Plane_regularization class is now a simple function regularize_planes

This commit is contained in:
Simon Giraudot 2016-03-11 15:29:15 +01:00
parent cf7d88c475
commit 03decddb0b
1 changed files with 621 additions and 646 deletions

View File

@ -37,361 +37,175 @@
namespace CGAL { namespace CGAL {
namespace internal {
namespace PlaneRegularization {
/*!
\ingroup PkgPointSetShapeDetection3
\brief A plane regularization algorithm applied as a post-processing
to a shape detection algorithm.
Given a set of detected planes with their respective inlier sets, this
class enables to regularize the planes: planes almost parallel are
made exactly parallel. In addition, some additional regularization can
be performed:
- Plane clusters that are almost orthogonal can be made exactly
orthogonal.
- Planes that are parallel and almost coplanar can be made exactly
coplanar.
- Planes that are almost symmetrical with a user-defined axis can be
made exactly symmetrical.
Planes are directly modified. Points are left unaltered, as well as
their relationships to planes (no transfer of point from a primitive
plane to another).
The implementation follows \cgalCite{cgal:vla-lod-15}.
\tparam Traits a model of `EfficientRANSACTraits`
*/
template <typename Traits> template <typename Traits>
class Plane_regularization
{
public:
/// \cond SKIP_IN_MANUAL
typedef Plane_regularization<Traits> Self;
/// \endcond
/// \name Types
/// @{
/// \cond SKIP_IN_MANUAL
typedef typename Traits::FT FT;
typedef typename Traits::Point_3 Point;
typedef typename Traits::Vector_3 Vector;
typedef typename Traits::Line_3 Line;
/// \endcond
typedef typename Traits::Plane_3 Plane; ///< Raw plane type
typedef typename Traits::Point_map Point_map;
///< property map to access the location of an input point.
typedef typename Traits::Normal_map Normal_map;
///< property map to access the unoriented normal of an input point
typedef typename Traits::Input_range Input_range;
///< Model of the concept `Range` with random access iterators, providing input points and normals
/// through the following two property maps.
typedef typename Input_range::iterator Input_iterator; ///< Iterator on input data
typedef Shape_detection_3::Shape_base<Traits> Shape; ///< Shape type.
typedef Shape_detection_3::Plane<Traits> Plane_shape; ///< Plane type.
/// @}
private:
struct Plane_cluster struct Plane_cluster
{ {
bool is_free; bool is_free;
std::vector<std::size_t> planes; std::vector<std::size_t> planes;
std::vector<std::size_t> coplanar_group; std::vector<std::size_t> coplanar_group;
std::vector<std::size_t> orthogonal_clusters; std::vector<std::size_t> orthogonal_clusters;
Vector normal; typename Traits::Vector_3 normal;
FT cosangle_symmetry; typename Traits::FT cosangle_symmetry;
FT area; typename Traits::FT area;
FT cosangle_centroid; typename Traits::FT cosangle_centroid;
}; };
Traits m_traits;
Input_iterator m_input_begin; template <typename Traits>
Input_iterator m_input_end; typename Traits::Vector_3 regularize_normal
Point_map m_point_pmap; (const typename Traits::Vector_3& n,
Normal_map m_normal_pmap; const typename Traits::Vector_3& symmetry_direction,
typename Traits::FT cos_symmetry)
std::vector<boost::shared_ptr<Plane_shape> > m_planes;
std::vector<Point> m_centroids;
std::vector<FT> m_areas;
public:
/// \name Initialization
/// @{
/*!
Constructs an empty plane regularization engine.
*/
Plane_regularization (Traits t = Traits ())
: m_traits (t)
{ {
typedef typename Traits::FT FT;
typedef typename Traits::Point_3 Point;
typedef typename Traits::Vector_3 Vector;
typedef typename Traits::Line_3 Line;
typedef typename Traits::Plane_3 Plane;
} if (symmetry_direction == CGAL::NULL_VECTOR)
return n;
/*! Point pt_symmetry = CGAL::ORIGIN + cos_symmetry* symmetry_direction;
Constructs a plane regularization engine base on an input range Plane plane_symmetry (pt_symmetry, symmetry_direction);
of points with its related shape detection engine. Point pt_normal = CGAL::ORIGIN + n;
\param input_range Range of input data. if (n != symmetry_direction || n != -symmetry_direction)
\param shape_detection Shape detection engine used to detect
shapes from the input data. This engine may handle any types of
primitive shapes but only planes will be regularized.
\warning The `shape_detection` parameter must have already
detected shapes and must have been using `input_range` as input.
*/
Plane_regularization (Input_range& input_range,
const Shape_detection_3::Efficient_RANSAC<Traits>& shape_detection)
: m_traits (shape_detection.traits())
{ {
m_input_begin = input_range.begin (); Plane plane_cut (CGAL::ORIGIN, pt_normal, CGAL::ORIGIN + symmetry_direction);
m_input_end = input_range.end (); Line line;
CGAL::Object ob_1 = CGAL::intersection(plane_cut, plane_symmetry);
if (!assign(line, ob_1))
return n;
BOOST_FOREACH (boost::shared_ptr<Shape> shape, shape_detection.shapes()) FT delta = std::sqrt ((FT)1. - cos_symmetry * cos_symmetry);
{
boost::shared_ptr<Plane_shape> pshape
= boost::dynamic_pointer_cast<Plane_shape>(shape);
// Ignore all shapes other than plane Point projected_origin = line.projection (CGAL::ORIGIN);
if (pshape == boost::shared_ptr<Plane_shape>()) Vector line_vector (line);
continue; line_vector = line_vector / std::sqrt (line_vector * line_vector);
m_planes.push_back (pshape); Point pt1 = projected_origin + delta * line_vector;
} Point pt2 = projected_origin - delta * line_vector;
} if (CGAL::squared_distance (pt_normal, pt1) <= CGAL::squared_distance (pt_normal, pt2))
return Vector (CGAL::ORIGIN, pt1);
/*!
Releases all memory allocated by this instance.
*/
virtual ~Plane_regularization ()
{
clear ();
}
/// @}
/// \name Memory Management
/// @{
/*!
Clear all internal structures.
*/
void clear ()
{
std::vector<boost::shared_ptr<Plane_shape> > ().swap (m_planes);
std::vector<Point> ().swap (m_centroids);
std::vector<FT> ().swap (m_areas);
}
/// @}
/// \name Regularization
/// @{
/*!
Performs the plane regularization. Planes are directly modified.
\param tolerance_angle Tolerance of deviation between normal
vectors of planes so that they are considered parallel (in
degrees).
\param tolerance_coplanarity Maximal distance between two
parallel planes such that they are considered coplanar. The
default value is 0, meaning that coplanarity is not taken into
account for regularization.
\param regularize_orthogonality Make almost orthogonal clusters
of plane exactly orthogonal.
\param symmetry_direction Make clusters that are almost
symmetrical in the symmetry direction exactly symmetrical. This
parameter is ignored if it is equal to `CGAL::NULL_VECTOR`
(default value).
\return The number of clusters of parallel planes found.
*/
std::size_t run (FT tolerance_angle = (FT)25.0,
FT tolerance_coplanarity = (FT)0.0,
bool regularize_orthogonality = true,
Vector symmetry_direction = CGAL::NULL_VECTOR)
{
compute_centroids_and_areas ();
FT tolerance_cosangle = (FT)1. - std::cos (tolerance_angle);
// clustering the parallel primitives and store them in clusters
// & compute the normal, size and cos angle to the symmetry
// direction of each cluster
std::vector<Plane_cluster> clusters;
compute_parallel_clusters (clusters, tolerance_cosangle, symmetry_direction);
if (regularize_orthogonality)
{
//discovery orthogonal relationship between clusters
for (std::size_t i = 0; i < clusters.size(); ++ i)
{
for (std::size_t j = i + 1; j < clusters.size(); ++ j)
{
if (std::fabs (clusters[i].normal * clusters[j].normal) < tolerance_cosangle)
{
clusters[i].orthogonal_clusters.push_back (j);
clusters[j].orthogonal_clusters.push_back (i);
}
}
}
}
//clustering the symmetry cosangle and store their centroids in
//cosangle_centroids and the centroid index of each cluster in
//list_cluster_index
if (symmetry_direction != CGAL::NULL_VECTOR)
cluster_symmetric_cosangles (clusters, tolerance_cosangle);
//find subgraphs of mutually orthogonal clusters (store index of
//clusters in subgraph_clusters), and select the cluster of
//largest area
if (regularize_orthogonality)
subgraph_mutually_orthogonal_clusters (clusters, symmetry_direction);
//recompute optimal plane for each primitive after normal regularization
for (std::size_t i=0; i < clusters.size(); ++ i)
{
Vector vec_reg = clusters[i].normal;
for (std::size_t j = 0; j < clusters[i].planes.size(); ++ j)
{
std::size_t index_prim = clusters[i].planes[j];
Point pt_reg = m_planes[index_prim]->projection (m_centroids[index_prim]);
if( m_planes[index_prim]->plane_normal () * vec_reg < 0)
vec_reg=-vec_reg;
Plane plane_reg(pt_reg,vec_reg);
if( std::fabs(m_planes[index_prim]->plane_normal () * plane_reg.orthogonal_vector ()) > 1. - tolerance_cosangle)
m_planes[index_prim]->update (plane_reg);
}
}
//detecting co-planarity and store in list_coplanar_prim
for (std::size_t i = 0; i < clusters.size(); ++ i)
{
Vector vec_reg = clusters[i].normal;
for (std::size_t ip = 0; ip < clusters[i].planes.size(); ++ ip)
clusters[i].coplanar_group.push_back (static_cast<std::size_t>(-1));
std::size_t cop_index=0;
for (std::size_t j = 0; j < clusters[i].planes.size(); ++ j)
{
std::size_t index_prim = clusters[i].planes[j];
if (clusters[i].coplanar_group[j] == static_cast<std::size_t>(-1))
{
clusters[i].coplanar_group[j] = cop_index;
Point pt_reg = m_planes[index_prim]->projection(m_centroids[index_prim]);
Plane plan_reg(pt_reg,vec_reg);
for (std::size_t k = j + 1; k < clusters[i].planes.size(); ++ k)
{
if (clusters[i].coplanar_group[k] == static_cast<std::size_t>(-1))
{
std::size_t index_prim_next = clusters[i].planes[k];
Point pt_reg_next = m_planes[index_prim_next]->projection(m_centroids[index_prim_next]);
Point pt_proj=plan_reg.projection(pt_reg_next);
FT distance=distance_Point(pt_reg_next,pt_proj);
if (distance < tolerance_coplanarity)
clusters[i].coplanar_group[k] = cop_index;
}
}
cop_index++;
}
}
//regularize primitive position by computing barycenter of cplanar planes
std::vector<Point> pt_bary (cop_index, Point ((FT)0., (FT)0., (FT)0.));
std::vector<FT> area (cop_index, 0.);
for (std::size_t j = 0; j < clusters[i].planes.size (); ++ j)
{
std::size_t index_prim = clusters[i].planes[j];
std::size_t group = clusters[i].coplanar_group[j];
Point pt_reg = m_planes[index_prim]->projection(m_centroids[index_prim]);
pt_bary[group] = CGAL::barycenter (pt_bary[group], area[group], pt_reg, m_areas[index_prim]);
area[group] += m_areas[index_prim];
}
for (std::size_t j = 0; j < clusters[i].planes.size (); ++ j)
{
std::size_t index_prim = clusters[i].planes[j];
std::size_t group = clusters[i].coplanar_group[j];
Plane plane_reg (pt_bary[group], vec_reg);
if (m_planes[index_prim]->plane_normal ()
* plane_reg.orthogonal_vector() < 0)
m_planes[index_prim]->update (plane_reg.opposite());
else else
m_planes[index_prim]->update (plane_reg); return Vector (CGAL::ORIGIN, pt2);
} }
else
return n;
} }
return clusters.size (); template <typename Traits>
} typename Traits::Vector_3 regularize_normals_from_prior
/// @} (const typename Traits::Vector_3& np,
const typename Traits::Vector_3& n,
const typename Traits::Vector_3& symmetry_direction,
private: typename Traits::FT cos_symmetry)
void compute_centroids_and_areas ()
{ {
for (std::size_t i = 0; i < m_planes.size (); ++ i) typedef typename Traits::FT FT;
typedef typename Traits::Point_3 Point;
typedef typename Traits::Vector_3 Vector;
typedef typename Traits::Line_3 Line;
typedef typename Traits::Plane_3 Plane;
if (symmetry_direction == CGAL::NULL_VECTOR)
return n;
Plane plane_orthogonality (CGAL::ORIGIN, np);
Point pt_symmetry = CGAL::ORIGIN + cos_symmetry* symmetry_direction;
Plane plane_symmetry (pt_symmetry, symmetry_direction);
Line line;
CGAL::Object ob_1 = CGAL::intersection (plane_orthogonality, plane_symmetry);
if (!assign(line, ob_1))
return regularize_normal<Traits> (n, symmetry_direction, cos_symmetry);
Point projected_origin = line.projection (CGAL::ORIGIN);
FT R = CGAL::squared_distance (Point (CGAL::ORIGIN), projected_origin);
if (R <= 1) // 2 (or 1) possible points intersecting the unit sphere and line
{
FT delta = std::sqrt ((FT)1. - R);
Vector line_vector(line);
line_vector = line_vector / std::sqrt (line_vector * line_vector);
Point pt1 = projected_origin + delta * line_vector;
Point pt2 = projected_origin - delta * line_vector;
Point pt_n = CGAL::ORIGIN + n;
if (CGAL::squared_distance (pt_n, pt1) <= CGAL::squared_distance (pt_n, pt2))
return Vector (CGAL::ORIGIN, pt1);
else
return Vector (CGAL::ORIGIN, pt2);
}
else //no point intersecting the unit sphere and line
return regularize_normal<Traits> (n,symmetry_direction, cos_symmetry);
}
template <typename Traits,
typename RandomAccessIterator,
typename PlaneContainer,
typename PointPMap,
typename CentroidContainer,
typename AreaContainer>
void compute_centroids_and_areas (RandomAccessIterator input_begin,
PlaneContainer& planes,
PointPMap point_pmap,
CentroidContainer& centroids,
AreaContainer& areas)
{
typedef typename Traits::FT FT;
typedef typename Traits::Point_3 Point;
for (std::size_t i = 0; i < planes.size (); ++ i)
{ {
std::vector < Point > listp; std::vector < Point > listp;
for (std::size_t j = 0; j < m_planes[i]->indices_of_assigned_points ().size (); ++ j) for (std::size_t j = 0; j < planes[i]->indices_of_assigned_points ().size (); ++ j)
{ {
std::size_t yy = m_planes[i]->indices_of_assigned_points()[j]; std::size_t yy = planes[i]->indices_of_assigned_points()[j];
Point pt = get (m_point_pmap, *(m_input_begin + yy)); Point pt = get (point_pmap, *(input_begin + yy));
listp.push_back(pt); listp.push_back(pt);
} }
m_centroids.push_back (CGAL::centroid (listp.begin (), listp.end ())); centroids.push_back (CGAL::centroid (listp.begin (), listp.end ()));
m_areas.push_back ((FT)(m_planes[i]->indices_of_assigned_points().size()) / (FT)100.); areas.push_back ((FT)(planes[i]->indices_of_assigned_points().size()) / (FT)100.);
} }
} }
void compute_parallel_clusters (std::vector<Plane_cluster>& clusters, FT tolerance_cosangle,
const Vector& symmetry_direction) template <typename Traits,
typename PlaneContainer,
typename PlaneClusterContainer,
typename AreaContainer>
void compute_parallel_clusters (PlaneContainer& planes,
PlaneClusterContainer& clusters,
AreaContainer& areas,
typename Traits::FT tolerance_cosangle,
const typename Traits::Vector_3& symmetry_direction)
{ {
typedef typename Traits::FT FT;
typedef typename Traits::Vector_3 Vector;
typedef typename PlaneClusterContainer::value_type Plane_cluster;
// find pairs of epsilon-parallel primitives and store them in parallel_planes // find pairs of epsilon-parallel primitives and store them in parallel_planes
std::vector<std::vector<std::size_t> > parallel_planes (m_planes.size ()); std::vector<std::vector<std::size_t> > parallel_planes (planes.size ());
for (std::size_t i = 0; i < m_planes.size (); ++ i) for (std::size_t i = 0; i < planes.size (); ++ i)
{ {
Vector v1 = m_planes[i]->plane_normal (); Vector v1 = planes[i]->plane_normal ();
for (std::size_t j = 0; j < m_planes.size(); ++ j) for (std::size_t j = 0; j < planes.size(); ++ j)
{ {
if (i == j) if (i == j)
continue; continue;
Vector v2 = m_planes[i]->plane_normal (); Vector v2 = planes[i]->plane_normal ();
if (std::fabs (v1 * v2) > 1. - tolerance_cosangle) if (std::fabs (v1 * v2) > 1. - tolerance_cosangle)
parallel_planes[i].push_back (j); parallel_planes[i].push_back (j);
@ -399,9 +213,9 @@ The implementation follows \cgalCite{cgal:vla-lod-15}.
} }
std::vector<bool> is_available (m_planes.size (), true); std::vector<bool> is_available (planes.size (), true);
for (std::size_t i = 0; i < m_planes.size(); ++ i) for (std::size_t i = 0; i < planes.size(); ++ i)
{ {
if(is_available[i]) if(is_available[i])
@ -421,8 +235,8 @@ The implementation follows \cgalCite{cgal:vla-lod-15}.
//propagation over the pairs of epsilon-parallel primitives //propagation over the pairs of epsilon-parallel primitives
bool propagation=true; bool propagation=true;
clu.normal = m_planes[i]->plane_normal (); clu.normal = planes[i]->plane_normal ();
clu.area = m_areas[i]; clu.area = areas[i];
do do
{ {
@ -437,7 +251,7 @@ The implementation follows \cgalCite{cgal:vla-lod-15}.
{ {
std::size_t it = parallel_planes[plane_index][l]; std::size_t it = parallel_planes[plane_index][l];
Vector normal_it = m_planes[it]->plane_normal (); Vector normal_it = planes[it]->plane_normal ();
if(is_available[it] if(is_available[it]
&& std::fabs (normal_it*clu.normal) > 1. - tolerance_cosangle ) && std::fabs (normal_it*clu.normal) > 1. - tolerance_cosangle )
@ -450,10 +264,10 @@ The implementation follows \cgalCite{cgal:vla-lod-15}.
normal_it = -normal_it; normal_it = -normal_it;
clu.normal = (FT)clu.area * clu.normal clu.normal = (FT)clu.area * clu.normal
+ (FT)m_areas[it] * normal_it; + (FT)areas[it] * normal_it;
FT norm = (FT)1. / std::sqrt (clu.normal.squared_length()); FT norm = (FT)1. / std::sqrt (clu.normal.squared_length());
clu.normal = norm * clu.normal; clu.normal = norm * clu.normal;
clu.area += m_areas[it]; clu.area += areas[it];
} }
} }
} }
@ -478,8 +292,13 @@ The implementation follows \cgalCite{cgal:vla-lod-15}.
is_available.clear(); is_available.clear();
} }
void cluster_symmetric_cosangles (std::vector<Plane_cluster>& clusters, FT tolerance_cosangle) template <typename Traits,
typename PlaneClusterContainer>
void cluster_symmetric_cosangles (PlaneClusterContainer& clusters,
typename Traits::FT tolerance_cosangle)
{ {
typedef typename Traits::FT FT;
std::vector < FT > cosangle_centroids; std::vector < FT > cosangle_centroids;
std::vector < std::size_t> list_cluster_index; std::vector < std::size_t> list_cluster_index;
for( std::size_t i = 0; i < clusters.size(); ++ i) for( std::size_t i = 0; i < clusters.size(); ++ i)
@ -522,9 +341,15 @@ The implementation follows \cgalCite{cgal:vla-lod-15}.
clusters[i].cosangle_symmetry = cosangle_centroids[list_cluster_index[i]]; clusters[i].cosangle_symmetry = cosangle_centroids[list_cluster_index[i]];
} }
void subgraph_mutually_orthogonal_clusters (std::vector<Plane_cluster>& clusters,
const Vector& symmetry_direction) template <typename Traits,
typename PlaneClusterContainer>
void subgraph_mutually_orthogonal_clusters (PlaneClusterContainer& clusters,
const typename Traits::Vector_3& symmetry_direction)
{ {
typedef typename Traits::FT FT;
typedef typename Traits::Vector_3 Vector;
std::vector < std::vector < std::size_t> > subgraph_clusters; std::vector < std::vector < std::size_t> > subgraph_clusters;
std::vector < std::size_t> subgraph_clusters_max_area_index; std::vector < std::size_t> subgraph_clusters_max_area_index;
@ -622,7 +447,8 @@ The implementation follows \cgalCite{cgal:vla-lod-15}.
{ {
std::size_t index_current=subgraph_clusters_max_area_index[i]; std::size_t index_current=subgraph_clusters_max_area_index[i];
Vector vec_current=regularize_normal(clusters[index_current].normal, Vector vec_current=regularize_normal<Traits>
(clusters[index_current].normal,
symmetry_direction, symmetry_direction,
clusters[index_current].cosangle_symmetry); clusters[index_current].cosangle_symmetry);
clusters[index_current].normal = vec_current; clusters[index_current].normal = vec_current;
@ -657,7 +483,8 @@ The implementation follows \cgalCite{cgal:vla-lod-15}.
index_container_current_ring.push_back(j); index_container_current_ring.push_back(j);
clusters[j].is_free = false; clusters[j].is_free = false;
Vector new_vect=regularize_normals_from_prior(clusters[cluster_index].normal, Vector new_vect=regularize_normals_from_prior<Traits>
(clusters[cluster_index].normal,
clusters[j].normal, clusters[j].normal,
symmetry_direction, symmetry_direction,
clusters[j].cosangle_symmetry); clusters[j].cosangle_symmetry);
@ -680,92 +507,240 @@ The implementation follows \cgalCite{cgal:vla-lod-15}.
} }
FT distance_Point (const Point& a, const Point& b)
} // namespace PlaneRegularization
} // namespace internal
/*!
Given a set of detected planes with their respective inlier sets,
this function enables to regularize the planes: planes almost
parallel are made exactly parallel. In addition, some additional
regularization can be performed:
- Plane clusters that are almost orthogonal can be made exactly
orthogonal.
- Planes that are parallel and almost coplanar can be made exactly
coplanar.
- Planes that are almost symmetrical with a user-defined axis can be
made exactly symmetrical.
Planes are directly modified. Points are left unaltered, as well as
their relationships to planes (no transfer of point from a primitive
plane to another).
The implementation follows \cgalCite{cgal:vla-lod-15}.
\tparam Traits a model of `EfficientRANSACTraits`
\param shape_detection Shape detection engine used to detect
shapes from the input data. This engine may handle any types of
primitive shapes but only planes will be regularized.
\warning The `shape_detection` parameter must have already
detected shapes and must have been using `input_range` as input.
\param tolerance_angle Tolerance of deviation between normal
vectors of planes so that they are considered parallel (in
degrees).
\param tolerance_coplanarity Maximal distance between two
parallel planes such that they are considered coplanar. The
default value is 0, meaning that coplanarity is not taken into
account for regularization.
\param regularize_orthogonality Make almost orthogonal clusters
of plane exactly orthogonal.
\param symmetry_direction Make clusters that are almost
symmetrical in the symmetry direction exactly symmetrical. This
parameter is ignored if it is equal to `CGAL::NULL_VECTOR`
(default value).
\return The number of clusters of parallel planes found.
*/
template <typename RandomAccessIterator,
typename EfficientRANSACTraits>
void regularize_planes (RandomAccessIterator input_begin,
RandomAccessIterator /*input_end*/,
const Shape_detection_3::Efficient_RANSAC<EfficientRANSACTraits>& shape_detection,
typename EfficientRANSACTraits::FT tolerance_angle
= (typename EfficientRANSACTraits::FT)25.0,
typename EfficientRANSACTraits::FT tolerance_coplanarity
= (typename EfficientRANSACTraits::FT)0.0,
bool regularize_orthogonality = true,
typename EfficientRANSACTraits::Vector_3 symmetry_direction
= CGAL::NULL_VECTOR)
{ {
return std::sqrt (CGAL::squared_distance (a, b)); typedef typename EfficientRANSACTraits::FT FT;
typedef typename EfficientRANSACTraits::Point_3 Point;
typedef typename EfficientRANSACTraits::Vector_3 Vector;
typedef typename EfficientRANSACTraits::Plane_3 Plane;
typedef typename EfficientRANSACTraits::Point_map Point_map;
typedef Shape_detection_3::Shape_base<EfficientRANSACTraits> Shape;
typedef Shape_detection_3::Plane<EfficientRANSACTraits> Plane_shape;
typedef typename internal::PlaneRegularization::Plane_cluster<EfficientRANSACTraits>
Plane_cluster;
std::vector<boost::shared_ptr<Plane_shape> > planes;
BOOST_FOREACH (boost::shared_ptr<Shape> shape, shape_detection.shapes())
{
boost::shared_ptr<Plane_shape> pshape
= boost::dynamic_pointer_cast<Plane_shape>(shape);
// Ignore all shapes other than plane
if (pshape == boost::shared_ptr<Plane_shape>())
continue;
planes.push_back (pshape);
} }
Vector regularize_normal (const Vector& n, const Vector& symmetry_direction,
FT cos_symmetry) /*
* Compute centroids and areas
*/
std::vector<Point> centroids;
std::vector<FT> areas;
internal::PlaneRegularization::compute_centroids_and_areas<EfficientRANSACTraits>
(input_begin, planes, Point_map(), centroids, areas);
FT tolerance_cosangle = (FT)1. - std::cos (tolerance_angle);
// clustering the parallel primitives and store them in clusters
// & compute the normal, size and cos angle to the symmetry
// direction of each cluster
std::vector<Plane_cluster> clusters;
internal::PlaneRegularization::compute_parallel_clusters<EfficientRANSACTraits>
(planes, clusters, areas, tolerance_cosangle, symmetry_direction);
if (regularize_orthogonality)
{ {
if (symmetry_direction == CGAL::NULL_VECTOR) //discovery orthogonal relationship between clusters
return n; for (std::size_t i = 0; i < clusters.size(); ++ i)
{
Point pt_symmetry = CGAL::ORIGIN + cos_symmetry* symmetry_direction; for (std::size_t j = i + 1; j < clusters.size(); ++ j)
Plane plane_symmetry (pt_symmetry, symmetry_direction);
Point pt_normal = CGAL::ORIGIN + n;
if (n != symmetry_direction || n != -symmetry_direction)
{ {
Plane plane_cut (CGAL::ORIGIN, pt_normal, CGAL::ORIGIN + symmetry_direction);
Line line;
CGAL::Object ob_1 = CGAL::intersection(plane_cut, plane_symmetry);
if (!assign(line, ob_1))
return n;
FT delta = std::sqrt ((FT)1. - cos_symmetry * cos_symmetry); if (std::fabs (clusters[i].normal * clusters[j].normal) < tolerance_cosangle)
{
clusters[i].orthogonal_clusters.push_back (j);
clusters[j].orthogonal_clusters.push_back (i);
}
}
}
}
Point projected_origin = line.projection (CGAL::ORIGIN); //clustering the symmetry cosangle and store their centroids in
Vector line_vector (line); //cosangle_centroids and the centroid index of each cluster in
line_vector = line_vector / std::sqrt (line_vector * line_vector); //list_cluster_index
Point pt1 = projected_origin + delta * line_vector; if (symmetry_direction != CGAL::NULL_VECTOR)
Point pt2 = projected_origin - delta * line_vector; internal::PlaneRegularization::cluster_symmetric_cosangles<EfficientRANSACTraits>
(clusters, tolerance_cosangle);
if (CGAL::squared_distance (pt_normal, pt1) <= CGAL::squared_distance (pt_normal, pt2)) //find subgraphs of mutually orthogonal clusters (store index of
return Vector (CGAL::ORIGIN, pt1); //clusters in subgraph_clusters), and select the cluster of
//largest area
if (regularize_orthogonality)
internal::PlaneRegularization::subgraph_mutually_orthogonal_clusters<EfficientRANSACTraits>
(clusters, symmetry_direction);
//recompute optimal plane for each primitive after normal regularization
for (std::size_t i=0; i < clusters.size(); ++ i)
{
Vector vec_reg = clusters[i].normal;
for (std::size_t j = 0; j < clusters[i].planes.size(); ++ j)
{
std::size_t index_prim = clusters[i].planes[j];
Point pt_reg = planes[index_prim]->projection (centroids[index_prim]);
if( planes[index_prim]->plane_normal () * vec_reg < 0)
vec_reg=-vec_reg;
Plane plane_reg(pt_reg,vec_reg);
if( std::fabs(planes[index_prim]->plane_normal () * plane_reg.orthogonal_vector ()) > 1. - tolerance_cosangle)
planes[index_prim]->update (plane_reg);
}
}
//detecting co-planarity and store in list_coplanar_prim
for (std::size_t i = 0; i < clusters.size(); ++ i)
{
Vector vec_reg = clusters[i].normal;
for (std::size_t ip = 0; ip < clusters[i].planes.size(); ++ ip)
clusters[i].coplanar_group.push_back (static_cast<std::size_t>(-1));
std::size_t cop_index=0;
for (std::size_t j = 0; j < clusters[i].planes.size(); ++ j)
{
std::size_t index_prim = clusters[i].planes[j];
if (clusters[i].coplanar_group[j] == static_cast<std::size_t>(-1))
{
clusters[i].coplanar_group[j] = cop_index;
Point pt_reg = planes[index_prim]->projection(centroids[index_prim]);
Plane plan_reg(pt_reg,vec_reg);
for (std::size_t k = j + 1; k < clusters[i].planes.size(); ++ k)
{
if (clusters[i].coplanar_group[k] == static_cast<std::size_t>(-1))
{
std::size_t index_prim_next = clusters[i].planes[k];
Point pt_reg_next = planes[index_prim_next]->projection(centroids[index_prim_next]);
Point pt_proj=plan_reg.projection(pt_reg_next);
FT distance = std::sqrt (CGAL::squared_distance(pt_reg_next,pt_proj));
if (distance < tolerance_coplanarity)
clusters[i].coplanar_group[k] = cop_index;
}
}
cop_index++;
}
}
//regularize primitive position by computing barycenter of cplanar planes
std::vector<Point> pt_bary (cop_index, Point ((FT)0., (FT)0., (FT)0.));
std::vector<FT> area (cop_index, 0.);
for (std::size_t j = 0; j < clusters[i].planes.size (); ++ j)
{
std::size_t index_prim = clusters[i].planes[j];
std::size_t group = clusters[i].coplanar_group[j];
Point pt_reg = planes[index_prim]->projection(centroids[index_prim]);
pt_bary[group] = CGAL::barycenter (pt_bary[group], area[group], pt_reg, areas[index_prim]);
area[group] += areas[index_prim];
}
for (std::size_t j = 0; j < clusters[i].planes.size (); ++ j)
{
std::size_t index_prim = clusters[i].planes[j];
std::size_t group = clusters[i].coplanar_group[j];
Plane plane_reg (pt_bary[group], vec_reg);
if (planes[index_prim]->plane_normal ()
* plane_reg.orthogonal_vector() < 0)
planes[index_prim]->update (plane_reg.opposite());
else else
return Vector (CGAL::ORIGIN, pt2); planes[index_prim]->update (plane_reg);
} }
else
return n;
} }
Vector regularize_normals_from_prior (const Vector& np,
const Vector& n,
const Vector& symmetry_direction,
FT cos_symmetry)
{
if (symmetry_direction == CGAL::NULL_VECTOR)
return n;
Plane plane_orthogonality (CGAL::ORIGIN, np);
Point pt_symmetry = CGAL::ORIGIN + cos_symmetry* symmetry_direction;
Plane plane_symmetry (pt_symmetry, symmetry_direction);
Line line;
CGAL::Object ob_1 = CGAL::intersection (plane_orthogonality, plane_symmetry);
if (!assign(line, ob_1))
return regularize_normal (n, symmetry_direction, cos_symmetry);
Point projected_origin = line.projection (CGAL::ORIGIN);
FT R = CGAL::squared_distance (Point (CGAL::ORIGIN), projected_origin);
if (R <= 1) // 2 (or 1) possible points intersecting the unit sphere and line
{
FT delta = std::sqrt ((FT)1. - R);
Vector line_vector(line);
line_vector = line_vector / std::sqrt (line_vector * line_vector);
Point pt1 = projected_origin + delta * line_vector;
Point pt2 = projected_origin - delta * line_vector;
Point pt_n = CGAL::ORIGIN + n;
if (CGAL::squared_distance (pt_n, pt1) <= CGAL::squared_distance (pt_n, pt2))
return Vector (CGAL::ORIGIN, pt1);
else
return Vector (CGAL::ORIGIN, pt2);
} }
else //no point intersecting the unit sphere and line /// @}
return regularize_normal (n,symmetry_direction, cos_symmetry);
}
};
} // namespace CGAL } // namespace CGAL