mirror of https://github.com/CGAL/cgal
Merge pull request #6088 from sloriot/PMP-add_discrete_curvature
Add functions to compute discrete curvatures
This commit is contained in:
commit
06b511cc65
|
|
@ -6,6 +6,11 @@
|
|||
### General Changes
|
||||
- The minimal supported version of Boost is now 1.74.0.
|
||||
|
||||
### [Polygon Mesh Processing](https://doc.cgal.org/6.1/Manual/packages.html#PkgPolygonMeshProcessing)
|
||||
- Added the function `CGAL::Polygon_mesh_processing::discrete_mean_curvature` and `CGAL::Polygon_mesh_processing::discrete_Guassian_curvature` to evaluate the discrete curvature at a vertex of a mesh.
|
||||
- Added the function `CGAL::Polygon_mesh_processing::angle_sum` to compute the sum of the angles around a vertex.
|
||||
|
||||
|
||||
### [Algebraic Kernel](https://doc.cgal.org/6.1/Manual/packages.html#PkgAlgebraicKernelD)
|
||||
|
||||
- **Breaking change**: Classes based on the RS Library are no longer provided.
|
||||
|
|
|
|||
|
|
@ -965,22 +965,14 @@ namespace CommonKernelFunctors {
|
|||
typename K::Compute_scalar_product_3 scalar_product =
|
||||
k.compute_scalar_product_3_object();
|
||||
|
||||
double product = CGAL::sqrt(to_double(scalar_product(u,u)) * to_double(scalar_product(v,v)));
|
||||
double product = to_double(approximate_sqrt(scalar_product(u,u) * scalar_product(v,v)));
|
||||
|
||||
if(product == 0)
|
||||
return 0;
|
||||
|
||||
// cosine
|
||||
double dot = to_double(scalar_product(u,v));
|
||||
double cosine = dot / product;
|
||||
|
||||
if(cosine > 1.){
|
||||
cosine = 1.;
|
||||
}
|
||||
if(cosine < -1.){
|
||||
cosine = -1.;
|
||||
}
|
||||
|
||||
double cosine = std::clamp(dot / product, -1., 1.);
|
||||
return std::acos(cosine) * 180./CGAL_PI;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -23,9 +23,9 @@ compute_color_map(QColor base_color,
|
|||
std::size_t nb_of_colors,
|
||||
Output_color_iterator out)
|
||||
{
|
||||
qreal hue = base_color.hueF();
|
||||
const qreal step = (static_cast<qreal>(1)) / nb_of_colors;
|
||||
const qreal step = (static_cast<qreal>(0.85)) / nb_of_colors;
|
||||
|
||||
qreal hue = base_color.hueF();
|
||||
qreal h = (hue == -1) ? 0 : hue;
|
||||
for(std::size_t i=0; i<nb_of_colors; ++i)
|
||||
{
|
||||
|
|
|
|||
|
|
@ -22,6 +22,7 @@
|
|||
#include <CGAL/Polygon_mesh_processing/compute_normal.h>
|
||||
#include <CGAL/Polygon_mesh_processing/measure.h>
|
||||
#include <CGAL/Polygon_mesh_processing/triangulate_faces.h>
|
||||
#include <CGAL/Polygon_mesh_processing/curvature.h>
|
||||
#include <CGAL/Polygon_mesh_processing/interpolated_corrected_curvatures.h>
|
||||
|
||||
#include <QAbstractItemView>
|
||||
|
|
@ -350,11 +351,11 @@ private:
|
|||
template<typename ValueType>
|
||||
void displayMapLegend(const std::vector<ValueType>& values)
|
||||
{
|
||||
const std::size_t size = (std::min)(color_map.size(), std::size_t(1024));
|
||||
const std::size_t size = (std::min)(color_map.size(), std::size_t(4096));
|
||||
|
||||
const int text_height = 20;
|
||||
const int height = text_height * static_cast<int>(size) + text_height;
|
||||
const int width = 140;
|
||||
const int width = 200;
|
||||
const int cell_width = width / 3;
|
||||
const int top_margin = 15;
|
||||
const int left_margin = 5;
|
||||
|
|
@ -381,13 +382,13 @@ private:
|
|||
tick_height,
|
||||
color);
|
||||
|
||||
QRect text_rect(left_margin + cell_width + 10, drawing_height - top_margin - j, 50, text_height);
|
||||
painter.drawText(text_rect, Qt::AlignCenter, QObject::tr("%1").arg(values[i], 0, 'f', 3, QLatin1Char(' ')));
|
||||
QRect text_rect(left_margin + cell_width + 10, drawing_height - top_margin - j, 100, text_height);
|
||||
painter.drawText(text_rect, Qt::AlignCenter, QObject::tr("%1").arg(values[i], 0, 'f', 6, QLatin1Char(' ')));
|
||||
}
|
||||
|
||||
if(color_map.size() > size)
|
||||
{
|
||||
QRect text_rect(left_margin + cell_width + 10, 0, 50, text_height);
|
||||
QRect text_rect(left_margin + cell_width + 10, 0, 100, text_height);
|
||||
painter.drawText(text_rect, Qt::AlignCenter, QObject::tr("[...]"));
|
||||
}
|
||||
|
||||
|
|
@ -463,6 +464,8 @@ private:
|
|||
"Largest Angle Per Face",
|
||||
"Scaled Jacobian",
|
||||
"Face Area",
|
||||
"Discrete Mean Curvature",
|
||||
"Discrete Gaussian Curvature",
|
||||
"Interpolated Corrected Mean Curvature",
|
||||
"Interpolated Corrected Gaussian Curvature"});
|
||||
property_simplex_types = { Property_simplex_type::FACE,
|
||||
|
|
@ -470,6 +473,8 @@ private:
|
|||
Property_simplex_type::FACE,
|
||||
Property_simplex_type::FACE,
|
||||
Property_simplex_type::VERTEX,
|
||||
Property_simplex_type::VERTEX,
|
||||
Property_simplex_type::VERTEX,
|
||||
Property_simplex_type::VERTEX };
|
||||
detectSMScalarProperties(*(sm_item->face_graph()));
|
||||
}
|
||||
|
|
@ -516,12 +521,12 @@ private Q_SLOTS:
|
|||
|
||||
// Curvature property-specific slider
|
||||
const std::string& property_name = dock_widget->propertyBox->currentText().toStdString();
|
||||
const bool is_curvature_property = (property_name == "Interpolated Corrected Mean Curvature" ||
|
||||
property_name == "Interpolated Corrected Gaussian Curvature");
|
||||
dock_widget->expandingRadiusLabel->setVisible(is_curvature_property);
|
||||
dock_widget->expandingRadiusSlider->setVisible(is_curvature_property);
|
||||
dock_widget->expandingRadiusLabel->setEnabled(is_curvature_property);
|
||||
dock_widget->expandingRadiusSlider->setEnabled(is_curvature_property);
|
||||
const bool is_interpolated_curvature_property = (property_name == "Interpolated Corrected Mean Curvature" ||
|
||||
property_name == "Interpolated Corrected Gaussian Curvature");
|
||||
dock_widget->expandingRadiusLabel->setVisible(is_interpolated_curvature_property);
|
||||
dock_widget->expandingRadiusSlider->setVisible(is_interpolated_curvature_property);
|
||||
dock_widget->expandingRadiusLabel->setEnabled(is_interpolated_curvature_property);
|
||||
dock_widget->expandingRadiusSlider->setEnabled(is_interpolated_curvature_property);
|
||||
}
|
||||
else // no or broken property
|
||||
{
|
||||
|
|
@ -570,6 +575,16 @@ private:
|
|||
{
|
||||
displayArea(sm_item);
|
||||
}
|
||||
else if(property_name == "Discrete Mean Curvature")
|
||||
{
|
||||
displayDiscreteCurvatureMeasure(sm_item, MEAN_CURVATURE);
|
||||
sm_item->setRenderingMode(Gouraud);
|
||||
}
|
||||
else if(property_name == "Discrete Gaussian Curvature")
|
||||
{
|
||||
displayDiscreteCurvatureMeasure(sm_item, GAUSSIAN_CURVATURE);
|
||||
sm_item->setRenderingMode(Gouraud);
|
||||
}
|
||||
else if(property_name == "Interpolated Corrected Mean Curvature")
|
||||
{
|
||||
displayInterpolatedCurvatureMeasure(sm_item, MEAN_CURVATURE);
|
||||
|
|
@ -682,6 +697,8 @@ private:
|
|||
removeDisplayPluginProperty(item, "f:display_plugin_largest_angle");
|
||||
removeDisplayPluginProperty(item, "f:display_plugin_scaled_jacobian");
|
||||
removeDisplayPluginProperty(item, "f:display_plugin_area");
|
||||
removeDisplayPluginProperty(item, "v:display_plugin_discrete_mean_curvature");
|
||||
removeDisplayPluginProperty(item, "v:display_plugin_discrete_Gaussian_curvature");
|
||||
removeDisplayPluginProperty(item, "v:display_plugin_interpolated_corrected_mean_curvature");
|
||||
removeDisplayPluginProperty(item, "v:display_plugin_interpolated_corrected_Gaussian_curvature");
|
||||
}
|
||||
|
|
@ -864,6 +881,35 @@ private:
|
|||
displaySMProperty<face_descriptor>("f:display_plugin_area", *sm);
|
||||
}
|
||||
|
||||
private:
|
||||
void displayDiscreteCurvatureMeasure(Scene_surface_mesh_item* sm_item,
|
||||
CurvatureType mu_index)
|
||||
{
|
||||
SMesh* sm = sm_item->face_graph();
|
||||
if(sm == nullptr)
|
||||
return;
|
||||
|
||||
if(mu_index != MEAN_CURVATURE && mu_index != GAUSSIAN_CURVATURE)
|
||||
return;
|
||||
|
||||
std::string vdc_name = (mu_index == MEAN_CURVATURE) ? "v:display_plugin_discrete_mean_curvature"
|
||||
: "v:display_plugin_discrete_Gaussian_curvature";
|
||||
|
||||
bool not_initialized;
|
||||
SMesh::Property_map<vertex_descriptor, double> vdc;
|
||||
std::tie(vdc, not_initialized) = sm->add_property_map<vertex_descriptor, double>(vdc_name, 0);
|
||||
|
||||
if(not_initialized)
|
||||
{
|
||||
if(mu_index == MEAN_CURVATURE)
|
||||
PMP::discrete_mean_curvatures(*sm, vdc);
|
||||
else
|
||||
PMP::discrete_Gaussian_curvatures(*sm, vdc);
|
||||
}
|
||||
|
||||
displaySMProperty<vertex_descriptor>(vdc_name, *sm);
|
||||
}
|
||||
|
||||
private Q_SLOTS:
|
||||
void setExpandingRadius()
|
||||
{
|
||||
|
|
@ -1131,6 +1177,10 @@ private:
|
|||
zoomToSimplexWithPropertyExtremum(faces(mesh), mesh, "f:display_plugin_scaled_jacobian", extremum);
|
||||
else if(property_name == "Face Area")
|
||||
zoomToSimplexWithPropertyExtremum(faces(mesh), mesh, "f:display_plugin_area", extremum);
|
||||
else if(property_name == "Discrete Mean Curvature")
|
||||
zoomToSimplexWithPropertyExtremum(vertices(mesh), mesh, "v:display_plugin_discrete_mean_curvature", extremum);
|
||||
else if(property_name == "Discrete Gaussian Curvature")
|
||||
zoomToSimplexWithPropertyExtremum(vertices(mesh), mesh, "v:display_plugin_discrete_Gaussian_curvature", extremum);
|
||||
else if(property_name == "Interpolated Corrected Mean Curvature")
|
||||
zoomToSimplexWithPropertyExtremum(vertices(mesh), mesh, "v:display_plugin_interpolated_corrected_mean_curvature", extremum);
|
||||
else if(property_name == "Interpolated Corrected Gaussian Curvature")
|
||||
|
|
@ -1470,6 +1520,8 @@ isSMPropertyScalar(const std::string& name,
|
|||
name == "f:display_plugin_largest_angle" ||
|
||||
name == "f:display_plugin_scaled_jacobian" ||
|
||||
name == "f:display_plugin_area" ||
|
||||
name == "v:display_plugin_discrete_mean_curvature" ||
|
||||
name == "v:display_plugin_discrete_Gaussian_curvature" ||
|
||||
name == "v:display_plugin_interpolated_corrected_mean_curvature" ||
|
||||
name == "v:display_plugin_interpolated_corrected_Gaussian_curvature")
|
||||
return false;
|
||||
|
|
|
|||
|
|
@ -25,7 +25,7 @@
|
|||
/// \ingroup PkgPolygonMeshProcessingRef
|
||||
|
||||
/// \defgroup PMP_measure_grp Geometric Measure Functions
|
||||
/// Functions to compute lengths of edges and borders, areas of faces and patches, as well as volumes of closed meshes.
|
||||
/// Functions to compute discrete curvatures, lengths of edges and borders, areas of faces and patches, volumes of closed meshes.
|
||||
/// \ingroup PkgPolygonMeshProcessingRef
|
||||
|
||||
/// \defgroup PMP_orientation_grp Orientation Functions
|
||||
|
|
@ -239,6 +239,11 @@ The page \ref bgl_namedparameters "Named Parameters" describes their usage.
|
|||
- `CGAL::Polygon_mesh_processing::sample_triangle_mesh()`
|
||||
|
||||
\cgalCRPSection{Geometric Measure Functions}
|
||||
- \link PMP_measure_grp `CGAL::Polygon_mesh_processing::angle_sum()` \endlink
|
||||
- \link PMP_measure_grp `CGAL::Polygon_mesh_processing::discrete_Gaussian_curvatures()` \endlink
|
||||
- \link PMP_measure_grp `CGAL::Polygon_mesh_processing::discrete_Gaussian_curvature()` \endlink
|
||||
- \link PMP_measure_grp `CGAL::Polygon_mesh_processing::discrete_mean_curvature()` \endlink
|
||||
- \link PMP_measure_grp `CGAL::Polygon_mesh_processing::discrete_mean_curvatures()` \endlink
|
||||
- \link PMP_measure_grp `CGAL::Polygon_mesh_processing::edge_length()` \endlink
|
||||
- \link PMP_measure_grp `CGAL::Polygon_mesh_processing::squared_edge_length()` \endlink
|
||||
- \link PMP_measure_grp `CGAL::Polygon_mesh_processing::face_area()` \endlink
|
||||
|
|
@ -248,7 +253,6 @@ The page \ref bgl_namedparameters "Named Parameters" describes their usage.
|
|||
- \link PMP_measure_grp `CGAL::Polygon_mesh_processing::face_border_length()` \endlink
|
||||
- \link PMP_measure_grp `CGAL::Polygon_mesh_processing::longest_border()` \endlink
|
||||
- \link PMP_measure_grp `CGAL::Polygon_mesh_processing::centroid()` \endlink
|
||||
- \link PMP_measure_grp `CGAL::Polygon_mesh_processing::match_faces()` \endlink
|
||||
|
||||
\cgalCRPSection{Feature Detection Functions}
|
||||
- `CGAL::Polygon_mesh_processing::sharp_edges_segmentation()`
|
||||
|
|
|
|||
|
|
@ -1225,6 +1225,17 @@ compute the curvatures on a specific vertex.
|
|||
|
||||
\cgalExample{Polygon_mesh_processing/interpolated_corrected_curvatures_vertex.cpp}
|
||||
|
||||
\subsection DCurvartures Discrete Curvatures
|
||||
|
||||
The package also provides methods to compute the standard, non-interpolated discrete mean and Gaussian
|
||||
curvatures on triangle meshes, based on the work of Meyer et al. \cgalCite{cgal:mdsb-ddgot-02}.
|
||||
These curvatures are computed at each vertex of the mesh, and are based on the angles of the incident
|
||||
triangles. The functions are:
|
||||
- `CGAL::Polygon_mesh_processing::discrete_mean_curvature()`
|
||||
- `CGAL::Polygon_mesh_processing::discrete_mean_curvatures()`
|
||||
- `CGAL::Polygon_mesh_processing::discrete_Gaussian_curvature()`
|
||||
- `CGAL::Polygon_mesh_processing::discrete_Gaussian_curvatures()`
|
||||
|
||||
****************************************
|
||||
\section PMPSlicer Slicer
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,475 @@
|
|||
// Copyright (c) 2021 GeometryFactory (France).
|
||||
// All rights reserved.
|
||||
//
|
||||
// This file is part of CGAL (www.cgal.org).
|
||||
//
|
||||
// $URL$
|
||||
// $Id$
|
||||
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
|
||||
//
|
||||
//
|
||||
// Author(s) : Andreas Fabri,
|
||||
// Mael Rouxel-Labbé
|
||||
|
||||
#ifndef CGAL_PMP_CURVATURE_H
|
||||
#define CGAL_PMP_CURVATURE_H
|
||||
|
||||
#include <CGAL/license/Polygon_mesh_processing/measure.h>
|
||||
|
||||
#include <CGAL/boost/graph/named_params_helper.h>
|
||||
#include <CGAL/Named_function_parameters.h>
|
||||
#include <CGAL/Polygon_mesh_processing/measure.h>
|
||||
#include <CGAL/Weights/cotangent_weights.h>
|
||||
|
||||
#include <cmath>
|
||||
#include <algorithm>
|
||||
|
||||
namespace CGAL {
|
||||
namespace Polygon_mesh_processing {
|
||||
|
||||
/**
|
||||
* \ingroup PMP_measure_grp
|
||||
*
|
||||
* computes the sum of the angles around a vertex.
|
||||
*
|
||||
* The angle sum is given in degrees.
|
||||
*
|
||||
* @tparam PolygonMesh a model of `FaceGraph`
|
||||
* @tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
|
||||
*
|
||||
* @param v the vertex whose sum of angles is computed
|
||||
* @param pmesh the polygon mesh to which `v` belongs
|
||||
* @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
|
||||
*
|
||||
* \cgalNamedParamsBegin
|
||||
* \cgalParamNBegin{vertex_point_map}
|
||||
* \cgalParamDescription{a property map associating points to the vertices of `pmesh`}
|
||||
* \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<PolygonMesh>::%vertex_descriptor`
|
||||
* as key type and `%Point_3` as value type}
|
||||
* \cgalParamDefault{`boost::get(CGAL::vertex_point, pmesh)`}
|
||||
* \cgalParamNEnd
|
||||
*
|
||||
* \cgalParamNBegin{geom_traits}
|
||||
* \cgalParamDescription{an instance of a geometric traits class}
|
||||
* \cgalParamType{The traits class must provide the nested functor `Compute_approximate_angle_3`,
|
||||
* model of `Kernel::ComputeApproximateAngle_3`.}
|
||||
* \cgalParamDefault{a \cgal kernel deduced from the point type, using `CGAL::Kernel_traits`}
|
||||
* \cgalParamExtra{The geometric traits class must be compatible with the vertex point type.}
|
||||
* \cgalParamNEnd
|
||||
* \cgalNamedParamsEnd
|
||||
*
|
||||
* @return the sum of angles around `v`. The return type `FT` is a number type either deduced
|
||||
* from the `geom_traits` \ref bgl_namedparameters "Named Parameters" if provided,
|
||||
* or the geometric traits class deduced from the point property map of `pmesh`.
|
||||
*
|
||||
* \warning This function involves trigonometry.
|
||||
*/
|
||||
template<typename PolygonMesh,
|
||||
typename CGAL_NP_TEMPLATE_PARAMETERS>
|
||||
#ifdef DOXYGEN_RUNNING
|
||||
FT
|
||||
#else
|
||||
typename GetGeomTraits<PolygonMesh, CGAL_NP_CLASS>::type::FT
|
||||
#endif
|
||||
angle_sum(typename boost::graph_traits<PolygonMesh>::vertex_descriptor v,
|
||||
const PolygonMesh& pmesh,
|
||||
const CGAL_NP_CLASS& np = parameters::default_values())
|
||||
{
|
||||
using parameters::choose_parameter;
|
||||
using parameters::get_parameter;
|
||||
|
||||
using Geom_traits = typename GetGeomTraits<PolygonMesh, CGAL_NP_CLASS>::type;
|
||||
using FT = typename Geom_traits::FT;
|
||||
|
||||
typename GetVertexPointMap<PolygonMesh, CGAL_NP_CLASS>::const_type
|
||||
vpm = choose_parameter(get_parameter(np, internal_np::vertex_point),
|
||||
get_const_property_map(CGAL::vertex_point, pmesh));
|
||||
|
||||
Geom_traits gt = choose_parameter<Geom_traits>(get_parameter(np, internal_np::geom_traits));
|
||||
|
||||
CGAL_precondition(is_valid_vertex_descriptor(v, pmesh));
|
||||
|
||||
typename Geom_traits::Compute_approximate_angle_3 approx_angle = gt.compute_approximate_angle_3_object();
|
||||
|
||||
FT angle_sum = 0;
|
||||
for(auto h : halfedges_around_source(v, pmesh))
|
||||
{
|
||||
if(is_border(h, pmesh))
|
||||
continue;
|
||||
|
||||
angle_sum += approx_angle(get(vpm, target(h, pmesh)),
|
||||
get(vpm, source(h, pmesh)),
|
||||
get(vpm, source(prev(h,pmesh), pmesh)));
|
||||
}
|
||||
|
||||
return angle_sum;
|
||||
}
|
||||
|
||||
// Discrete Gaussian Curvature
|
||||
|
||||
/**
|
||||
* \ingroup PMP_measure_grp
|
||||
*
|
||||
* computes the discrete Gaussian curvature at a vertex.
|
||||
*
|
||||
* We refer to Meyer et al. \cgalCite{cgal:mdsb-ddgot-02} for the definition of <i>discrete Gaussian curvature</i>.
|
||||
*
|
||||
* @tparam TriangleMesh a model of `FaceGraph`
|
||||
* @tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
|
||||
*
|
||||
* @param v the vertex whose discrete Gaussian curvature is being computed
|
||||
* @param tmesh the triangle mesh to which `v` belongs
|
||||
* @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
|
||||
*
|
||||
* \cgalNamedParamsBegin
|
||||
* \cgalParamNBegin{vertex_point_map}
|
||||
* \cgalParamDescription{a property map associating points to the vertices of `tmesh`}
|
||||
* \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<TriangleMesh>::%vertex_descriptor`
|
||||
* as key type and `%Point_3` as value type}
|
||||
* \cgalParamDefault{`boost::get(CGAL::vertex_point, tmesh)`}
|
||||
* \cgalParamNEnd
|
||||
*
|
||||
* \cgalParamNBegin{geom_traits}
|
||||
* \cgalParamDescription{an instance of a geometric traits class}
|
||||
* \cgalParamType{The traits class must be a model of `Kernel`.}
|
||||
* \cgalParamDefault{a \cgal kernel deduced from the point type, using `CGAL::Kernel_traits`}
|
||||
* \cgalParamExtra{The geometric traits class must be compatible with the vertex point type.}
|
||||
* \cgalParamNEnd
|
||||
* \cgalNamedParamsEnd
|
||||
*
|
||||
* @return the discrete Gaussian curvature at `v`. The return type `FT` is a number type either deduced
|
||||
* from the `geom_traits` \ref bgl_namedparameters "Named Parameters" if provided,
|
||||
* or the geometric traits class deduced from the point property map of `tmesh`.
|
||||
*
|
||||
* \warning This function involves trigonometry.
|
||||
* \warning The current formulation is not well defined for border vertices.
|
||||
*
|
||||
* \pre `tmesh` is a triangle mesh
|
||||
*/
|
||||
template <typename TriangleMesh,
|
||||
typename CGAL_NP_TEMPLATE_PARAMETERS>
|
||||
#ifdef DOXYGEN_RUNNING
|
||||
FT
|
||||
#else
|
||||
typename GetGeomTraits<TriangleMesh, CGAL_NP_CLASS>::type::FT
|
||||
#endif
|
||||
discrete_Gaussian_curvature(typename boost::graph_traits<TriangleMesh>::vertex_descriptor v,
|
||||
const TriangleMesh& tmesh,
|
||||
const CGAL_NP_CLASS& np = parameters::default_values())
|
||||
{
|
||||
using parameters::choose_parameter;
|
||||
using parameters::get_parameter;
|
||||
|
||||
using GeomTraits = typename GetGeomTraits<TriangleMesh, CGAL_NP_CLASS>::type;
|
||||
using FT = typename GeomTraits::FT;
|
||||
using Vector_3 = typename GeomTraits::Vector_3;
|
||||
|
||||
using VertexPointMap = typename GetVertexPointMap<TriangleMesh, CGAL_NP_CLASS>::const_type;
|
||||
using halfedge_descriptor = typename boost::graph_traits<TriangleMesh>::halfedge_descriptor;
|
||||
|
||||
GeomTraits gt = choose_parameter<GeomTraits>(get_parameter(np, internal_np::geom_traits));
|
||||
VertexPointMap vpm = choose_parameter(get_parameter(np, internal_np::vertex_point),
|
||||
get_const_property_map(vertex_point, tmesh));
|
||||
|
||||
typename GeomTraits::Construct_vector_3 vector =
|
||||
gt.construct_vector_3_object();
|
||||
typename GeomTraits::Construct_cross_product_vector_3 cross_product =
|
||||
gt.construct_cross_product_vector_3_object();
|
||||
typename GeomTraits::Compute_scalar_product_3 scalar_product =
|
||||
gt.compute_scalar_product_3_object();
|
||||
typename GeomTraits::Compute_squared_length_3 squared_length =
|
||||
gt.compute_squared_length_3_object();
|
||||
|
||||
FT angle_sum = 0;
|
||||
|
||||
for(halfedge_descriptor h : CGAL::halfedges_around_target(v, tmesh))
|
||||
{
|
||||
if(is_border(h, tmesh))
|
||||
continue;
|
||||
|
||||
const Vector_3 v0 = vector(get(vpm, v), get(vpm, target(next(h, tmesh), tmesh))); // p1p2
|
||||
const Vector_3 v1 = vector(get(vpm, v), get(vpm, source(h, tmesh))); // p1p0
|
||||
|
||||
const FT dot = scalar_product(v0, v1);
|
||||
const Vector_3 cross = cross_product(v0, v1);
|
||||
const FT sqcn = squared_length(cross);
|
||||
if(is_zero(dot))
|
||||
{
|
||||
angle_sum += CGAL_PI/FT(2);
|
||||
}
|
||||
else
|
||||
{
|
||||
if(is_zero(sqcn)) // collinear
|
||||
{
|
||||
if(dot < 0)
|
||||
angle_sum += CGAL_PI;
|
||||
// else
|
||||
// angle_sum += 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
angle_sum += std::atan2(CGAL::approximate_sqrt(sqcn), dot);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Weights::Secure_cotangent_weight_with_voronoi_area<TriangleMesh, VertexPointMap, GeomTraits> wc(tmesh, vpm, gt);
|
||||
|
||||
const FT gaussian_curvature = (2 * CGAL_PI - angle_sum) / wc.voronoi(v);
|
||||
|
||||
return gaussian_curvature;
|
||||
}
|
||||
|
||||
/**
|
||||
* \ingroup PMP_measure_grp
|
||||
*
|
||||
* computes the discrete Gaussian curvatures at the vertices of a mesh.
|
||||
*
|
||||
* We refer to Meyer et al. \cgalCite{cgal:mdsb-ddgot-02} for the definition of <i>discrete Gaussian curvature</i>.
|
||||
*
|
||||
* @tparam TriangleMesh a model of `FaceGraph`
|
||||
* @tparam VertexCurvatureMap must be a model of `WritablePropertyMap` with key type
|
||||
* `boost::graph_traits<TriangleMesh>::%vertex_descriptor` and value type `FT`,
|
||||
* which is either `geom_traits::FT` if this named parameter is provided,
|
||||
* or `kernel::FT` with the kernel deduced from from the point property map of `tmesh`.
|
||||
* @tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
|
||||
*
|
||||
* @param tmesh the triangle mesh to which `v` belongs
|
||||
* @param vcm the property map that contains the computed discrete curvatures
|
||||
* @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
|
||||
*
|
||||
* \cgalNamedParamsBegin
|
||||
* \cgalParamNBegin{vertex_point_map}
|
||||
* \cgalParamDescription{a property map associating points to the vertices of `tmesh`}
|
||||
* \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<TriangleMesh>::%vertex_descriptor`
|
||||
* as key type and `%Point_3` as value type}
|
||||
* \cgalParamDefault{`boost::get(CGAL::vertex_point, tmesh)`}
|
||||
* \cgalParamNEnd
|
||||
*
|
||||
* \cgalParamNBegin{geom_traits}
|
||||
* \cgalParamDescription{an instance of a geometric traits class}
|
||||
* \cgalParamType{The traits class must be a model of `Kernel`.}
|
||||
* \cgalParamDefault{a \cgal kernel deduced from the point type, using `CGAL::Kernel_traits`}
|
||||
* \cgalParamExtra{The geometric traits class must be compatible with the vertex point type.}
|
||||
* \cgalParamNEnd
|
||||
* \cgalNamedParamsEnd
|
||||
*
|
||||
* \warning This function involves trigonometry.
|
||||
* \warning The current formulation is not well defined for border vertices.
|
||||
*
|
||||
* \pre `tmesh` is a triangle mesh
|
||||
*/
|
||||
template <typename TriangleMesh,
|
||||
typename VertexCurvatureMap,
|
||||
typename CGAL_NP_TEMPLATE_PARAMETERS>
|
||||
void discrete_Gaussian_curvatures(const TriangleMesh& tmesh,
|
||||
VertexCurvatureMap vcm,
|
||||
const CGAL_NP_CLASS& np = parameters::default_values())
|
||||
{
|
||||
using vertex_descriptor = typename boost::graph_traits<TriangleMesh>::vertex_descriptor;
|
||||
|
||||
for(vertex_descriptor v : vertices(tmesh))
|
||||
{
|
||||
put(vcm, v, discrete_Gaussian_curvature(v, tmesh, np));
|
||||
// std::cout << "curvature: " << get(vcm, v) << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// Discrete Mean Curvature
|
||||
|
||||
/**
|
||||
* \ingroup PMP_measure_grp
|
||||
*
|
||||
* computes the discrete mean curvature at a vertex.
|
||||
*
|
||||
* We refer to Meyer et al. \cgalCite{cgal:mdsb-ddgot-02} for the definition of <i>discrete mean curvature</i>.
|
||||
*
|
||||
* @tparam TriangleMesh a model of `FaceGraph`
|
||||
* @tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
|
||||
*
|
||||
* @param v the vertex whose discrete mean curvature is being computed
|
||||
* @param tmesh the triangle mesh to which `v` belongs
|
||||
* @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
|
||||
*
|
||||
* \cgalNamedParamsBegin
|
||||
* \cgalParamNBegin{vertex_point_map}
|
||||
* \cgalParamDescription{a property map associating points to the vertices of `tmesh`}
|
||||
* \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<TriangleMesh>::%vertex_descriptor`
|
||||
* as key type and `%Point_3` as value type}
|
||||
* \cgalParamDefault{`boost::get(CGAL::vertex_point, tmesh)`}
|
||||
* \cgalParamNEnd
|
||||
*
|
||||
* \cgalParamNBegin{geom_traits}
|
||||
* \cgalParamDescription{an instance of a geometric traits class}
|
||||
* \cgalParamType{The traits class must be a model of `Kernel`.}
|
||||
* \cgalParamDefault{a \cgal kernel deduced from the point type, using `CGAL::Kernel_traits`}
|
||||
* \cgalParamExtra{The geometric traits class must be compatible with the vertex point type.}
|
||||
* \cgalParamNEnd
|
||||
* \cgalNamedParamsEnd
|
||||
*
|
||||
* @return the discrete mean curvature at `v`. The return type `FT` is a number type either deduced
|
||||
* from the `geom_traits` \ref bgl_namedparameters "Named Parameters" if provided,
|
||||
* or the geometric traits class deduced from the point property map of `tmesh`.
|
||||
*
|
||||
* \warning The current formulation is not well defined for border vertices.
|
||||
*
|
||||
* \pre `tmesh` is a triangle mesh
|
||||
*/
|
||||
template <typename TriangleMesh,
|
||||
typename CGAL_NP_TEMPLATE_PARAMETERS>
|
||||
#ifdef DOXYGEN_RUNNING
|
||||
FT
|
||||
#else
|
||||
typename GetGeomTraits<TriangleMesh, CGAL_NP_CLASS>::type::FT
|
||||
#endif
|
||||
discrete_mean_curvature(typename boost::graph_traits<TriangleMesh>::vertex_descriptor v,
|
||||
const TriangleMesh& tmesh,
|
||||
const CGAL_NP_CLASS& np = parameters::default_values())
|
||||
{
|
||||
using parameters::choose_parameter;
|
||||
using parameters::get_parameter;
|
||||
|
||||
using GeomTraits = typename GetGeomTraits<TriangleMesh, CGAL_NP_CLASS>::type;
|
||||
using FT = typename GeomTraits::FT;
|
||||
using Vector_3 = typename GeomTraits::Vector_3;
|
||||
|
||||
using VertexPointMap = typename GetVertexPointMap<TriangleMesh, CGAL_NP_CLASS>::const_type;
|
||||
using Point_ref = typename boost::property_traits<VertexPointMap>::reference;
|
||||
|
||||
using vertex_descriptor = typename boost::graph_traits<TriangleMesh>::vertex_descriptor;
|
||||
using halfedge_descriptor = typename boost::graph_traits<TriangleMesh>::halfedge_descriptor;
|
||||
|
||||
GeomTraits gt = choose_parameter<GeomTraits>(get_parameter(np, internal_np::geom_traits));
|
||||
VertexPointMap vpm = choose_parameter(get_parameter(np, internal_np::vertex_point),
|
||||
get_const_property_map(vertex_point, tmesh));
|
||||
|
||||
#if 0
|
||||
typename GeomTraits::Compute_squared_distance_3 squared_distance =
|
||||
gt.compute_squared_distance_3_object();
|
||||
typename GeomTraits::Compute_approximate_dihedral_angle_3 dihedral_angle =
|
||||
gt.compute_approximate_dihedral_angle_3_object();
|
||||
|
||||
const FT two_pi = 2 * CGAL_PI;
|
||||
|
||||
FT hi = 0;
|
||||
for(halfedge_descriptor h : CGAL::halfedges_around_target(v, tmesh))
|
||||
{
|
||||
const Point_3& p = get(vpm, source(h, tmesh));
|
||||
const Point_3& q = get(vpm, target(h, tmesh));
|
||||
const Point_3& r = get(vpm, target(next(h, tmesh), tmesh));
|
||||
const Point_3& s = get(vpm, target(next(opposite(h, tmesh), tmesh), tmesh));
|
||||
const FT l = squared_distance(p,q);
|
||||
|
||||
FT phi = CGAL_PI * dihedral_angle(p, q, r, s) / FT(180);
|
||||
|
||||
if(phi < 0)
|
||||
phi += two_pi;
|
||||
if(phi > two_pi)
|
||||
phi = two_pi;
|
||||
|
||||
hi += FT(0.5) * l * (CGAL_PI - phi);
|
||||
}
|
||||
|
||||
return FT(0.5) * hi;
|
||||
#else
|
||||
typename GeomTraits::Construct_vector_3 vector =
|
||||
gt.construct_vector_3_object();
|
||||
typename GeomTraits::Construct_sum_of_vectors_3 vector_sum =
|
||||
gt.construct_sum_of_vectors_3_object();
|
||||
typename GeomTraits::Construct_scaled_vector_3 scaled_vector =
|
||||
gt.construct_scaled_vector_3_object();
|
||||
typename GeomTraits::Compute_squared_length_3 squared_length =
|
||||
gt.compute_squared_length_3_object();
|
||||
|
||||
Weights::Secure_cotangent_weight_with_voronoi_area<TriangleMesh, VertexPointMap, GeomTraits> wc(tmesh, vpm, gt);
|
||||
|
||||
Vector_3 kh = vector(CGAL::NULL_VECTOR);
|
||||
for(halfedge_descriptor h : CGAL::halfedges_around_target(v, tmesh))
|
||||
{
|
||||
const vertex_descriptor v1 = source(h, tmesh);
|
||||
|
||||
const Point_ref p0 = get(vpm, v);
|
||||
const Point_ref p1 = get(vpm, v1);
|
||||
|
||||
FT local_c = 0;
|
||||
if(!is_border(h, tmesh))
|
||||
{
|
||||
const vertex_descriptor v2 = target(next(h, tmesh), tmesh);
|
||||
const Point_ref p2 = get(vpm, v2);
|
||||
local_c += Weights::cotangent_3_clamped(p0, p2, p1, gt);
|
||||
}
|
||||
|
||||
if(!is_border(opposite(h, tmesh), tmesh))
|
||||
{
|
||||
const vertex_descriptor v3 = target(next(opposite(h, tmesh), tmesh), tmesh);
|
||||
const Point_ref p3 = get(vpm, v3);
|
||||
local_c += Weights::cotangent_3_clamped(p1, p3, p0, gt);
|
||||
}
|
||||
|
||||
kh = vector_sum(kh, scaled_vector(vector(p0, p1), local_c));
|
||||
}
|
||||
|
||||
const FT khn = CGAL::approximate_sqrt(squared_length(kh));
|
||||
const FT va = wc.voronoi(v);
|
||||
CGAL_assertion(!is_zero(va));
|
||||
|
||||
const FT mean_curvature = khn / (FT(4) * va);
|
||||
return mean_curvature;
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* \ingroup PMP_measure_grp
|
||||
*
|
||||
* computes the discrete mean curvatures at the vertices of a mesh.
|
||||
*
|
||||
* We refer to Meyer et al. \cgalCite{cgal:mdsb-ddgot-02} for the definition of <i>discrete mean curvature</i>.
|
||||
*
|
||||
* @tparam TriangleMesh a model of `FaceGraph`
|
||||
* @tparam VertexCurvatureMap must be a model of `WritablePropertyMap` with key type
|
||||
* `boost::graph_traits<TriangleMesh>::%vertex_descriptor` and value type `FT`,
|
||||
* which is either `geom_traits::FT` if this named parameter is provided,
|
||||
* or `kernel::FT` with the kernel deduced from from the point property map of `tmesh`.
|
||||
* @tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
|
||||
*
|
||||
* @param tmesh the triangle mesh to which `v` belongs
|
||||
* @param vcm the property map that contains the computed discrete curvatures
|
||||
* @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
|
||||
*
|
||||
* \cgalNamedParamsBegin
|
||||
* \cgalParamNBegin{vertex_point_map}
|
||||
* \cgalParamDescription{a property map associating points to the vertices of `tmesh`}
|
||||
* \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<TriangleMesh>::%vertex_descriptor`
|
||||
* as key type and `%Point_3` as value type}
|
||||
* \cgalParamDefault{`boost::get(CGAL::vertex_point, tmesh)`}
|
||||
* \cgalParamNEnd
|
||||
*
|
||||
* \cgalParamNBegin{geom_traits}
|
||||
* \cgalParamDescription{an instance of a geometric traits class}
|
||||
* \cgalParamType{The traits class must be a model of `Kernel`.}
|
||||
* \cgalParamDefault{a \cgal kernel deduced from the point type, using `CGAL::Kernel_traits`}
|
||||
* \cgalParamExtra{The geometric traits class must be compatible with the vertex point type.}
|
||||
* \cgalParamNEnd
|
||||
* \cgalNamedParamsEnd
|
||||
*
|
||||
* \warning The current formulation is not well defined for border vertices.
|
||||
*
|
||||
* \pre `tmesh` is a triangle mesh
|
||||
*/
|
||||
template <typename TriangleMesh,
|
||||
typename VertexCurvatureMap,
|
||||
typename CGAL_NP_TEMPLATE_PARAMETERS>
|
||||
void discrete_mean_curvatures(const TriangleMesh& tmesh,
|
||||
VertexCurvatureMap vcm,
|
||||
const CGAL_NP_CLASS& np = parameters::default_values())
|
||||
{
|
||||
using vertex_descriptor = typename boost::graph_traits<TriangleMesh>::vertex_descriptor;
|
||||
|
||||
for(vertex_descriptor v : vertices(tmesh))
|
||||
put(vcm, v, discrete_mean_curvature(v, tmesh, np));
|
||||
}
|
||||
|
||||
} // namespace Polygon_mesh_processing
|
||||
} // namespace CGAL
|
||||
|
||||
#endif //CGAL_PMP_CURVATURE_H
|
||||
|
|
@ -28,6 +28,7 @@ create_single_source_cgal_program("test_stitching.cpp")
|
|||
create_single_source_cgal_program("remeshing_test.cpp")
|
||||
create_single_source_cgal_program("remeshing_with_isolated_constraints_test.cpp" )
|
||||
create_single_source_cgal_program("measures_test.cpp")
|
||||
create_single_source_cgal_program("test_discrete_curvatures.cpp")
|
||||
create_single_source_cgal_program("triangulate_faces_test.cpp")
|
||||
create_single_source_cgal_program("triangulate_faces_hole_filling_dt3_test.cpp")
|
||||
create_single_source_cgal_program("triangulate_faces_hole_filling_all_search_test.cpp")
|
||||
|
|
|
|||
|
|
@ -0,0 +1,146 @@
|
|||
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
|
||||
#include <CGAL/Surface_mesh.h>
|
||||
#include <CGAL/Polyhedron_3.h>
|
||||
|
||||
#include <CGAL/Polygon_mesh_processing/curvature.h>
|
||||
|
||||
#include <boost/graph/graph_traits.hpp>
|
||||
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
|
||||
#define ABS_ERROR 1e-6
|
||||
|
||||
namespace PMP = CGAL::Polygon_mesh_processing;
|
||||
|
||||
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
|
||||
typedef K::FT FT;
|
||||
typedef CGAL::Surface_mesh<K::Point_3> SMesh;
|
||||
typedef CGAL::Polyhedron_3<K> Polyhedron;
|
||||
|
||||
struct Average_test_info
|
||||
{
|
||||
FT mean_curvature_avg;
|
||||
FT gaussian_curvature_avg;
|
||||
FT tolerance = 0.9;
|
||||
|
||||
Average_test_info(FT mean_curvature_avg,
|
||||
FT gaussian_curvature_avg)
|
||||
: mean_curvature_avg(mean_curvature_avg),
|
||||
gaussian_curvature_avg(gaussian_curvature_avg)
|
||||
{ }
|
||||
};
|
||||
|
||||
bool passes_comparison(FT result, FT expected, FT tolerance)
|
||||
{
|
||||
std::cout << "result: " << result << std::endl;
|
||||
std::cout << "expected: " << expected << std::endl;
|
||||
|
||||
if(abs(expected) < ABS_ERROR && abs(result) < ABS_ERROR)
|
||||
return true; // expected 0, got 0
|
||||
else if (abs(expected) < ABS_ERROR)
|
||||
return false; // expected 0, got non-0
|
||||
|
||||
return (std::min)(result, expected) / (std::max)(result, expected) > tolerance;
|
||||
}
|
||||
|
||||
template <typename TriangleMesh>
|
||||
void test_curvatures(std::string mesh_path,
|
||||
Average_test_info test_info)
|
||||
{
|
||||
std::cout << "test discrete curvatures of " << mesh_path << std::endl;
|
||||
std::cout << "mesh type: " << typeid(mesh_path).name() << std::endl;
|
||||
|
||||
typedef typename boost::graph_traits<TriangleMesh>::vertex_descriptor vertex_descriptor;
|
||||
|
||||
TriangleMesh tmesh;
|
||||
const std::string filename = CGAL::data_file_path(mesh_path);
|
||||
|
||||
if(!CGAL::IO::read_polygon_mesh(filename, tmesh) || faces(tmesh).size() == 0)
|
||||
{
|
||||
std::cerr << "Invalid input file." << std::endl;
|
||||
std::exit(1);
|
||||
}
|
||||
|
||||
typename boost::property_map<TriangleMesh, CGAL::dynamic_vertex_property_t<FT>>::type
|
||||
mean_curvature_map = get(CGAL::dynamic_vertex_property_t<FT>(), tmesh),
|
||||
gaussian_curvature_map = get(CGAL::dynamic_vertex_property_t<FT>(), tmesh);
|
||||
|
||||
PMP::discrete_mean_curvatures(tmesh, mean_curvature_map);
|
||||
PMP::discrete_Gaussian_curvatures(tmesh, gaussian_curvature_map);
|
||||
|
||||
FT mean_curvature_avg = 0, gaussian_curvature_avg = 0;
|
||||
for(vertex_descriptor v : vertices(tmesh))
|
||||
{
|
||||
mean_curvature_avg += get(mean_curvature_map, v);
|
||||
gaussian_curvature_avg += get(gaussian_curvature_map, v);
|
||||
}
|
||||
|
||||
mean_curvature_avg /= vertices(tmesh).size();
|
||||
gaussian_curvature_avg /= vertices(tmesh).size();
|
||||
|
||||
std::cout << "checking mean curvature..." << std::endl;
|
||||
assert(passes_comparison(mean_curvature_avg, test_info.mean_curvature_avg, test_info.tolerance));
|
||||
|
||||
std::cout << "checking Gaussian curvature..." << std::endl;
|
||||
assert(passes_comparison(gaussian_curvature_avg, test_info.gaussian_curvature_avg, test_info.tolerance));
|
||||
}
|
||||
|
||||
template <typename PolygonMesh>
|
||||
void test_angle_sums(const std::string mesh_path,
|
||||
const std::vector<FT>& expected_values)
|
||||
{
|
||||
typedef typename boost::graph_traits<PolygonMesh>::vertex_descriptor vertex_descriptor;
|
||||
|
||||
PolygonMesh pmesh;
|
||||
const std::string filename = CGAL::data_file_path(mesh_path);
|
||||
|
||||
if(!CGAL::IO::read_polygon_mesh(filename, pmesh) || faces(pmesh).size() == 0)
|
||||
{
|
||||
std::cerr << "Invalid input file." << std::endl;
|
||||
std::exit(1);
|
||||
}
|
||||
|
||||
std::size_t pos = 0;
|
||||
for(vertex_descriptor v : vertices(pmesh))
|
||||
{
|
||||
FT angle_sum = PMP::angle_sum(v, pmesh,
|
||||
CGAL::parameters::geom_traits(K())
|
||||
.vertex_point_map(get(CGAL::vertex_point, pmesh)));
|
||||
assert(passes_comparison(angle_sum, expected_values[pos++], 0.9));
|
||||
}
|
||||
}
|
||||
|
||||
int main(int, char**)
|
||||
{
|
||||
// testing on a simple sphere(r = 0.5), on both Polyhedron & SurfaceMesh:
|
||||
// Expected: Mean Curvature = 2, Gaussian Curvature = 4
|
||||
test_curvatures<Polyhedron>("meshes/sphere.off", Average_test_info(2, 4));
|
||||
test_curvatures<SMesh>("meshes/sphere.off", Average_test_info(2, 4));
|
||||
|
||||
// testing on a simple sphere(r = 10), on both Polyhedron & SurfaceMesh:
|
||||
// Expected: Mean Curvature = 0.1, Gaussian Curvature = 0.01
|
||||
test_curvatures<Polyhedron>("meshes/sphere966.off", Average_test_info(0.1, 0.01));
|
||||
test_curvatures<SMesh>("meshes/sphere966.off", Average_test_info(0.1, 0.01));
|
||||
|
||||
// testing on a simple half cylinder(r = 1), on both Polyhedron & SurfaceMesh:
|
||||
// Expected: Mean Curvature = 0.5, Gaussian Curvature = 0
|
||||
// To be tested once the discrete curvatures are well defined for boundary vertices
|
||||
// test_curvatures<Polyhedron>("meshes/cylinder.off", Average_test_info(0.5, 0));
|
||||
// test_curvatures<SMesh>("meshes/cylinder.off", Average_test_info(0.5, 0));
|
||||
|
||||
test_angle_sums<Polyhedron>("meshes/quad.off", std::vector<FT>(4, 90));
|
||||
test_angle_sums<SMesh>("meshes/quad.off", std::vector<FT>(4, 90));
|
||||
|
||||
test_angle_sums<Polyhedron>("meshes/regular_tetrahedron.off", std::vector<FT>(4, 180));
|
||||
test_angle_sums<SMesh>("meshes/regular_tetrahedron.off", std::vector<FT>(4, 180));
|
||||
|
||||
test_angle_sums<Polyhedron>("meshes/cube_quad.off", std::vector<FT>(8, 270));
|
||||
test_angle_sums<SMesh>("meshes/cube_quad.off", std::vector<FT>(8, 270));
|
||||
|
||||
test_angle_sums<Polyhedron>("meshes/cube_poly.off", std::vector<FT>(8, 270));
|
||||
test_angle_sums<SMesh>("meshes/cube_poly.off", std::vector<FT>(8, 270));
|
||||
|
||||
std::cout << "Done." << std::endl;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
|
@ -9,8 +9,9 @@
|
|||
|
||||
#include <boost/graph/graph_traits.hpp>
|
||||
|
||||
#include <functional>
|
||||
#include <iostream>
|
||||
#include <unordered_map>
|
||||
#include <string>
|
||||
|
||||
#define ABS_ERROR 1e-6
|
||||
|
||||
|
|
@ -181,7 +182,7 @@ void test_average_curvatures(std::string mesh_path,
|
|||
int main()
|
||||
{
|
||||
// testing on a simple sphere(r = 0.5), on both Polyhedron & SurfaceMesh:
|
||||
// For this mesh, ina addition to the whole mesh functions, we also compare against the single vertex
|
||||
// For this mesh, in addition to the whole mesh functions, we also compare against the single vertex
|
||||
// curvature functions to make sure the produce the same results
|
||||
// Expected: Mean Curvature = 2, Gaussian Curvature = 4, Principal Curvatures = 2 & 2 so 2 on avg.
|
||||
test_average_curvatures<Polyhedron>("meshes/sphere.off", Average_test_info(2, 4, 2), true);
|
||||
|
|
|
|||
|
|
@ -344,7 +344,6 @@ public:
|
|||
return cotangent_weight_calculator(he);
|
||||
}
|
||||
|
||||
private:
|
||||
FT voronoi(const vertex_descriptor v0) const
|
||||
{
|
||||
auto squared_length_3 = m_traits.compute_squared_length_3_object();
|
||||
|
|
@ -354,11 +353,12 @@ private:
|
|||
for (const halfedge_descriptor he : halfedges_around_target(halfedge(v0, m_pmesh), m_pmesh))
|
||||
{
|
||||
CGAL_assertion(v0 == target(he, m_pmesh));
|
||||
CGAL_assertion(CGAL::is_triangle(he, m_pmesh));
|
||||
|
||||
if (is_border(he, m_pmesh))
|
||||
continue;
|
||||
|
||||
CGAL_assertion(CGAL::is_triangle(he, m_pmesh));
|
||||
|
||||
const vertex_descriptor v1 = source(he, m_pmesh);
|
||||
const vertex_descriptor v2 = target(next(he, m_pmesh), m_pmesh);
|
||||
|
||||
|
|
|
|||
|
|
@ -44,7 +44,7 @@ private:
|
|||
public:
|
||||
FT operator()(const FT value) const
|
||||
{
|
||||
return static_cast<FT>(CGAL::sqrt(CGAL::to_double(CGAL::abs(value))));
|
||||
return CGAL::approximate_sqrt(CGAL::abs(value));
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue