diff --git a/Polynomial/doc_tex/Polynomial_ref/Exponent_vector.tex b/Polynomial/doc_tex/Polynomial_ref/Exponent_vector.tex index 016e924b5a6..045f486c421 100644 --- a/Polynomial/doc_tex/Polynomial_ref/Exponent_vector.tex +++ b/Polynomial/doc_tex/Polynomial_ref/Exponent_vector.tex @@ -39,7 +39,7 @@ to the last/outermost variable of a multivariate polynomial. \ccc{LessThanComparable}\\ \ccCreation -\ccCreationVariable{ev} +\ccCreationVariable{fo} %\ccc{DefaultConstructible}\\ \ccConstructor{Exponent_vector();} diff --git a/Polynomial/doc_tex/Polynomial_ref/Polynomial.tex b/Polynomial/doc_tex/Polynomial_ref/Polynomial.tex index 946aeb13ea0..b73ca57adc2 100644 --- a/Polynomial/doc_tex/Polynomial_ref/Polynomial.tex +++ b/Polynomial/doc_tex/Polynomial_ref/Polynomial.tex @@ -85,7 +85,7 @@ the zero polynomial is represented by a single zero coefficient. \ccCreation -\ccCreationVariable{poly} +\ccCreationVariable{fo} \ccConstructor{Polynomial ();} {Introduces an variable initialized with 0.} \ccGlue diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d.tex index 6631c1b2664..ed1fc25fed2 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d.tex @@ -152,11 +152,11 @@ is not a model of \ccc{UniqueFactorizationDomain}, this is of type \ccc{CGAL::Nu %pseudo division \ccNestedType{Pseudo_division } -{ A model of \ccc{PolynomialTraits_d::Pseudo_division}.}\ccGlue +{ A model of \ccc{PolynomialTraits_d::PseudoDivision}.}\ccGlue \ccNestedType{Pseudo_division_remainder} -{ A model of \ccc{PolynomialTraits_d::Pseudo_division_remainder}.}\ccGlue +{ A model of \ccc{PolynomialTraits_d::PseudoDivisionRemainder}.}\ccGlue \ccNestedType{Pseudo_division_quotient } -{ A model of \ccc{PolynomialTraits_d::Pseudo_division_quotient}.} +{ A model of \ccc{PolynomialTraits_d::PseudoDivisionQuotient}.} %utcf @@ -167,7 +167,7 @@ is not a model of \ccc{UniqueFactorizationDomain}, this is of type \ccc{CGAL::Nu { A model of \ccc{PolynomialTraits_d::IntegralDivisionUpToConstantFactor}.} \ccGlue \ccNestedType{Content_up_to_constant_factor} -{ A model of \ccc{PolynomialTraits_d::ContentUpToConstantFactor}.} +{ A model of \ccc{PolynomialTraits_d::UnivariateContentUpToConstantFactor}.} \ccGlue \ccNestedType{Square_free_factorize_up_to_constant_factor} { A model of \ccc{PolynomialTraits_d::SquareFreeFactorizeUpToConstantFactor}.} diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Canonicalize.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Canonicalize.tex index 7ec11339985..e498b72ef34 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Canonicalize.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Canonicalize.tex @@ -3,8 +3,8 @@ \ccDefinition This \ccc{AdaptableUnaryFunction} computes a unique representative from the set: -$\{ q | \lambda * q = p with \lambda \in R \}$, where $p$ is the given polynomial and -$R$ the base of the polynomial ring. +$\{ q | \lambda * q = p\ for\ some\ \lambda \in R \}$, +where $p$ is the given polynomial and $R$ the base of the polynomial ring. In particular, the computed polynomial has the same zero set as the given one. In case \ccc{PolynomialTraits::Innermost_coefficient_type} is a model of \ccc{Field}, @@ -30,8 +30,9 @@ For all other cases the notion of uniqueness is up to the concrete model. \ccOperations -\ccCreationVariable{canonicalize} -\ccMethod{result_type operator()(first_argument_type f);}{} +\ccCreationVariable{fo} +\ccMethod{result_type operator()(first_argument_type p);}{ + Returns the cononical representative of $p$.} diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Compare.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Compare.tex index 5b5cf37c995..b66318930ea 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Compare.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Compare.tex @@ -15,7 +15,7 @@ This functor is well defined if \ccc{PolynomialTraits_d::Innermost_coefficient_t \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{compare} +\ccCreationVariable{fo} \ccTypedef{typedef CGAL::Comparison_result result_type;}{} \ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{} @@ -24,7 +24,7 @@ This functor is well defined if \ccc{PolynomialTraits_d::Innermost_coefficient_t \ccOperations -\ccCreationVariable{compare} +\ccCreationVariable{fo} \ccMethod{result_type operator()(first_argument_type f, second_argument_type g);} {Compare two polynomials.} diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_ConstructPolynomial.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_ConstructPolynomial.tex index 817e20d8a96..27d3a80d8f0 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_ConstructPolynomial.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_ConstructPolynomial.tex @@ -13,7 +13,7 @@ to construct objects of type \ccc{PolynomialTraits_d::Polynomial_d}. \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxx}{xxxxxxxxxxx}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{} -\ccCreationVariable{construct_polynomial} +\ccCreationVariable{fo} \ccOperations \ccMethod{result_type operator()();} {Construct the zero polynomial.} diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Degree.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Degree.tex index 78f7bda661e..6c1897d2c3b 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Degree.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Degree.tex @@ -11,7 +11,7 @@ $p$ is not zero.\\ For instance the total degree of $p = x_0^2x_1^3+x_1^4$ with respect to $x_1$ is $4$. The degree of the zero polynomial is set to $0$. From the mathematical point of view this should -be $-inf$, but this would imply an inconvenient return type. +be $-infinity$, but this would imply an inconvenient return type. @@ -23,7 +23,7 @@ be $-inf$, but this would imply an inconvenient return type. \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{degree} +\ccCreationVariable{fo} \ccTypedef{typedef int result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{} diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_DegreeVector.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_DegreeVector.tex index d059cb9f28f..4b49ef86b40 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_DegreeVector.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_DegreeVector.tex @@ -14,7 +14,7 @@ the innermost leading coefficient of a \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{degree_vector} +\ccCreationVariable{fo} \ccTypedef{typedef Exponent_vector result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{} diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Differentiate.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Differentiate.tex index aee81e4065b..b69bb0c199b 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Differentiate.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Differentiate.tex @@ -10,7 +10,7 @@ This \ccc{AdaptableUnaryFunction} computes the derivative of a \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{differentiate} +\ccCreationVariable{fo} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{} \ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{} @@ -29,5 +29,5 @@ This \ccc{AdaptableUnaryFunction} computes the derivative of a \ccSeeAlso \ccRefIdfierPage{Polynomial_d}\\ -\ccRefIdfierPage{PolynomialTraits_d} +\ccRefIdfierPage{PolynomialTraits_d}\\ \end{ccRefConcept} diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Evaluate.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Evaluate.tex index cce1b62865b..403de0329b7 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Evaluate.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Evaluate.tex @@ -10,7 +10,7 @@ This \ccc{AdaptableBinaryFunction} evaluates \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{evaluate} +\ccCreationVariable{fo} \ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Coefficient_type second_argument_type;}{} diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_EvaluateHomogeneous.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_EvaluateHomogeneous.tex index 0323b6734f2..3afa7fd9ad2 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_EvaluateHomogeneous.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_EvaluateHomogeneous.tex @@ -13,7 +13,7 @@ $p(u,v) = u^3 + uv^2$ and evaluated as such. \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{evaluate_homogeneous} +\ccCreationVariable{fo} \ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{} \ccOperations diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GcdUpToConstantFactor.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GcdUpToConstantFactor.tex index aec7a3bd994..f81d731585a 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GcdUpToConstantFactor.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GcdUpToConstantFactor.tex @@ -14,7 +14,7 @@ domain one can consider its quotient field $Q(R)$ for which $gcd$s of polynomials exist. This functor computes $gcd\_utcf(f,g) = D * gcd(f,g)$, -for some $D \in R$ such that $gcd\_utcf(f,g) \in R[x_0,\dots,x_{d-1}]$.\\ +for some $D \in R$ such that $gcd\_utcf(f,g) \in R[x_0,\dots,x_{d-1}]$. Hence, $gcd\_utcf(f,g)$ may not be a divisor of $f$ and $g$ in $R[x_0,\dots,x_{d-1}]$. \ccRefines @@ -25,7 +25,7 @@ Hence, $gcd\_utcf(f,g)$ may not be a divisor of $f$ and $g$ in $R[x_0,\dots,x_{d \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{gcd_utcf} +\ccCreationVariable{fo} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d second_argument_type;}{} diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GetCoefficient.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GetCoefficient.tex index 9fe2fb808d0..9863e2951ae 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GetCoefficient.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GetCoefficient.tex @@ -15,18 +15,18 @@ This \ccc{AdaptableBinaryFunction} provides access to coefficients of a \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type ;}{} \ccTypedef{typedef int second_argument_type;}{} -\ccCreationVariable{get_coefficient} +\ccCreationVariable{fo} \ccOperations \ccMethod{result_type operator()( first_argument_type p, second_argument_type e);}{ -Returns coefficient of $x_{d-1}^e$ by value, -where $x_{d-1}$ is the outermost variable.} +For given polynomial $p$ this operator returns the coefficient +of $x_{d-1}^e$ by value, where $x_{d-1}$ is the outermost variable.} \ccMethod{result_type operator()( first_argument_type p, second_argument_type e, int i);}{ -Returns coefficient of $x_{i}^e$ by value. +For given polynomial $p$ this operator returns coefficient of $x_{i}^e$ by value. } %\ccHasModels diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GetInnermostCoefficient.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GetInnermostCoefficient.tex index 507beda85c1..e5a88897fd2 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GetInnermostCoefficient.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GetInnermostCoefficient.tex @@ -18,12 +18,13 @@ the (multivariate) monomial specified by the given \ccc{Exponent_vector}. \ccGlue \ccTypedef{typedef Exponent_vector second_argument_type;}{} -\ccCreationVariable{get_innermost_coefficient} +\ccCreationVariable{fo} \ccOperations \ccMethod{result_type operator()( first_argument_type p, second_argument_type v);}{ -Returns the innermost coefficient of the monomial defined by the given \ccc{Exponent_vector} $v$. } +For given polynomial $p$ this operator returns the innermost coefficient of the +monomial corresponding to the given \ccc{Exponent_vector} $v$. } %\ccHasModels diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_InnermostLeadingCoefficient.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_InnermostLeadingCoefficient.tex index 9fec61f371e..a03852294fa 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_InnermostLeadingCoefficient.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_InnermostLeadingCoefficient.tex @@ -3,13 +3,13 @@ \ccDefinition This \ccc{AdaptableUnaryFunction} computes the innermost leading coefficient -of a \ccc{PolynomialTraits_d::Polynomial_d}. The innermost leading coefficient is recursively defined as the innermost leading coefficient of the leading coefficient of $p$. In case $p$ is univariate it coincides with the leading coefficient. +of a \ccc{PolynomialTraits_d::Polynomial_d} $p$. The innermost leading coefficient is recursively defined as the innermost leading coefficient of the leading coefficient of $p$. In case $p$ is univariate it coincides with the leading coefficient. \ccRefines \ccc{AdaptableUnaryFunction} \ccTypes -\ccCreationVariable{innermost_leading_coefficient} +\ccCreationVariable{fo} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient_type result_type;}{} \ccGlue diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_IntegralDivisionUpToConstantFactor.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_IntegralDivisionUpToConstantFactor.tex index e99bbbf90b2..a8888835a56 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_IntegralDivisionUpToConstantFactor.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_IntegralDivisionUpToConstantFactor.tex @@ -18,7 +18,7 @@ field of the base ring $R$, \ccc{PolynomialTraits_d::Innermost_coefficient_type} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{integral_division_utcf} +\ccCreationVariable{fo} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d second_argument_type;}{} @@ -27,7 +27,7 @@ field of the base ring $R$, \ccc{PolynomialTraits_d::Innermost_coefficient_type} \ccMethod{result_type operator()(first_argument_type f, second_argument_type g);} - {return a denominator-free, constant multiple of $f/g$} + {Returns a denominator-free, constant multiple of $f/g$.} diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Invert.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Invert.tex index fcc942de78c..1f60aeb4589 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Invert.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Invert.tex @@ -18,7 +18,7 @@ order of the coefficients with respect to the specified variable. \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{invert} +\ccCreationVariable{fo} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{} @@ -36,5 +36,6 @@ order of the coefficients with respect to the specified variable. \ccSeeAlso \ccRefIdfierPage{Polynomial_d}\\ -\ccRefIdfierPage{PolynomialTraits_d} +\ccRefIdfierPage{PolynomialTraits_d}\\ + \end{ccRefConcept} diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_IsZeroAt.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_IsZeroAt.tex index e94f2451204..f3bba534dca 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_IsZeroAt.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_IsZeroAt.tex @@ -11,7 +11,7 @@ which is represented as an iterator range. \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{is_zero_at} +\ccCreationVariable{fo} \ccTypedef{typedef bool result_type;}{}\ccGlue \ccOperations @@ -22,7 +22,7 @@ result_type operator()(PolynomialTraits_d::Polynomial_d p, InputIterator end );}{ Computes whether $p$ is zero at the Cartesian point given by the iterator range, where $begin$ is referring to the innermost variable. -\ccPrecond (end-begin == \ccc{PolynomialTraits_d::d}) +\ccPrecond{(end-begin == \ccc{PolynomialTraits_d::d})} } %\ccHasModels diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_IsZeroAtHomogeneous.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_IsZeroAtHomogeneous.tex index 5973aca24c7..70e7cba82b3 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_IsZeroAtHomogeneous.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_IsZeroAtHomogeneous.tex @@ -15,19 +15,20 @@ polynomial $p(x_0,x_1,w) = x_0^2x_1^3+x_1^4w^1$. \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{is_zero_at_homogeneous} +\ccCreationVariable{fo} \ccTypedef{typedef bool result_type;}{}\ccGlue \ccOperations +\ccMethod{ template -\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, +result_type operator()(PolynomialTraits_d::Polynomial_d p, InputIterator begin, InputIterator end );}{ Computes whether $p$ is zero at the homogeneous point given by the iterator range, where $begin$ is referring to the innermost variable. \ccPrecond{\ccc{std::iterator_traits< InputIterator >::value_type} is \ccc{PolynomialTraits_d::Innermost_coefficient_type}.} -\ccPrecond +\ccPrecond{(end-begin == \ccc{PolynomialTraits_d::d}+1)} } %\ccHasModels diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_LeadingCoefficient.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_LeadingCoefficient.tex index 74065c96a5d..741aab72260 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_LeadingCoefficient.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_LeadingCoefficient.tex @@ -6,11 +6,11 @@ This \ccc{AdaptableBinaryFunction} computes the leading coefficient of a \ccc{PolynomialTraits_d::Polynomial_d}. \ccRefines -\ccc{AdaptableBinaryFunction} +\ccc{AdaptableUnaryFunction} \ccTypes -\ccCreationVariable{leading_coefficient} +\ccCreationVariable{fo} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}\ccGlue diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_MakeSquareFree.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_MakeSquareFree.tex index b9af5ad03cb..cac771c5302 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_MakeSquareFree.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_MakeSquareFree.tex @@ -13,19 +13,19 @@ Given this decomposition, the square free part is defined as the product $g_1 \ which is computed by this functor. \ccRefines -\ccc{AdaptableBinaryFunction} +\ccc{AdaptableUnaryFunction} \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{make_square_free} +\ccCreationVariable{fo} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{} \ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{} \ccOperations \ccMethod{result_type operator()(argument_type p);} - { return the square-free part of $p$.} + { Returns the square-free part of $p$.} %\ccHasModels @@ -34,5 +34,6 @@ which is computed by this functor. \ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{PolynomialTraits_d}\\ -\ccRefIdfierPage{PolynomialTraits_d::Canonicalize} +\ccRefIdfierPage{PolynomialTraits_d::Canonicalize}\\ + \end{ccRefConcept} diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Move.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Move.tex index f1c30ac9168..c12496f075a 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Move.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Move.tex @@ -17,7 +17,7 @@ This function may be used to make a certain variable the outer most variable. \ccOperations -\ccCreationVariable{move} +\ccCreationVariable{fo} \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d, int i, int j);}{ This function moves the variable at position $i$ to its new position $j$ and returns diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_MultivariateContent.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_MultivariateContent.tex index c7ebd3c9150..ad047845b34 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_MultivariateContent.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_MultivariateContent.tex @@ -14,7 +14,7 @@ This functor is well defined if \ccc{PolynomialTraits_d::Innermost_coefficient_t \ccTypes -\ccCreationVariable{multivariate_content} +\ccCreationVariable{fo} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxx}{xxx}{} \ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient_type result_type;}{} \ccGlue diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Negate.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Negate.tex index d93b995164b..8ce98810e62 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Negate.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Negate.tex @@ -15,7 +15,7 @@ of all odd coefficients with respect to the specified variable. \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{negate} +\ccCreationVariable{fo} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{} diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_PseudoDivision.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_PseudoDivision.tex index 22637f41ed4..e0b685a7744 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_PseudoDivision.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_PseudoDivision.tex @@ -5,7 +5,7 @@ This \ccc{AdaptableFunctor} computes the so called {\em pseudo division} of to polynomials $f$ and $g$. -Given $f$ and $g \not 0$ this functor computes quotient $q$ and +Given $f$ and $g \neq 0$ this functor computes quotient $q$ and remainder $r$ such that $D \cdot f = g \cdot q + r$ and $degree(r) < degree(g)$, where $ D = leading\_coefficient(g)^{max(0, degree(f)-degree(g)+1)}$ diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_PseudoDivisionQuotient.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_PseudoDivisionQuotient.tex index a903828753e..e12529eee8e 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_PseudoDivisionQuotient.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_PseudoDivisionQuotient.tex @@ -5,7 +5,7 @@ This \ccc{AdaptableBinaryFunction} computes the quotient of the so called {\em pseudo division} of to polynomials $f$ and $g$. -Given $f$ and $g \not 0$ on can compute quotient $q$ and remainder $r$ +Given $f$ and $g \neq 0$ on can compute quotient $q$ and remainder $r$ such that $D \cdot f = g \cdot q + r$ and $degree(r) < degree(g)$, where $ D = leading\_coefficient(g)^{max(0, degree(f)-degree(g)+1)}$ diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_PseudoDivisionRemainder.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_PseudoDivisionRemainder.tex index ff5e5b031ef..d4d55f7456a 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_PseudoDivisionRemainder.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_PseudoDivisionRemainder.tex @@ -1,11 +1,11 @@ \begin{ccRefConcept}{PolynomialTraits_d::PseudoDivisionRemainder} - + \ccDefinition This \ccc{AdaptableBinaryFunction} computes the remainder of the so called {\em pseudo division} of to polynomials $f$ and $g$. -Given $f$ and $g \not 0$ one can compute quotient $q$ and remainder $r$ +Given $f$ and $g \neq 0$ one can compute quotient $q$ and remainder $r$ such that $D \cdot f = g \cdot q + r$ and $degree(r) < degree(g)$, where $ D = leading\_coefficient(g)^{max(0, degree(f)-degree(g)+1)}$ diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Resultant.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Resultant.tex index 567d56f09f4..89639d18c36 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Resultant.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Resultant.tex @@ -29,7 +29,7 @@ For more information we refer to, e.g., \cite{gg-mca-99}. \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{resultant} +\ccCreationVariable{fo} \ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{} \ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{} diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Scale.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Scale.tex index 488d11399fd..b0d57dd61d2 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Scale.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Scale.tex @@ -13,7 +13,7 @@ the polynomial is considered as a univariate polynomial in one specific variable \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{scale} +\ccCreationVariable{fo} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{} \ccGlue diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_ScaleHomogeneous.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_ScaleHomogeneous.tex index b976734c320..d8a5a425676 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_ScaleHomogeneous.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_ScaleHomogeneous.tex @@ -16,7 +16,7 @@ Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}. \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{scale_homogeneous} +\ccCreationVariable{fo} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{} \ccOperations diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Shift.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Shift.tex index a377c734d50..7c9fbd8a666 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Shift.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Shift.tex @@ -1,27 +1,29 @@ \begin{ccRefConcept}{PolynomialTraits_d::Shift} \ccDefinition -This \ccc{AdaptableFunctor} multiplies a \ccc{PolynomialTraits_d::Polynomial_d} by -the given power of the specified variable. +This \ccc{AdaptableBinaryFunction} multiplies a \ccc{PolynomialTraits_d::Polynomial_d} +by the given power of the specified variable. This functor is provided for efficiency reasons, since multiplication by some variable will in general correspond to a shift of coefficients in the internal representation. \ccRefines -\ccc{AdaptableFunctor} +\ccc{AdaptableBinaryFunction} \ccTypes -\ccCreationVariable{shift} +\ccCreationVariable{fo} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{} +\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{} +\ccTypedef{typedef int second_argument_type;}{} \ccOperations -\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, - int e);} +\ccMethod{result_type operator()(first_argument_type p, + second_argument_type e);} { return $p * x_{d-1}^e$ \ccPrecond $0 \leq e$ } -\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, - int e, +\ccMethod{result_type operator()(first_argument_type p, + second_argument_type e, int i);} { Same as first operator but for variable $x_i$. \ccPrecond $0 \leq e$ diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SignAt.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SignAt.tex index d0a43ca5a62..cd78de62cc2 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SignAt.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SignAt.tex @@ -14,7 +14,7 @@ This functor is well defined if \ccc{PolynomialTraits_d::Innermost_coefficient_t \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{sign_at} +\ccCreationVariable{fo} \ccTypedef{typedef CGAL::Sign result_type;}{}\ccGlue \ccOperations diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SignAtHomogeneous.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SignAtHomogeneous.tex index 1c3e47c88ed..16f654e273d 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SignAtHomogeneous.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SignAtHomogeneous.tex @@ -18,12 +18,13 @@ This functor is well defined if \ccc{PolynomialTraits_d::Innermost_coefficient_t \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{sign_at_homogeneous} +\ccCreationVariable{fo} \ccTypedef{typedef CGAL::Sign result_type;}{}\ccGlue \ccOperations -template -\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, +\ccMethod{ +template +result_type operator()(PolynomialTraits_d::Polynomial_d p, InputIterator begin, InputIterator end );}{ Returns the sign of $p$ at the given homogeneous point, where $begin$ is diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SquareFreeFactorize.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SquareFreeFactorize.tex index 7da744f332e..5afddb5067c 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SquareFreeFactorize.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SquareFreeFactorize.tex @@ -25,7 +25,7 @@ DefaultConstructible\\ \ccOperations \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{sqff} +\ccCreationVariable{fo} \ccMethod{template OutputIterator operator()(PolynomialTraits_d::Polynomial_d p, @@ -38,8 +38,7 @@ OutputIterator operator()(PolynomialTraits_d::Polynomial_d p, \ccMethod{template OutputIterator operator()(PolynomialTraits_d::Polynomial_d p, - OutputIterator it, - PolynomialTraits_d::Innermost_coefficient_type& a);} + OutputIterator it);} { As the first operator, just not computing the factor $a$. } %\ccHasModels diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SquareFreeFactorizeUpToConstantFactor.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SquareFreeFactorizeUpToConstantFactor.tex index ca50160acf5..a0358ea6a9a 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SquareFreeFactorizeUpToConstantFactor.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SquareFreeFactorizeUpToConstantFactor.tex @@ -29,12 +29,11 @@ DefaultConstructible\\ \ccOperations \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{sqff_utcf} +\ccCreationVariable{fo} \ccMethod{template OutputIterator operator()(PolynomialTraits_d::Polynomial_d p, - OutputIterator it, - PolynomialTraits_d::Innermost_coefficient_type& a);} + OutputIterator it);} { computes square-free factorization of $p$.\\ The \ccc{OutputIterator} must allow the value type \ccc{std::pair}. diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Sturm_habicht_sequence.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Sturm_habicht_sequence.tex index 78b9fc12217..9df32829d62 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Sturm_habicht_sequence.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Sturm_habicht_sequence.tex @@ -13,6 +13,7 @@ The result is written in an output range, starting with the $0$th Sturm-Habicht polynomial (which is equal to the discriminant of $f$ up to a multiple of the leading coefficient) +\ccCreationVariable{fo} \ccOperations \ccMethod{template OutputIterator operator()(Polynomial_d f, diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Sturm_habicht_sequence_with_cofactors.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Sturm_habicht_sequence_with_cofactors.tex index da7afdc79c3..f3ae1ec7447 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Sturm_habicht_sequence_with_cofactors.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Sturm_habicht_sequence_with_cofactors.tex @@ -6,6 +6,7 @@ Computes the Sturm-Habicht sequence of a polynomials $f$ of type Additionally, it computes two ranges of cofactors, {\tt co\_f} and {\tt co\_fx} with the property that {\tt stha[i] == co\_f[i] f + co\_fx[i] f'}. +\ccCreationVariable{fo} \ccOperations \ccMethod{template< typename OutputIterator1, typename OutputIterator2, diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Substitute.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Substitute.tex index 71c99fff9e9..ec49075acc6 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Substitute.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Substitute.tex @@ -5,31 +5,34 @@ This \ccc{Functor} substitutes all variables of a given multivariate \ccc{PolynomialTraits_d::Polynomial_d} by the values given in the iterator range, where begin refers the the value for the innermost variable. -Note that the \ccc{result_type} is the coercion type of the value type of the -given iterator range and \ccc{PolynomialTraits_d::Innermost_coefficient_type}. -In particular \ccc{std::iterator_traits::value_type} must be at least -\ccc{ExplicitInteroperable} with \ccc{PolynomialTraits_d::Innermost_coefficient_type}. - \ccRefines Assignable\\ CopyConstructible\\ DefaultConstructible\\ -% \ccTypes +\ccTypes + +Note that the \ccc{result_type} is the coercion type of the value type of the +given iterator range and \ccc{PolynomialTraits_d::Innermost_coefficient_type}. +In particular \ccc{std::iterator_traits::value_type} must be at least +\ccc{ExplicitInteroperable} with \ccc{PolynomialTraits_d::Innermost_coefficient_type}. +Hence, it can not be provided as a public type in advance. + % no public types \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{substitute} +\ccCreationVariable{fo} \ccOperations \ccMethod{ template -result_type operator()(PolynomialTraits_d::Polynomial_d p, +result_type operator()(PolynomialTraits_d::Polynomial_d p, Input_iterator begin, Input_iterator end);}{ Substitutes each variable of $p$ by the values given in the iterator range, where begin refers to the innermost variable $x_0$. -\ccPrecond The length of the iterator range is \ccc{PolynomialTraits_d::d}.} +\ccPrecond{(end-begin == \ccc{PolynomialTraits_d::d})} +} %\ccHasModels diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SubstituteHomogeneous.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SubstituteHomogeneous.tex index 6fc4fd49d08..01eb9537f0f 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SubstituteHomogeneous.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SubstituteHomogeneous.tex @@ -10,22 +10,22 @@ Hence the iterator range is required to be of length \ccc{PolynomialTraits_d::d+ For instance the polynomial $p(x_0,x_1) = x_0^2x_1^3+x_1^4$ is interpreted as the homogeneous polynomial $p(x_0,x_1,w) = x_0^2x_1^3+x_1^4w^1$. -Note that the \ccc{result_type} is the coercion type of the value type of the -given iterator range and \ccc{PolynomialTraits_d::Innermost_coefficient_type}. -In particular \ccc{std::iterator_traits::value_type} must be at least -\ccc{ExplicitInteroperable} with \ccc{PolynomialTraits_d::Innermost_coefficient_type}. - \ccRefines Assignable\\ CopyConstructible\\ DefaultConstructible\\ -% \ccTypes +\ccTypes +Note that the \ccc{result_type} is the coercion type of the value type of the +given iterator range and \ccc{PolynomialTraits_d::Innermost_coefficient_type}. +In particular \ccc{std::iterator_traits::value_type} must be at least +\ccc{ExplicitInteroperable} with \ccc{PolynomialTraits_d::Innermost_coefficient_type}. +Hence, it can not be provided as a public type in advance. % no public types \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{substitute_homogeneous} +\ccCreationVariable{fo} \ccOperations \ccMethod{ @@ -36,8 +36,8 @@ Substitute each variable of $p$ by the values given in the iterator range, where $p$ is interpreted as a homogeneous polynomial in all variables. The begin iterator refers to the innermost variable $x_0$. The homogeneous degree is considered as equal to the total degree of $p$. -\ccPrecond The length of the iterator range is \ccc{PolynomialTraits_d::d+1}.} - +\ccPrecond{(end-begin == \ccc{PolynomialTraits_d::d})+1} +} %\ccHasModels diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Swap.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Swap.tex index ebbed8dc907..0abd08a0e42 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Swap.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Swap.tex @@ -15,7 +15,7 @@ This \ccc{AdaptableFunctor} swaps two variables of a multivariate polynomial. \ccOperations -\ccCreationVariable{swap} +\ccCreationVariable{fo} \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d, int i, int j);} { return polynomial with interchanged variables $x_i$,$x_j$. diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_TotalDegree.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_TotalDegree.tex index 1d767468f7f..7730d0754f7 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_TotalDegree.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_TotalDegree.tex @@ -28,7 +28,7 @@ be $-inf$, but this would imply an inconvenient return type. \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{} \ccOperations -\ccCreationVariable{total_degree} +\ccCreationVariable{fo} \ccMethod{result_type operator()(argument_type p);} {Computes the total degree of $p$.} diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Translate.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Translate.tex index 76b328ca31e..235167602b8 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Translate.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Translate.tex @@ -13,7 +13,7 @@ the polynomial is considered as a univariate polynomial in one specific variable \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{translate} +\ccCreationVariable{fo} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{} \ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{} diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_TranslateHomogeneous.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_TranslateHomogeneous.tex index 67e952fb502..7ee6e118f27 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_TranslateHomogeneous.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_TranslateHomogeneous.tex @@ -16,7 +16,7 @@ Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}. \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccCreationVariable{translate_homogeneous} +\ccCreationVariable{fo} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccOperations diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_UnivariateContent.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_UnivariateContent.tex index 82be22e7c07..2214463aa17 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_UnivariateContent.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_UnivariateContent.tex @@ -16,7 +16,7 @@ a \ccc{Field} or a \ccc{UniqueFactorizationDomain}. \ccTypes -\ccCreationVariable{univariate_content} +\ccCreationVariable{fo} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}\ccGlue diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_UnivariateContentUpToConstantFactor.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_UnivariateContentUpToConstantFactor.tex index 9765d262dd7..45664121b5f 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_UnivariateContentUpToConstantFactor.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_UnivariateContentUpToConstantFactor.tex @@ -2,7 +2,7 @@ \ccDefinition -This \ccc{AdaptableBinaryFunction} computes the content of a +This \ccc{AdaptableUnaryFunction} computes the content of a \ccc{PolynomialTraits_d::Polynomial_d} with respect to the univariate (recursive) view on the polynomial {\em up to a constant factor (utcf)}, that is, @@ -15,14 +15,14 @@ However, a concept \ccc{PolynomialTraits_d::MultivariateContentUpToConstantFacto does not exist since the result is trivial. \ccRefines -\ccc{AdaptableBinaryFunction} +\ccc{AdaptableUnaryFunction} +\ccCreationVariable{fo} \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}\ccGlue -\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue -\ccTypedef{typedef int second_argument_type;}{} +\ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{} \ccOperations \ccMethod{result_type operator()(first_argument_type p);}