upgrade test to BGL API

This commit is contained in:
Andreas Fabri 2015-04-14 14:14:35 +02:00
parent 67bb10fb27
commit 0c65c7c15e
5 changed files with 230 additions and 172 deletions

View File

@ -29,7 +29,6 @@
#include <CGAL/barycenter.h>
#include <CGAL/property_map.h>
#include <CGAL/assertions.h>
#include <CGAL/Vertex2Data_Property_Map_with_std_map.h>
#include <boost/type_traits/is_same.hpp>
namespace CGAL {

View File

@ -1,20 +1,22 @@
#ifndef _POLYHEDRALSURF_H_
#define _POLYHEDRALSURF_H_
#ifndef CGAL_POLYHEDRALSURF_H_
#define CGAL_POLYHEDRALSURF_H_
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>
#include <CGAL/boost/graph/graph_traits_Polyhedron_3.h>
#include <CGAL/boost/graph/properties_Polyhedron_3.h>
#include <CGAL/boost/graph/helpers.h>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <list>
#include <CGAL/Cartesian.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>
#include "PolyhedralSurf_operations.h"
#include <boost/foreach.hpp>
//----------------------------------------------------------------
// A redefined items class for the Polyhedron_3 with
// A redefined items class for the Polyhedron_3 with
// a refined facet with a normal vector
//---------------------------------------------------------------
@ -29,11 +31,11 @@ public:
typedef typename FGeomTraits::Vector_3 Vector_3;
protected:
Vector_3 normal;
//Vector_3 normal;
public:
My_facet() {}
const Vector_3 & getUnitNormal() const { return normal; }
void setNormal(Vector_3 n) { normal = n; }
//const Vector_3 & getUnitNormal() const { std::cerr << "coucou" << std::endl;return normal; }
//void setNormal(Vector_3 n) { normal = n; }
};
//------------------------------------------------
@ -58,20 +60,39 @@ struct Wrappers_VFH:public CGAL::Polyhedron_items_3 {
//PolyhedralSurf with facet normal operations
//------------------------------------------------
typedef double FT;
typedef CGAL::Cartesian<FT> Kernel;
typedef CGAL::Simple_cartesian<FT> Kernel;
typedef CGAL::Polyhedron_3 < Kernel, Wrappers_VFH > Polyhedron;
typedef Kernel::Vector_3 Vector_3;
class PolyhedralSurf:public Polyhedron {
class PolyhedralSurf;
namespace boost {
template <>
struct graph_traits<PolyhedralSurf> : public boost::graph_traits<Polyhedron>
{};
template <>
struct graph_traits<PolyhedralSurf const> : public boost::graph_traits<Polyhedron>
{};
template <class Tag>
struct property_map<PolyhedralSurf,Tag> : public property_map<Polyhedron,Tag>
{};
template <class Tag>
struct property_map<const PolyhedralSurf,Tag> : public property_map<const Polyhedron,Tag>
{};
}
class PolyhedralSurf : public Polyhedron {
public:
typedef boost::graph_traits<PolyhedralSurf>::vertex_descriptor vertex_descriptor;
typedef boost::graph_traits<PolyhedralSurf>::face_descriptor face_descriptor;
typedef boost::graph_traits<PolyhedralSurf>::halfedge_descriptor halfedge_descriptor;
PolyhedralSurf() {}
void compute_facets_normals();
const Vector_3 computeFacetsAverageUnitNormal(const Vertex_const_handle v);
};
#endif

View File

@ -1,30 +1,30 @@
#ifndef _POLYSURF_RINGS_H_
#define _POLYSURF_RINGS_H_
#ifndef CGAL_PSURF_RINGS_H_
#define CGAL_PSURF_RINGS_H_
#include <cassert>
#include <vector>
#include <map>
using namespace std;
//---------------------------------------------------------------------------
//T_PolyhedralSurf_rings
//---------------------------------------------------------------------------
template < class TPoly > class T_PolyhedralSurf_rings
template < class TPoly >
class T_PolyhedralSurf_rings
{
const TPoly& P;
protected:
//Polyhedron
typedef typename TPoly::Vertex_const_handle Vertex_const_handle;
typedef typename TPoly::Halfedge_const_handle Halfedge_const_handle;
typedef typename TPoly::Facet_const_handle Facet_const_handle;
typedef typename TPoly::Halfedge_around_vertex_const_circulator Halfedge_around_vertex_const_circulator;
typedef typename TPoly::Vertex_const_iterator Vertex_const_iterator;
typedef typename boost::graph_traits<TPoly>::vertex_descriptor Vertex_const_handle;
typedef typename boost::graph_traits<TPoly>::halfedge_descriptor Halfedge_const_handle;
typedef typename boost::graph_traits<TPoly>::vertex_iterator Vertex_const_iterator;
typedef CGAL::Halfedge_around_target_circulator<TPoly> Halfedge_around_vertex_const_circulator;
//tag to visit vertices
struct Vertex_cmp{//comparison is wrt vertex addresses
bool operator()(Vertex_const_handle a, Vertex_const_handle b) const{
return &*a < &*b;
}
};
typedef std::map<Vertex_const_handle, int, Vertex_cmp> Vertex2int_map;
typedef std::map<Vertex_const_handle, int> Vertex2int_map;
Vertex2int_map ring_index_map;
//vertex indices are initialised to -1
void reset_ring_indices(std::vector <Vertex_const_handle> &vces);
@ -40,13 +40,13 @@ protected:
std::vector < Vertex_const_handle > &currentRing,
std::vector < Vertex_const_handle > &nextRing,
std::vector < Vertex_const_handle > &all);
public:
public:
T_PolyhedralSurf_rings(const TPoly& P);
//collect i>=1 rings : all neighbours up to the ith ring,
void collect_i_rings(const Vertex_const_handle v,
const int ring_i,
void collect_i_rings(const Vertex_const_handle v,
const int ring_i,
std::vector < Vertex_const_handle >& all);
//collect enough rings (at least 1), to get at least min_nb of neighbors
@ -60,10 +60,12 @@ protected:
template < class TPoly >
T_PolyhedralSurf_rings <TPoly>::
T_PolyhedralSurf_rings(const TPoly& P)
: P(P)
{
//init the ring_index_map
Vertex_const_iterator itb = P.vertices_begin(), ite = P.vertices_end();
for(;itb!=ite;itb++) ring_index_map[itb] = -1;
Vertex_const_iterator itb, ite;
boost::tie(itb,ite) = vertices(P);
for(;itb!=ite;itb++) ring_index_map[*itb] = -1;
}
template < class TPoly >
@ -72,15 +74,15 @@ push_neighbours_of(const Vertex_const_handle start, const int ith,
std::vector < Vertex_const_handle > &nextRing,
std::vector < Vertex_const_handle > &all)
{
Vertex_const_handle v;
Vertex_const_handle v;
Halfedge_around_vertex_const_circulator
hedgeb = start->vertex_begin(), hedgee = hedgeb;
hedgeb(halfedge(start,P),P), hedgee = hedgeb;
CGAL_For_all(hedgeb, hedgee)
{
v = hedgeb->opposite()->vertex();
v = target(opposite(*hedgeb,P),P);
if (ring_index_map[v] != -1) continue;//if visited: next
ring_index_map[v] = ith;
nextRing.push_back(v);
all.push_back(v);
@ -93,9 +95,9 @@ collect_ith_ring(const int ith, std::vector < Vertex_const_handle > &currentRing
std::vector < Vertex_const_handle > &nextRing,
std::vector < Vertex_const_handle > &all)
{
typename std::vector < Vertex_const_handle >::const_iterator
typename std::vector < Vertex_const_handle >::const_iterator
itb = currentRing.begin(), ite = currentRing.end();
CGAL_For_all(itb, ite) push_neighbours_of(*itb, ith, nextRing, all);
}
@ -103,18 +105,18 @@ template <class TPoly>
void T_PolyhedralSurf_rings <TPoly>::
reset_ring_indices(std::vector < Vertex_const_handle >&vces)
{
typename std::vector < Vertex_const_handle >::const_iterator
typename std::vector < Vertex_const_handle >::const_iterator
itb = vces.begin(), ite = vces.end();
CGAL_For_all(itb, ite) ring_index_map[*itb] = -1;
}
template <class TPoly>
void T_PolyhedralSurf_rings <TPoly>::
collect_i_rings(const Vertex_const_handle v,
const int ring_i,
collect_i_rings(const Vertex_const_handle v,
const int ring_i,
std::vector < Vertex_const_handle >& all)
{
std::vector<Vertex_const_handle> current_ring, next_ring;
std::vector<Vertex_const_handle> current_ring, next_ring;
std::vector<Vertex_const_handle> *p_current_ring, *p_next_ring;
assert(ring_i >= 1);
//initialize
@ -141,7 +143,7 @@ collect_enough_rings(const Vertex_const_handle v,
const unsigned int min_nb,
std::vector < Vertex_const_handle >& all)
{
std::vector<Vertex_const_handle> current_ring, next_ring;
std::vector<Vertex_const_handle> current_ring, next_ring;
std::vector<Vertex_const_handle> *p_current_ring, *p_next_ring;
//initialize
@ -153,7 +155,7 @@ collect_enough_rings(const Vertex_const_handle v,
int i = 1;
while ( (all.size() < min_nb) && (p_current_ring->size() != 0) )
while ( (all.size() < min_nb) && (p_current_ring->size() != 0) )
{
collect_ith_ring(i, *p_current_ring, *p_next_ring, all);
//next round must be launched from p_nextRing...

View File

@ -0,0 +1,62 @@
#ifndef COMPUTE_NORMALS_H
#define COMPUTE_NORMALS_H
#include <CGAL/boost/graph/helpers.h>
#include <boost/foreach.hpp>
template <typename TriangleMesh, typename FaceVectorMap, typename Kernel>
const typename Kernel::Vector_3
computeFacetsAverageUnitNormal(const TriangleMesh& tm,
typename boost::graph_traits<TriangleMesh>::vertex_descriptor v,
FaceVectorMap fvm,
const Kernel& )
{
typename boost::graph_traits<TriangleMesh>::halfedge_descriptor h;
typename boost::graph_traits<TriangleMesh>::face_descriptor f;
typename Kernel::Vector_3 sum(0., 0., 0.), n;
CGAL::Halfedge_around_target_circulator<TriangleMesh> hedgeb(halfedge(v,tm),tm), hedgee = hedgeb;
do
{
h = *hedgeb;
if (is_border_edge(h,tm))
{
hedgeb++;
continue;
}
f = face(h,tm);
n = get(fvm,f);
sum = (sum + n);
hedgeb++;
}
while (hedgeb != hedgee);
sum = sum / std::sqrt(sum * sum);
return sum;
}
template <typename TriangleMesh, typename FaceVectorMap,typename Kernel>
void compute_facets_normals(const TriangleMesh& tm,
FaceVectorMap fvm,
const Kernel& k)
{
typedef typename boost::property_traits<FaceVectorMap>::value_type Vector_3;
typedef typename boost::property_map<TriangleMesh,CGAL::vertex_point_t>::const_type VPM;
VPM vpm = get(CGAL::vertex_point,tm);
BOOST_FOREACH(typename boost::graph_traits<TriangleMesh>::face_descriptor f, faces(tm)){
typename boost::graph_traits<TriangleMesh>::halfedge_descriptor h = halfedge(f,tm);
Vector_3 normal =
CGAL::cross_product(get(vpm, target(h,tm)) -
get(vpm, target(opposite(h,tm),tm)),
get(vpm, target(next(h,tm),tm)) -
get(vpm, target(opposite(h,tm),tm)));
put(fvm, f, normal / CGAL::sqrt(normal * normal));
}
}
#endif

View File

@ -2,92 +2,64 @@
#include <cassert>
#include <fstream>
#include <vector>
#include <CGAL/Ridges.h>
#include <CGAL/Umbilics.h>
#include <CGAL/Monge_via_jet_fitting.h>
//This Is an enriched Polyhedron with facets' normal
#include "PolyhedralSurf.h"
#include "PolyhedralSurf_rings.h"
#include "compute_normals.h"
#include <CGAL/Ridges.h>
#include <CGAL/Umbilics.h>
#include <CGAL/Monge_via_jet_fitting.h>
// Functions declared in PolyhedralSurf.h
// They were previously defined in a separate file PolyhedralSurf.cpp,
// but I prefere to avoid custom CMakeLists.txt files in the testsuite.
// -- Laurent Rineau, 2008/11/10
void PolyhedralSurf::compute_facets_normals()
{
std::for_each(this->facets_begin(), this->facets_end(),
Facet_unit_normal());
}
const Vector_3 PolyhedralSurf::computeFacetsAverageUnitNormal(const Vertex_const_handle v)
{
Halfedge_const_handle h;
Facet_const_handle f;
Vector_3 sum(0., 0., 0.), n;
Halfedge_around_vertex_const_circulator
hedgeb = v->vertex_begin(), hedgee = hedgeb;
do
{
h = hedgeb;
if (h->is_border_edge())
{
hedgeb++;
continue;
}
f = h->facet();
n = f->getUnitNormal();
sum = (sum + n);
hedgeb++;
}
while (hedgeb != hedgee);
sum = sum / std::sqrt(sum * sum);
return sum;
}
typedef PolyhedralSurf::Traits Kernel;
typedef Kernel::FT FT;
typedef Kernel::Point_3 Point_3;
typedef Kernel::Vector_3 Vector_3;
typedef PolyhedralSurf::Vertex_const_handle Vertex_const_handle;
typedef PolyhedralSurf::Vertex_const_iterator Vertex_const_iterator;
typedef boost::graph_traits<PolyhedralSurf>::vertex_descriptor vertex_descriptor;
typedef boost::graph_traits<PolyhedralSurf>::vertex_iterator vertex_iterator;
typedef boost::graph_traits<PolyhedralSurf>::face_descriptor face_descriptor;
typedef T_PolyhedralSurf_rings<PolyhedralSurf> Poly_rings;
typedef CGAL::Monge_via_jet_fitting<Kernel> Monge_via_jet_fitting;
typedef Monge_via_jet_fitting::Monge_form Monge_form;
typedef CGAL::Vertex2Data_Property_Map_with_std_map<PolyhedralSurf> Vertex2Data_Property_Map_with_std_map;
typedef Vertex2Data_Property_Map_with_std_map::Vertex2FT_map Vertex2FT_map;
typedef Vertex2Data_Property_Map_with_std_map::Vertex2Vector_map Vertex2Vector_map;
typedef Vertex2Data_Property_Map_with_std_map::Vertex2FT_property_map Vertex2FT_property_map;
typedef Vertex2Data_Property_Map_with_std_map::Vertex2Vector_property_map Vertex2Vector_property_map;
typedef std::map<vertex_descriptor, FT> VertexFT_map;
typedef boost::associative_property_map< VertexFT_map > VertexFT_property_map;
typedef std::map<vertex_descriptor, Vector_3> VertexVector_map;
typedef boost::associative_property_map< VertexVector_map > VertexVector_property_map;
typedef std::map<face_descriptor, Vector_3> Face2Vector_map;
typedef boost::associative_property_map< Face2Vector_map > Face2Vector_property_map;
//RIDGES
typedef CGAL::Ridge_line<PolyhedralSurf> Ridge_line;
typedef CGAL::Ridge_approximation < PolyhedralSurf,
Vertex2FT_property_map,
Vertex2Vector_property_map > Ridge_approximation;
VertexFT_property_map,
VertexVector_property_map > Ridge_approximation;
//UMBILICS
typedef CGAL::Umbilic<PolyhedralSurf> Umbilic;
typedef CGAL::Umbilic_approximation < PolyhedralSurf,
Vertex2FT_property_map,
Vertex2Vector_property_map > Umbilic_approximation;
VertexFT_property_map,
VertexVector_property_map > Umbilic_approximation;
//create property maps, to be moved in main?
Vertex2FT_map vertex2k1_map, vertex2k2_map,
vertex2b0_map, vertex2b3_map,
vertex2P1_map, vertex2P2_map;
Vertex2Vector_map vertex2d1_map, vertex2d2_map;
VertexFT_map vertex_k1_map, vertex_k2_map,
vertex_b0_map, vertex_b3_map,
vertex_P1_map, vertex_P2_map;
VertexVector_map vertex_d1_map, vertex_d2_map;
Face2Vector_map face2normal_map;
Vertex2FT_property_map vertex2k1_pm(vertex2k1_map), vertex2k2_pm(vertex2k2_map),
vertex2b0_pm(vertex2b0_map), vertex2b3_pm(vertex2b3_map),
vertex2P1_pm(vertex2P1_map), vertex2P2_pm(vertex2P2_map);
Vertex2Vector_property_map vertex2d1_pm(vertex2d1_map), vertex2d2_pm(vertex2d2_map);
VertexFT_property_map vertex_k1_pm(vertex_k1_map), vertex_k2_pm(vertex_k2_map),
vertex_b0_pm(vertex_b0_map), vertex_b3_pm(vertex_b3_map),
vertex_P1_pm(vertex_P1_map), vertex_P2_pm(vertex_P2_map);
VertexVector_property_map vertex_d1_pm(vertex_d1_map), vertex_d2_pm(vertex_d2_map);
Face2Vector_property_map face2normal_pm(face2normal_map);
// default fct parameter values and global variables
unsigned int d_fitting = 4;
@ -99,41 +71,45 @@ Vertex2Vector_property_map vertex2d1_pm(vertex2d1_map), vertex2d2_pm(vertex2d2_m
bool verbose = false;
unsigned int min_nb_points = (d_fitting + 1) * (d_fitting + 2) / 2;
/* gather points around the vertex v using rings on the
polyhedralsurf. the collection of points resorts to 3 alternatives:
1. the exact number of points to be used
2. the exact number of rings to be used
3. nothing is specified
*/
void gather_fitting_points(Vertex_const_handle v,
template <typename VertexPointMap>
void gather_fitting_points(vertex_descriptor v,
std::vector<Point_3> &in_points,
Poly_rings& poly_rings)
Poly_rings& poly_rings,
VertexPointMap vpm)
{
//container to collect vertices of v on the PolyhedralSurf
std::vector<Vertex_const_handle> gathered;
std::vector<vertex_descriptor> gathered;
//initialize
in_points.clear();
in_points.clear();
//OPTION -p nb_points_to_use, with nb_points_to_use != 0. Collect
//enough rings and discard some points of the last collected ring to
//get the exact "nb_points_to_use"
//get the exact "nb_points_to_use"
if ( nb_points_to_use != 0 ) {
poly_rings.collect_enough_rings(v, nb_points_to_use, gathered);//, vpm);
poly_rings.collect_enough_rings(v, nb_points_to_use, gathered);
if ( gathered.size() > nb_points_to_use ) gathered.resize(nb_points_to_use);
}
else { // nb_points_to_use=0, this is the default and the option -p is not considered;
// then option -a nb_rings is checked. If nb_rings=0, collect
// enough rings to get the min_nb_points required for the fitting
// else collect the nb_rings required
if ( nb_rings == 0 )
poly_rings.collect_enough_rings(v, min_nb_points, gathered);//, vpm);
else poly_rings.collect_i_rings(v, nb_rings, gathered);//, vpm);
if ( nb_rings == 0 )
poly_rings.collect_enough_rings(v, min_nb_points, gathered);
else poly_rings.collect_i_rings(v, nb_rings, gathered);
}
//store the gathered points
std::vector<Vertex_const_handle>::const_iterator
std::vector<vertex_descriptor>::const_iterator
itb = gathered.begin(), ite = gathered.end();
CGAL_For_all(itb,ite) in_points.push_back((*itb)->point());
CGAL_For_all(itb,ite) in_points.push_back(get(vpm,*itb));
}
/* Use the jet_fitting package and the class Poly_rings to compute
@ -143,55 +119,58 @@ void compute_differential_quantities(PolyhedralSurf& P, Poly_rings& poly_rings)
{
//container for approximation points
std::vector<Point_3> in_points;
typedef boost::property_map<PolyhedralSurf,CGAL::vertex_point_t>::type VPM;
VPM vpm = get(CGAL::vertex_point,P);
//MAIN LOOP
Vertex_const_iterator vitb = P.vertices_begin(), vite = P.vertices_end();
vertex_iterator vitb = P.vertices_begin(), vite = P.vertices_end();
for (; vitb != vite; vitb++) {
//initialize
Vertex_const_handle v = vitb;
in_points.clear();
vertex_descriptor v = * vitb;
in_points.clear();
Monge_form monge_form;
Monge_via_jet_fitting monge_fit;
//gather points around the vertex using rings
gather_fitting_points(v, in_points, poly_rings);
//exit if the nb of points is too small
//gather points around the vertex using rings
gather_fitting_points(v, in_points, poly_rings, vpm);
//exit if the nb of points is too small
if ( in_points.size() < min_nb_points )
{std::cerr << "Too few points to perform the fitting" << std::endl; exit(1);}
//For Ridges we need at least 3rd order info
assert( d_monge >= 3);
// run the main fct : perform the fitting
monge_form = monge_fit(in_points.begin(), in_points.end(),
monge_form = monge_fit(in_points.begin(), in_points.end(),
d_fitting, d_monge);
//switch min-max ppal curv/dir wrt the mesh orientation
const Vector_3 normal_mesh = P.computeFacetsAverageUnitNormal(v);
const Vector_3 normal_mesh = computeFacetsAverageUnitNormal(P,v, face2normal_pm, Kernel());
monge_form.comply_wrt_given_normal(normal_mesh);
//Store monge data needed for ridge computations in property maps
vertex2d1_map[v] = monge_form.maximal_principal_direction();
vertex2d2_map[v] = monge_form.minimal_principal_direction();
vertex2k1_map[v] = monge_form.coefficients()[0];
vertex2k2_map[v] = monge_form.coefficients()[1];
vertex2b0_map[v] = monge_form.coefficients()[2];
vertex2b3_map[v] = monge_form.coefficients()[5];
vertex_d1_map[v] = monge_form.maximal_principal_direction();
vertex_d2_map[v] = monge_form.minimal_principal_direction();
vertex_k1_map[v] = monge_form.coefficients()[0];
vertex_k2_map[v] = monge_form.coefficients()[1];
vertex_b0_map[v] = monge_form.coefficients()[2];
vertex_b3_map[v] = monge_form.coefficients()[5];
if ( d_monge >= 4) {
//= 3*b1^2+(k1-k2)(c0-3k1^3)
vertex2P1_map[v] =
vertex_P1_map[v] =
3*monge_form.coefficients()[3]*monge_form.coefficients()[3]
+(monge_form.coefficients()[0]-monge_form.coefficients()[1])
*(monge_form.coefficients()[6]
-3*monge_form.coefficients()[0]*monge_form.coefficients()[0]
*monge_form.coefficients()[0]);
*monge_form.coefficients()[0]);
//= 3*b2^2+(k2-k1)(c4-3k2^3)
vertex2P2_map[v] =
vertex_P2_map[v] =
3*monge_form.coefficients()[4]*monge_form.coefficients()[4]
+(-monge_form.coefficients()[0]+monge_form.coefficients()[1])
*(monge_form.coefficients()[10]
-3*monge_form.coefficients()[1]*monge_form.coefficients()[1]
*monge_form.coefficients()[1]);
*monge_form.coefficients()[1]);
}
} //END FOR LOOP
}
@ -210,8 +189,8 @@ int main()
{std::cerr << "not enough points in the model" << std::endl; return 1;}
//initialize Polyhedral data : normal of facets
P.compute_facets_normals();
compute_facets_normals(P,face2normal_pm, Kernel());
//create a Poly_rings object
Poly_rings poly_rings(P);
@ -223,28 +202,23 @@ int main()
//---------------------------------------------------------------------------
//Ridges
//--------------------------------------------------------------------------
Ridge_approximation ridge_approximation_tag_3(P,
vertex2k1_pm, vertex2k2_pm,
vertex2b0_pm, vertex2b3_pm,
vertex2d1_pm, vertex2d2_pm,
Vertex2FT_property_map(),
Vertex2FT_property_map());
Ridge_approximation ridge_approximation(P,
vertex_k1_pm, vertex_k2_pm,
vertex_b0_pm, vertex_b3_pm,
vertex_d1_pm, vertex_d2_pm,
vertex_P1_pm, vertex_P2_pm );
std::vector<Ridge_line*> ridge_lines;
back_insert_iterator<std::vector<Ridge_line*> > ii(ridge_lines);
std::back_insert_iterator<std::vector<Ridge_line*> > ii(ridge_lines);
//Find MAX_RIDGE, RED_RIDGE, CREST or all ridges
ridge_approximation_tag_3.compute_max_ridges(ii, tag_order);
ridge_approximation_tag_3.compute_min_ridges(ii, tag_order);
ridge_approximation_tag_3.compute_crest_ridges(ii, tag_order);
ridge_approximation.compute_max_ridges(ii, tag_order);
ridge_approximation.compute_min_ridges(ii, tag_order);
ridge_approximation.compute_crest_ridges(ii, tag_order);
std::cout << "Compute ridges with tag_4" << std::endl;
tag_order = CGAL::Ridge_order_4;
//Find MAX_RIDGE, RED_RIDGE, CREST or all ridges
Ridge_approximation ridge_approximation(P,
vertex2k1_pm, vertex2k2_pm,
vertex2b0_pm, vertex2b3_pm,
vertex2d1_pm, vertex2d2_pm,
vertex2P1_pm, vertex2P2_pm );
ridge_approximation.compute_max_ridges(ii, tag_order);
ridge_approximation.compute_min_ridges(ii, tag_order);
ridge_approximation.compute_crest_ridges(ii, tag_order);
@ -257,10 +231,10 @@ int main()
// UMBILICS
//--------------------------------------------------------------------------
Umbilic_approximation umbilic_approximation(P,
vertex2k1_pm, vertex2k2_pm,
vertex2d1_pm, vertex2d2_pm);
vertex_k1_pm, vertex_k2_pm,
vertex_d1_pm, vertex_d2_pm);
std::vector<Umbilic*> umbilics;
back_insert_iterator<std::vector<Umbilic*> > umb_it(umbilics);
std::back_insert_iterator<std::vector<Umbilic*> > umb_it(umbilics);
std::cout << "compute umbilics u=1" << std::endl;
umbilic_approximation.compute(umb_it, umb_size);
umb_size=2;