mirror of https://github.com/CGAL/cgal
Improve the Triangulated Surface Mesh Segmentation user manual
This commit is contained in:
parent
9cc17545b4
commit
0b8aa83b8f
|
|
@ -102,12 +102,12 @@ The energy function minimized using alpha-expansion graph cut algorithm \cgalCit
|
||||||
<td>
|
<td>
|
||||||
\f$ E(\bar{x}) = \sum\limits_{f \in F} e_1(f, x_f) + \lambda \sum\limits_{ \{f,g\} \in N} e_2(x_f, x_g) \f$
|
\f$ E(\bar{x}) = \sum\limits_{f \in F} e_1(f, x_f) + \lambda \sum\limits_{ \{f,g\} \in N} e_2(x_f, x_g) \f$
|
||||||
|
|
||||||
\f$ e_1(f, x_f) = -log(max(P(f|x_f), \epsilon)) \f$
|
\f$ e_1(f, x_f) = -\log(\max(P(f|x_f), \epsilon_1)) \f$
|
||||||
|
|
||||||
\f$ e_2(x_f, x_g) =
|
\f$ e_2(x_f, x_g) =
|
||||||
\left \{
|
\left \{
|
||||||
\begin{array}{rl}
|
\begin{array}{rl}
|
||||||
-log(\theta(f,g)/\pi) &\mbox{ $x_f \ne x_g$} \\
|
-\log(w\max(1 - |\theta(f,g)|/\pi, \epsilon_2)) &\mbox{ $x_f \ne x_g$} \\
|
||||||
0 &\mbox{ $x_f = x_g$}
|
0 &\mbox{ $x_f = x_g$}
|
||||||
\end{array}
|
\end{array}
|
||||||
\right \} \f$
|
\right \} \f$
|
||||||
|
|
@ -119,8 +119,8 @@ where:
|
||||||
- \f$x_f\f$ denotes the cluster assigned to facet \f$f\f$,
|
- \f$x_f\f$ denotes the cluster assigned to facet \f$f\f$,
|
||||||
- \f$P(f|x_p)\f$ denotes the probability of assigning facet \f$f\f$ to cluster \f$x_p\f$,
|
- \f$P(f|x_p)\f$ denotes the probability of assigning facet \f$f\f$ to cluster \f$x_p\f$,
|
||||||
- \f$\theta(f,g)\f$ denotes the dihedral angle between neighboring facets \f$f\f$ and \f$g\f$:
|
- \f$\theta(f,g)\f$ denotes the dihedral angle between neighboring facets \f$f\f$ and \f$g\f$:
|
||||||
concave angles and convex angles are weighted by 1 and 0.1 respectively,
|
convex angles, \f$[-\pi, 0]\f$, and concave angles, \f$]0, \pi]\f$, are weighted by \f$w=0.08\f$ and \f$w=1\f$, respectively,
|
||||||
- \f$\epsilon\f$ denotes the minimal probability threshold,
|
- \f$\epsilon_1, \epsilon_2\f$ denote minimal probability and angle thresholds, respectively,
|
||||||
- \f$\lambda \in [0,1]\f$ denotes a smoothness parameter.
|
- \f$\lambda \in [0,1]\f$ denotes a smoothness parameter.
|
||||||
</td>
|
</td>
|
||||||
</tr>
|
</tr>
|
||||||
|
|
@ -128,7 +128,7 @@ where:
|
||||||
|
|
||||||
Note both terms of the energy function, \f$ e_1 \f$ and \f$ e_2 \f$, are always non-negative.
|
Note both terms of the energy function, \f$ e_1 \f$ and \f$ e_2 \f$, are always non-negative.
|
||||||
The first term of the energy function provides the contribution of the soft clustering probabilities.
|
The first term of the energy function provides the contribution of the soft clustering probabilities.
|
||||||
The second term of the energy function is a geometric criterion that is larger when two adjacent facets sharing a sharp and concave edge are not in the same cluster.
|
The second term of the energy function is a geometric criterion that is larger the closer to \f$\pm\pi\f$, i.e. the flatter, the dihedral angle between two adjacent facets not in the same cluster is.
|
||||||
The smoothness parameter makes this geometric criterion more or less prevalent.
|
The smoothness parameter makes this geometric criterion more or less prevalent.
|
||||||
|
|
||||||
Assigning a high value to the smoothness parameter results in a small number of segments (since constructing a segment boundary would be expensive).
|
Assigning a high value to the smoothness parameter results in a small number of segments (since constructing a segment boundary would be expensive).
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue