>
|
||||
class Arr_curve_data_traits_2 : public Tr {
|
||||
|
|
|
|||
|
|
@ -16,7 +16,7 @@ must be instantiated with models of the concepts
|
|||
`ArrangementDcelVertex`, `ArrangementDcelHalfedge`,
|
||||
and `ArrangementDcelFace` respectively.
|
||||
|
||||
\cgalModels `ArrangementDcel`
|
||||
\cgalModels{ArrangementDcel}
|
||||
|
||||
*/
|
||||
template< typename V, typename H, typename F >
|
||||
|
|
@ -29,7 +29,7 @@ public:
|
|||
The basic \dcel face type. Serves as a basis class for an extended
|
||||
face record with auxiliary data fields.
|
||||
|
||||
\cgalModels `ArrangementDcelFace`
|
||||
\cgalModels{ArrangementDcelFace}
|
||||
|
||||
*/
|
||||
class Arr_face_base {
|
||||
|
|
@ -43,7 +43,7 @@ The basic \dcel halfedge type. Serves as a basis class for an
|
|||
extended halfedge record with auxiliary data fields. The `Curve`
|
||||
parameter is the type of \f$ x\f$-monotone curves associated with the vertices.
|
||||
|
||||
\cgalModels `ArrangementDcelHalfedge`
|
||||
\cgalModels{ArrangementDcelHalfedge}
|
||||
|
||||
*/
|
||||
template< typename Curve >
|
||||
|
|
@ -58,7 +58,7 @@ The basic \dcel vertex type. Serves as a basis class for an extended
|
|||
vertex record with auxiliary data fields. The `Point` parameter is
|
||||
the type of points associated with the vertices.
|
||||
|
||||
\cgalModels `ArrangementDcelVertex`
|
||||
\cgalModels{ArrangementDcelVertex}
|
||||
|
||||
*/
|
||||
template< typename Point >
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ the base vertex and halfedge types, respectively. Thus, the default
|
|||
\dcel records store no other information, except for the topological
|
||||
incidence relations and the geometric data attached to vertices and edges.
|
||||
|
||||
\cgalModels `ArrangementDcelWithRebind`
|
||||
\cgalModels{ArrangementDcelWithRebind}
|
||||
|
||||
\sa `Arr_dcel_base<V,H,F>`
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ of type `Arrangement` that store no auxiliary data with their \dcel records, whe
|
|||
\dcel data as well. This class simply gives empty implementation for all
|
||||
traits-class functions.
|
||||
|
||||
\cgalModels `OverlayTraits`
|
||||
\cgalModels{OverlayTraits}
|
||||
|
||||
\sa `overlay`
|
||||
|
||||
|
|
@ -43,7 +43,7 @@ it uses the functor `OvlFaceData`, which accepts a `FaceData_A` object
|
|||
and a `FaceData_B` object and computes a corresponding `FaceData_R`
|
||||
object, in order to set the auxiliary data of the overlay face.
|
||||
|
||||
\cgalModels `OverlayTraits`
|
||||
\cgalModels{OverlayTraits}
|
||||
|
||||
\sa `overlay`
|
||||
\sa `CGAL::Arr_face_extended_dcel<Traits,FData,V,H,F>`
|
||||
|
|
|
|||
|
|
@ -33,7 +33,7 @@ The default values follow:
|
|||
|
||||
</TABLE>
|
||||
|
||||
\cgalModels `ArrangementDcelWithRebind`
|
||||
\cgalModels{ArrangementDcelWithRebind}
|
||||
|
||||
\sa `Arr_dcel_base<V,H,F>`
|
||||
|
||||
|
|
@ -57,7 +57,7 @@ The `Arr_extended_face` class-template extends the face topological-features of
|
|||
\dcel. It is parameterized by a face base-type `FaceBase` and a data type
|
||||
`FData` used to extend the face base-type.
|
||||
|
||||
\cgalModels `ArrangementDcelFace`
|
||||
\cgalModels{ArrangementDcelFace}
|
||||
|
||||
\sa `Arr_dcel_base<V,H,F>`
|
||||
|
||||
|
|
@ -109,7 +109,7 @@ The `Arr_extended_halfedge` class-template extends the halfedge topological-feat
|
|||
the \dcel. It is parameterized by a halfedge base-type `HalfedgeBase`
|
||||
and a data type `HData` used to extend the halfedge base-type.
|
||||
|
||||
\cgalModels `ArrangementDcelHalfedge`
|
||||
\cgalModels{ArrangementDcelHalfedge}
|
||||
|
||||
\sa `Arr_dcel_base<V,H,F>`
|
||||
|
||||
|
|
@ -162,7 +162,7 @@ topological-features of the \dcel. It is parameterized by a
|
|||
vertex base-type `VertexBase` and a data type `VData` used to extend
|
||||
the vertex base-type.
|
||||
|
||||
\cgalModels `ArrangementDcelVertex`
|
||||
\cgalModels{ArrangementDcelVertex}
|
||||
|
||||
\sa `Arr_dcel_base<V,H,F>`
|
||||
|
||||
|
|
@ -235,7 +235,7 @@ as follows:
|
|||
|
||||
</TABLE>
|
||||
|
||||
\cgalModels `ArrangementDcelWithRebind`
|
||||
\cgalModels{ArrangementDcelWithRebind}
|
||||
|
||||
\sa `Arr_dcel_base<V,H,F>`
|
||||
|
||||
|
|
|
|||
|
|
@ -19,10 +19,7 @@ existing faces might be removed, the notification mechanism is used
|
|||
to dynamically maintain the mapping of face handles to indices.
|
||||
|
||||
|
||||
\cgalModels DefaultConstructible
|
||||
\cgalModels CopyConstructible
|
||||
\cgalModels Assignable
|
||||
\cgalModels `ReadablePropertyMap`
|
||||
\cgalModels{DefaultConstructible,CopyConstructible,Assignable,ReadablePropertyMap}
|
||||
|
||||
\sa `Arr_observer<Arrangement>`
|
||||
\sa `Arr_vertex_index_map<Arrangement>`
|
||||
|
|
|
|||
|
|
@ -39,9 +39,7 @@ namespace CGAL {
|
|||
* normalized vector \f$(x,y)\f$ in the \f$xy\f$-plane that bisects the
|
||||
* identification curve.
|
||||
|
||||
* \cgalModels `ArrangementTraits_2`
|
||||
* \cgalModels `ArrangementLandmarkTraits_2`
|
||||
* \cgalModels `ArrangementSphericalBoundaryTraits_2`
|
||||
* \cgalModels{ArrangementTraits_2,ArrangementLandmarkTraits_2,ArrangementSphericalBoundaryTraits_2}
|
||||
*/
|
||||
|
||||
template <typename Kernel, typename X, typename Y>
|
||||
|
|
@ -52,9 +50,7 @@ namespace CGAL {
|
|||
* not-necessarily normalized 3D direction extended with information that
|
||||
* specifies the location of the point pre-image in the parameter space.
|
||||
*
|
||||
* \cgalModels `Assignable`
|
||||
* \cgalModels `DefaultConstructible`
|
||||
* \cgalModels `CopyConstructible`
|
||||
* \cgalModels{Assignable,DefaultConstructible,CopyConstructible}
|
||||
*/
|
||||
class Point_2 {
|
||||
public:
|
||||
|
|
@ -118,9 +114,7 @@ namespace CGAL {
|
|||
* intersect the identified left and right sides of the boundary of the
|
||||
* parameter space.
|
||||
*
|
||||
* \cgalModels `Assignable`
|
||||
* \cgalModels `DefaultConstructible`
|
||||
* \cgalModels `CopyConstructible`
|
||||
* \cgalModels{Assignable,DefaultConstructible,CopyConstructible}
|
||||
*/
|
||||
class X_monotone_curve_2 {
|
||||
public:
|
||||
|
|
@ -287,10 +281,7 @@ namespace CGAL {
|
|||
|
||||
/*! Construction functor of a point.
|
||||
*
|
||||
* \cgalModels `Assignable`
|
||||
* \cgalModels `CopyConstructible`
|
||||
* \cgalModels `AdaptableUnaryFunction`
|
||||
* \cgalModels `AdaptableTernaryFunction`
|
||||
* \cgalModels{Assignable,CopyConstructible,AdaptableUnaryFunction,AdaptableTernaryFunction}
|
||||
*/
|
||||
/*!
|
||||
*/
|
||||
|
|
@ -325,11 +316,7 @@ namespace CGAL {
|
|||
|
||||
/*! Construction functor of \f$x\f$-monotone geodesic arcs.
|
||||
*
|
||||
* \cgalModels `Assignable`
|
||||
* \cgalModels `CopyConstructible`
|
||||
* \cgalModels `AdaptableUnaryFunction`
|
||||
* \cgalModels `AdaptableBinaryFunction`
|
||||
* \cgalModels `AdaptableTernaryFunction`
|
||||
* \cgalModels{Assignable,CopyConstructible,AdaptableUnaryFunction,AdaptableBinaryFunction,AdaptableTernaryFunction}
|
||||
*/
|
||||
class Construct_x_monotone_curve_2 {
|
||||
public:
|
||||
|
|
@ -393,11 +380,7 @@ namespace CGAL {
|
|||
|
||||
/*! Construction functor of geodesic arcs.
|
||||
*
|
||||
* \cgalModels `Assignable`
|
||||
* \cgalModels `CopyConstructible`
|
||||
* \cgalModels `AdaptableUnaryFunction`
|
||||
* \cgalModels `AdaptableBinaryFunction`
|
||||
* \cgalModels `AdaptableTernaryFunction`
|
||||
* \cgalModels{Assignable,CopyConstructible,AdaptableUnaryFunction,AdaptableBinaryFunction,AdaptableTernaryFunction}
|
||||
*/
|
||||
class Construct_curve_2 {
|
||||
public:
|
||||
|
|
|
|||
|
|
@ -47,8 +47,7 @@ when the application frequently issues point-location queries on a
|
|||
rather static arrangement that the changes applied to it are mainly
|
||||
insertions of curves and not deletions of them.
|
||||
|
||||
\cgalModels `ArrangementPointLocation_2`
|
||||
\cgalModels `ArrangementVerticalRayShoot_2`
|
||||
\cgalModels{ArrangementPointLocation_2,ArrangementVerticalRayShoot_2}
|
||||
|
||||
\sa `ArrangementPointLocation_2`
|
||||
\sa `ArrangementVerticalRayShoot_2`
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ This class is a traits class for \cgal arrangements, built on top of a
|
|||
model of concept `CircularKernel`. It provides curves of type
|
||||
`CGAL::Line_arc_2<CircularKernel>`.
|
||||
|
||||
\cgalModels `ArrangementTraits_2`
|
||||
\cgalModels{ArrangementTraits_2}
|
||||
|
||||
*/
|
||||
template< typename CircularKernel >
|
||||
|
|
|
|||
|
|
@ -21,9 +21,7 @@ namespace CGAL {
|
|||
* we can find out its actual type and convert it to the respective kernel
|
||||
* object (say, to a `Kernel::Ray_2`).
|
||||
*
|
||||
* \cgalModels `ArrangementTraits_2`
|
||||
* \cgalModels `ArrangementLandmarkTraits_2`
|
||||
* \cgalModels `ArrangementOpenBoundaryTraits_2`
|
||||
* \cgalModels{ArrangementTraits_2,ArrangementLandmarkTraits_2,ArrangementOpenBoundaryTraits_2}
|
||||
*/
|
||||
template< typename Kernel >
|
||||
class Arr_linear_traits_2 {
|
||||
|
|
|
|||
|
|
@ -13,8 +13,7 @@ The query time is therefore linear in the complexity of the arrangement.
|
|||
Naturally, this point-location strategy could turn into a heavy
|
||||
time-consuming process when applied to dense arrangements.
|
||||
|
||||
\cgalModels `ArrangementPointLocation_2`
|
||||
\cgalModels `ArrangementVerticalRayShoot_2`
|
||||
\cgalModels{ArrangementPointLocation_2,ArrangementVerticalRayShoot_2}
|
||||
|
||||
\sa `ArrangementPointLocation_2`
|
||||
\sa `ArrangementVerticalRayShoot_2`
|
||||
|
|
|
|||
|
|
@ -21,7 +21,7 @@ instantiations for the kernel. Using other (inexact) number types
|
|||
`Simple_cartesian<double>`) is also possible, at the user's own
|
||||
risk.
|
||||
|
||||
\cgalModels `ArrangementLandmarkTraits_2`
|
||||
\cgalModels{ArrangementLandmarkTraits_2}
|
||||
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
|
|||
|
|
@ -32,9 +32,7 @@ the `Are_mergeable_2` operation does not enforce the input curves
|
|||
to have the same direction as a precondition. Moreover, `Arr_non_caching_segment_traits_2`
|
||||
supports the merging of curves of opposite directions.
|
||||
|
||||
\cgalModels `ArrangementTraits_2`
|
||||
\cgalModels `ArrangementLandmarkTraits_2`
|
||||
\cgalModels `ArrangementDirectionalXMonotoneTraits_2`
|
||||
\cgalModels{ArrangementTraits_2,ArrangementLandmarkTraits_2,ArrangementDirectionalXMonotoneTraits_2}
|
||||
|
||||
\sa `Arr_segment_traits_2<Kernel>`
|
||||
|
||||
|
|
|
|||
|
|
@ -72,10 +72,9 @@ namespace CGAL {
|
|||
* set the macro `CGAL_ALWAYS_LEFT_TO_RIGHT` to 1 before any \cgal header is
|
||||
* included.
|
||||
*
|
||||
* \cgalModels `ArrangementTraits_2`
|
||||
* \cgalModels `ArrangementDirectionalXMonotoneTraits_2`
|
||||
* \cgalModels `ArrangementApproximateTraits_2` (if the type that substitutes
|
||||
* the template parameter `SubcurveTraits_2` models the concept as well)
|
||||
* \cgalModels{ArrangementTraits_2,ArrangementDirectionalXMonotoneTraits_2,
|
||||
* ArrangementApproximateTraits_2 (if the type that substitutes
|
||||
* the template parameter `SubcurveTraits_2` models the concept as well)}
|
||||
*
|
||||
* \sa `Arr_algebraic_segment_traits_2<Coefficient>`
|
||||
* \sa `Arr_Bezier_curve_traits_2<RatKernel, AlgKernel, NtTraits>`
|
||||
|
|
|
|||
|
|
@ -77,12 +77,9 @@ namespace CGAL {
|
|||
* the macro `CGAL_ALWAYS_LEFT_TO_RIGHT` to 1 before any \cgal header is
|
||||
* included.
|
||||
*
|
||||
* \cgalModels `ArrangementTraits_2`
|
||||
* \cgalModels `ArrangementDirectionalXMonotoneTraits_2`
|
||||
* \cgalModels `ArrangementConstructXMonotoneCurveTraits_2`
|
||||
* \cgalModels `ArrangementConstructCurveTraits_2`
|
||||
* \cgalModels `ArrangementApproximateTraits_2` (if the type that substitutes
|
||||
* the template parameter `SegmentTraits_2` models the concept as well)
|
||||
* \cgalModels{ArrangementTraits_2,ArrangementDirectionalXMonotoneTraits_2,`ArrangementConstructXMonotoneCurveTraits_2`
|
||||
* ArrangementConstructCurveTraits_2,ArrangementApproximateTraits_2 (if the type that substitutes
|
||||
* the template parameter `SegmentTraits_2` models the concept as well)}
|
||||
*
|
||||
* \sa `Arr_polycurve_traits_2<SubcurveTraits_2>`
|
||||
* \sa `Arr_Bezier_curve_traits_2<RatKernel, AlgKernel, NtTraits>`
|
||||
|
|
|
|||
|
|
@ -52,9 +52,7 @@ namespace CGAL {
|
|||
to have the same direction as a precondition. Moreover, `Arr_rational_function_traits_2`
|
||||
supports the merging of curves of opposite directions.
|
||||
|
||||
\cgalModels `ArrangementTraits_2`
|
||||
\cgalModels `ArrangementDirectionalXMonotoneTraits_2`
|
||||
\cgalModels `ArrangementOpenBoundaryTraits_2`
|
||||
\cgalModels{ArrangementTraits_2,ArrangementDirectionalXMonotoneTraits_2,ArrangementOpenBoundaryTraits_2}
|
||||
*/
|
||||
template< typename AlgebraicKernel_d_1 >
|
||||
class Arr_rational_function_traits_2 {
|
||||
|
|
@ -134,10 +132,7 @@ Functor to construct a `Curve_2`. To enable caching the class is not
|
|||
default constructible and must be obtained via the function
|
||||
`construct_curve_2_object()`, which is a member of the traits.
|
||||
|
||||
\cgalModels `Assignable`
|
||||
\cgalModels `CopyConstructible`
|
||||
\cgalModels `AdaptableBinaryFunction`
|
||||
\cgalModels `AdaptableUnaryFunction`
|
||||
\cgalModels{Assignable,CopyConstructible,AdaptableBinaryFunction,AdaptableUnaryFunction}
|
||||
|
||||
*/
|
||||
class Construct_curve_2 {
|
||||
|
|
@ -289,10 +284,7 @@ Functor to construct a `X_monotone_curve_2`. To enable caching the class
|
|||
is not default constructible and must be obtained via the function
|
||||
`construct_x_monotone_curve_2_object()`, which is a member of the traits.
|
||||
|
||||
\cgalModels `Assignable`
|
||||
\cgalModels `CopyConstructible`
|
||||
\cgalModels `AdaptableBinaryFunction`
|
||||
\cgalModels `AdaptableUnaryFunction`
|
||||
\cgalModels{Assignable,CopyConstructible,AdaptableBinaryFunction,AdaptableUnaryFunction}
|
||||
|
||||
*/
|
||||
class Construct_x_monotone_curve_2 {
|
||||
|
|
@ -460,7 +452,7 @@ const Algebraic_real_1& lower, const Algebraic_real_1& upper); const
|
|||
The `Curve_2` class nested within the traits is used
|
||||
to represent rational functions which may be restricted to a certain x-range.
|
||||
|
||||
\cgalModels `ArrTraits::Curve_2`
|
||||
\cgalModels{ArrTraits::Curve_2}
|
||||
|
||||
*/
|
||||
class Curve_2 {
|
||||
|
|
@ -531,7 +523,7 @@ Algebraic_real_1 right_x() const;
|
|||
/*!
|
||||
|
||||
|
||||
\cgalModels `ArrTraits::Point_2`
|
||||
\cgalModels{ArrTraits::Point_2}
|
||||
|
||||
*/
|
||||
class Point_2 {
|
||||
|
|
@ -633,7 +625,7 @@ The `X_monotone_curve_2` class nested within the traits is used
|
|||
to represent \f$ x\f$-monotone parts of rational functions. In particular, such an \f$ x\f$-monotone curve
|
||||
may not contain a vertical asymptote in its interior \f$ x\f$-range.
|
||||
|
||||
\cgalModels `ArrTraits::XMonotoneCurve_2`
|
||||
\cgalModels{ArrTraits::XMonotoneCurve_2}
|
||||
|
||||
*/
|
||||
class X_monotone_curve_2 {
|
||||
|
|
|
|||
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue