fix images: combine 2 in one, and make bigger gifs as they were unreadble

This commit is contained in:
Andreas Fabri 2012-09-12 07:38:02 +00:00
parent b7af4a58fd
commit 023e22e28f
12 changed files with 43 additions and 59 deletions

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgRangeSegmentTreesD
\ingroup PkgRangeSegmentTreesDTraitsClasses
The class `Range_segment_tree_traits_set_2` is a range and segment tree traits class for the
2-dimensional point class from the \cgal kernel. The class is
@ -34,7 +34,7 @@ std::pair<Key, Key> Interval;
namespace CGAL {
/*!
\ingroup PkgRangeSegmentTreesD
\ingroup PkgRangeSegmentTreesDTraitsClasses
The class `Range_segment_tree_traits_set_3` is a range and segment tree traits class for the 3-dimensional
point class from the \cgal kernel.
@ -66,7 +66,7 @@ std::pair<Key, Key> Interval;
namespace CGAL {
/*!
\ingroup PkgRangeSegmentTreesD
\ingroup PkgRangeSegmentTreesDTraitsClasses
The class `Range_tree_traits_map_2` is a range tree traits class for the
2-dimensional point class from the \cgal kernel, where data of
@ -100,7 +100,7 @@ std::pair<R::Point_2, R::Point_2 > Interval;
namespace CGAL {
/*!
\ingroup PkgRangeSegmentTreesD
\ingroup PkgRangeSegmentTreesDTraitsClasses
The class `Range_tree_traits_map_3` is a range and segment tree traits class for the 3-dimensional
point class from the \cgal kernel, where data of
@ -134,7 +134,7 @@ std::pair<R::Point_3, R::Point_3> Interval;
namespace CGAL {
/*!
\ingroup PkgRangeSegmentTreesD
\ingroup PkgRangeSegmentTreesDTraitsClasses
The class `Segment_tree_traits_map_2` is a segment tree traits class for the
2-dimensional point class from the \cgal kernel, where data of
@ -168,7 +168,7 @@ std::pair<std::pair<Key,Key>,T> Interval;
namespace CGAL {
/*!
\ingroup PkgRangeSegmentTreesD
\ingroup PkgRangeSegmentTreesDTraitsClasses
The class `Segment_tree_traits_map_3` is a segment tree traits class for the 3-dimensional
point class from the \cgal kernel, where data of

View File

@ -2,7 +2,10 @@
namespace CGAL {
/*!
\ingroup PkgRangeSegmentTreesD
\ingroup PkgRangeSegmentTreesDSearchStructure
\brief A \f$ d\f$-dimensional range tree stores points and can be used to determine all
points that lie inside a given \f$ d\f$-dimensional interval.
Implementation
--------------

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgRangeSegmentTreesD
\ingroup PkgRangeSegmentTreesDSearchStructure
An object of the class `Range_tree_k` is a \f$ k\f$-dimensional range tree
that can store k-dimensional keys of type `Key`.

View File

@ -2,7 +2,9 @@
namespace CGAL {
/*!
\ingroup PkgRangeSegmentTreesD
\ingroup PkgRangeSegmentTreesDSearchStructure
\brief A \f$ d\f$-dimensional segment tree stores \f$ d\f$-dimensional intervals and can be used to find all intervals that enclose, partially overlap, or contain a query interval, which may be a point.
Implementation
--------------

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgRangeSegmentTreesD
\ingroup PkgRangeSegmentTreesDSearchStructure
An object of the class `Segment_tree_k` is a \f$ k\f$-dimensional segment tree
that can store k-dimensional intervals of type `Interval`.

View File

@ -14,11 +14,10 @@ classes for the data items (`Data` and `Window`).
Example
--------------
The following figures show a number of rectangles and a \f$ 2\f$-dimensional
The following figures show a number of rectangles and a 2-dimensional
segment tree built on them.
\image html segment_ex2.gif "Two dimensional interval data."
\image html segment_ex4.gif "Two dimensional segment tree according to the interval data."
\image html segment_ex2.gif "Two dimensional interval data and the corresponding segment tree."
*/
template< typename Data, typename Window >
class Tree_anchor : public Tree_base {

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgRangeSegmentTreesD
\ingroup PkgRangeSegmentTreesDTraitsClasses
`tree_interval_traits` is a template class
that provides an interface to data items. It is similar to
@ -142,7 +142,7 @@ static bool comp(Key& key1, Key& key2);
namespace CGAL {
/*!
\ingroup PkgRangeSegmentTreesD
\ingroup PkgRangeSegmentTreesDTraitsClasses
`tree_point_traits` is a template class
that provides an interface to data items.

View File

@ -1,6 +1,13 @@
/// \defgroup PkgRangeSegmentTreesD dD Range and Segment Trees
/// \defgroup PkgRangeSegmentTreesDConcepts Concepts
/// \ingroup PkgRangeSegmentTreesD
/// \defgroup PkgRangeSegmentTreesDTraitsClasses Traits Classes
/// \ingroup PkgRangeSegmentTreesD
/// \defgroup PkgRangeSegmentTreesDSearchStructure Search Structures
/// \ingroup PkgRangeSegmentTreesD
/*!
\addtogroup PkgRangeSegmentTreesD
\todo check generated documentation

View File

@ -162,7 +162,7 @@ functions are non trivial.
The design concept is illustrated in the figure below.
\image html rsd.gif
\image html rsd.gif Design of the range and segment tree data structure. The symbol triangle means that the lower class is derived from the upper class.
E.g. in order to define a two dimensional multilayer tree, which
consists of a range tree in the first dimension and a segment
@ -290,26 +290,12 @@ interval (`window_query`).
The pictures below show a two-dimensional and a \f$d\f$-dimensional range tree.
<TABLE BORDER=0 CELLSPACING=2 CELLPADDING=0 WIDTH=650>
<TR><TD ALIGN=LEFT VALIGN=TOP WIDTH=50% NOWRAP COLSPAN=2>
<A NAME="User:fig:range.eps"><img border=0 src="./range2.gif" alt="A two-dimensional range tree"></A>
</TD>
<A NAME="User:fig:d-range.eps"><TD ALIGN=LEFT VALIGN=TOP WIDTH=50%><img border=0 src="./d-range.gif" alt="A d-dimensional range tree"></A>
</TD></TR></TABLE>
<TABLE BORDER=0 CELLSPACING=2 CELLPADDING=0 WIDTH=650>
<TR><TD ALIGN=LEFT VALIGN=TOP WIDTH=45% COLSPAN=2>
A two-dimensional range tree. The
tree is a binary search tree on the first dimension. Each
sublayer tree of a vertex <span class="math">v</span> is a binary search tree on the
second
dimension. The data items in a sublayer tree of <span class="math">v</span> are
all data items of the subtree of <span class="math">v</span>
</TD><TD ALIGN=LEFT VALIGN=TOP WIDTH=50%>
A d-dimensional range tree. For
each layer of the tree, one
sublayer tree is illustrated.
</TD></TR>
</TABLE>
\image html range2.gif "A two and a d-dimensional range tree."
The 2-dimensional tree is a binary search tree on the first dimension. Each sublayer tree of a vertex `v` is a binary search tree on the second dimension. The data items in a sublayer tree of `v` are all data items of the subtree of `v`.
For the d-dimensional range tree, the figure shows one sublayer tree for each
layer of the tree.
The tree can be built in \f$ O(n\log^{d-1} n)\f$ time and
needs \f$ O(n\log^{d-1} n)\f$ space. The \f$ d\f$-dimensional points that lie in the
@ -317,7 +303,7 @@ needs \f$ O(n\log^{d-1} n)\f$ space. The \f$ d\f$-dimensional points that lie in
where \f$ n\f$ is the total number of points and \f$ k\f$ is the number of
reported points.
\subsection secrange_tree_ex Example for Range Tree on Map-like Data
\subsection secrange_tree_ex Example for %Range Tree on Map-like Data
The following example program uses the predefined `Range_tree_2` data structure together with the predefined traits
class `Range_tree_map_traits_2` which has two template
@ -434,32 +420,19 @@ contained in a given \f$ d\f$-dimensional interval (`window_query`).
An example of a one-dimensional segment tree and an example
of a two-dimensional segment tree are shown below.
<TABLE BORDER=0 CELLSPACING=2 CELLPADDING=0 WIDTH=650>
<TR>
<A NAME="User:fig:segment2.eps"></A>
<TD ALIGN=LEFT VALIGN=TOP WIDTH=50% NOWRAP COLSPAN=2>
<img border=0 src="./segment2.gif" alt="A one-dimensional segment
tree">
</TD>
<A NAME="User:fig:d-segment.eps"></A>
<TD ALIGN=LEFT VALIGN=TOP WIDTH=50%><img border=0
src="./d-segment.gif" alt="A d-dimensional segment tree">
</TD></TR></TABLE>
\image html segment2.gif "A one and a two dimensional segment tree"
<TABLE BORDER=0 CELLSPACING=2 CELLPADDING=0 WIDTH=650>
<TR><TD ALIGN=LEFT VALIGN=TOP WIDTH=50% COLSPAN=2>
A one-dimensional segment
tree. The segments and the corresponding elementary intervals
For the one-dimensional segment
tree the segments and the corresponding elementary intervals
are shown below the tree. The arcs from the nodes point to
their subsets.
</TD><TD ALIGN=LEFT VALIGN=TOP WIDTH=45%>
A two-dimensional segment
tree. The first layer of the tree is built according to the
For the two-dimensional segment
tree we see that the first layer of the tree is built according to the
elementary intervals of the first dimension. Each
sublayer tree of a vertex <span class="math">v</span> is a segment tree according to
the second dimension of all data items of <span class="math">v</span>.
</TD></TR>
</TABLE>
sublayer tree of a vertex `v` is a segment tree according to
the second dimension of all data items of `v`.
The tree can be built in \f$ O(n\log^{d} n)\f$ time and
needs \f$ O(n\log^{d} n)\f$ space.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.1 KiB

After

Width:  |  Height:  |  Size: 5.2 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.6 KiB

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.4 KiB

After

Width:  |  Height:  |  Size: 10 KiB