mirror of https://github.com/CGAL/cgal
Merge remote-tracking branch 'sloriot/PMP-decimation' into PMP-decimation
This commit is contained in:
commit
0cac6a9da8
|
|
@ -120,6 +120,11 @@ Release date: June 2022
|
|||
|
||||
- Added the function [`invert_selection()`](https://doc.cgal.org/5.5/BGL/structCGAL_1_1Face__filtered__graph.html#aa428541ebbdd35f9a6e9a3ffd60178df) in the class [`Face_filtered_graph`](https://doc.cgal.org/5.5/BGL/structCGAL_1_1Face__filtered__graph.html), which toggles the selected status of a graph: selected faces are deselected, and unselected faces are selected.
|
||||
|
||||
### [2D and 3D Linear Geometry Kernel](https://doc.cgal.org/5.5/Manual/packages.html#PkgKernel23)
|
||||
- Added the functor
|
||||
[`CompareAngle_3`](https://doc.cgal.org/5.5/Kernel_23/classKernel_1_1CompareAngle__3.html)
|
||||
to the concept [`Kernel`](https://doc.cgal.org/5.5/Kernel_23/classKernel.html) to compare
|
||||
an angle defined by three points to the cosinus of another angle.
|
||||
|
||||
[Release 5.4](https://github.com/CGAL/cgal/releases/tag/v5.4)
|
||||
-----------
|
||||
|
|
|
|||
|
|
@ -619,7 +619,19 @@ const CGAL::Point_3<Kernel>&r);
|
|||
|
||||
/// @}
|
||||
|
||||
|
||||
/// \ingroup kernel_global_function
|
||||
/*!
|
||||
compares the angles \f$ \theta_1\f$ and \f$ \theta_2\f$, where
|
||||
\f$ \theta_1\f$ is the angle, in \f$ [0, \pi]\f$, of the triangle
|
||||
\f$ (a, b, c)\f$ at the vertex `b`, and \f$ \theta_2\f$ is
|
||||
the angle in \f$ [0, \pi]\f$ such that \f$ cos(\theta_2) = cosine\f$.
|
||||
\pre `a!=b && c!=b`.
|
||||
*/
|
||||
template <typename Kernel>
|
||||
Comparison_result compare_angle(const CGAL::Point_3<Kernel>& a,
|
||||
const CGAL::Point_3<Kernel>& b,
|
||||
const CGAL::Point_3<Kernel>& c,
|
||||
const Kernel::FT& cosine);
|
||||
|
||||
/// \defgroup compare_dihedral_angle_grp CGAL::compare_dihedral_angle()
|
||||
/// \ingroup kernel_global_function
|
||||
|
|
|
|||
|
|
@ -743,6 +743,33 @@ public:
|
|||
|
||||
}; /* end Kernel::CompareAngleWithXAxis_2 */
|
||||
|
||||
|
||||
|
||||
/*!
|
||||
\ingroup PkgKernel23ConceptsFunctionObjects
|
||||
\cgalConcept
|
||||
|
||||
*/
|
||||
class CompareAngle_3 {
|
||||
public:
|
||||
|
||||
/// \name Operations
|
||||
/// A model of this concept must provide:
|
||||
/// @{
|
||||
|
||||
/*!
|
||||
compares the angles \f$ \theta_1\f$ and \f$ \theta_2\f$, where
|
||||
\f$ \theta_1\f$ is the angle, in \f$ [0, \pi]\f$, of the triangle
|
||||
\f$ (a, b, c)\f$ at the vertex `b`, and \f$ \theta_2\f$ is
|
||||
the angle in \f$ [0, \pi]\f$ such that \f$ cos(\theta_2) = cosine\f$.
|
||||
\pre `a!=b && c!=b`.
|
||||
*/
|
||||
Comparison_result operator()(const K::Point_3& a,
|
||||
const K::Point_3& b,
|
||||
const K::Point_3& c,
|
||||
const K::FT& cosine);
|
||||
};
|
||||
|
||||
/*!
|
||||
\ingroup PkgKernel23ConceptsFunctionObjects
|
||||
\cgalConcept
|
||||
|
|
|
|||
|
|
@ -1468,6 +1468,11 @@ public:
|
|||
*/
|
||||
typedef unspecified_type Less_distance_to_point_3;
|
||||
|
||||
/*!
|
||||
a model of `Kernel::CompareAngle_3`
|
||||
*/
|
||||
typedef unspecified_type Compare_angle_3;
|
||||
|
||||
/*!
|
||||
a model of `Kernel::CompareDihedralAngle_3`
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -160,6 +160,7 @@
|
|||
- \link compare_signed_distance_to_line_grp `CGAL::compare_signed_distance_to_line()` \endlink
|
||||
- \link compare_signed_distance_to_plane_grp `CGAL::compare_signed_distance_to_plane()` \endlink
|
||||
- \link compare_slopes_grp `CGAL::compare_slopes()` \endlink
|
||||
- `CGAL::compare_angle()`
|
||||
- \link compare_dihedral_angle_grp `CGAL::compare_dihedral_angle()` \endlink
|
||||
- \link compare_squared_distance_grp `CGAL::compare_squared_distance()` \endlink
|
||||
- \link compare_squared_radius_grp `CGAL::compare_squared_radius()` \endlink
|
||||
|
|
|
|||
|
|
@ -196,6 +196,49 @@ namespace CommonKernelFunctors {
|
|||
{ return assign(t, o); }
|
||||
};
|
||||
|
||||
template <typename K>
|
||||
class Compare_angle_3
|
||||
{
|
||||
typedef typename K::Point_3 Point_3;
|
||||
typedef typename K::Vector_3 Vector_3;
|
||||
typedef typename K::FT FT;
|
||||
public:
|
||||
typedef typename K::Comparison_result result_type;
|
||||
|
||||
result_type
|
||||
operator()(const Point_3& a, const Point_3& b, const Point_3& c,
|
||||
const FT& cosine) const
|
||||
{
|
||||
typename K::Compute_scalar_product_3 scalar_product = K().compute_scalar_product_3_object();
|
||||
typename K::Construct_vector_3 vector = K().construct_vector_3_object();
|
||||
typename K::Compute_squared_length_3 sq_length = K().compute_squared_length_3_object();
|
||||
|
||||
const Vector_3 ba = vector(b, a);
|
||||
const Vector_3 bc = vector(b, c);
|
||||
|
||||
typename K::FT sc_prod = scalar_product(ba, bc);
|
||||
|
||||
if (sc_prod >= 0)
|
||||
{
|
||||
if (cosine >= 0)
|
||||
return CGAL::compare(CGAL::square(cosine)
|
||||
* sq_length(ba)*sq_length(bc),
|
||||
CGAL::square(sc_prod));
|
||||
else
|
||||
return SMALLER;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (cosine >= 0)
|
||||
return LARGER;
|
||||
else
|
||||
return CGAL::compare(CGAL::square(sc_prod),
|
||||
CGAL::square(cosine)
|
||||
* sq_length(ba)*sq_length(bc));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename K>
|
||||
class Compare_dihedral_angle_3
|
||||
{
|
||||
|
|
|
|||
|
|
@ -309,6 +309,15 @@ collinear_are_strictly_ordered_along_line(const Point_3<K> &p,
|
|||
return internal::collinear_are_strictly_ordered_along_line(p, q, r, K());
|
||||
}
|
||||
|
||||
template < class K >
|
||||
inline
|
||||
typename K::Comparison_result
|
||||
compare_angle(const Point_3<K>& a, const Point_3<K>& b, const Point_3<K>& c,
|
||||
const typename K::FT& cosine)
|
||||
{
|
||||
return internal::compare_angle(a, b, c, cosine, K());
|
||||
}
|
||||
|
||||
template < class K >
|
||||
inline
|
||||
typename K::Comparison_result
|
||||
|
|
|
|||
|
|
@ -321,6 +321,17 @@ collinear_are_strictly_ordered_along_line(
|
|||
return k.collinear_are_strictly_ordered_along_line_3_object()(p, q, r);
|
||||
}
|
||||
|
||||
template < class K >
|
||||
inline
|
||||
typename K::Comparison_result
|
||||
compare_angle(const typename K::Point_3& a,
|
||||
const typename K::Point_3& b,
|
||||
const typename K::Point_3& c,
|
||||
const typename K::FT& cosine,
|
||||
const K& k)
|
||||
{
|
||||
return k.compare_angle_3_object()(a, b, c, cosine);
|
||||
}
|
||||
|
||||
template < class K >
|
||||
inline
|
||||
|
|
|
|||
|
|
@ -104,10 +104,12 @@ CGAL_Kernel_pred_RT(Collinear_2,
|
|||
collinear_2_object)
|
||||
CGAL_Kernel_pred_RT(Collinear_3,
|
||||
collinear_3_object)
|
||||
CGAL_Kernel_pred_RT(Compare_angle_3,
|
||||
compare_angle_3_object)
|
||||
CGAL_Kernel_pred(Compare_angle_with_x_axis_2,
|
||||
compare_angle_with_x_axis_2_object)
|
||||
CGAL_Kernel_pred(Compare_dihedral_angle_3,
|
||||
compare_dihedral_angle_3_object)
|
||||
CGAL_Kernel_pred_RT(Compare_dihedral_angle_3,
|
||||
compare_dihedral_angle_3_object)
|
||||
CGAL_Kernel_pred(Compare_distance_2,
|
||||
compare_distance_2_object)
|
||||
CGAL_Kernel_pred(Compare_distance_3,
|
||||
|
|
|
|||
|
|
@ -0,0 +1,39 @@
|
|||
// Copyright (c) 2009 GeometryFactory (France)
|
||||
//
|
||||
// This file is part of CGAL (www.cgal.org)
|
||||
//
|
||||
// $URL$
|
||||
// $Id$
|
||||
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
|
||||
//
|
||||
//
|
||||
// Author(s) : Laurent Rineau, Sebastien Loriot
|
||||
//
|
||||
|
||||
template <class R>
|
||||
bool
|
||||
_test_compare_angle_3(const R& rep)
|
||||
{
|
||||
typedef typename R::Point_3 Point_3;
|
||||
typedef typename R::FT FT;
|
||||
typename R::Compare_angle_3 compare_angle
|
||||
= rep.compare_angle_3_object();
|
||||
|
||||
for(int theta1 = -170; theta1 <= 180; theta1+= 10)
|
||||
{
|
||||
const double angle1 = CGAL_PI*theta1/180.;
|
||||
Point_3 a(1, 0, 0);
|
||||
Point_3 b(0, 0, 0);
|
||||
Point_3 c((int)(std::cos(angle1)*1000), (int)(std::sin(angle1)*1000), 0);
|
||||
|
||||
for(int theta2 = -170; theta2 <= 180; theta2+= 10) {
|
||||
if (theta1!=0 && theta1!=180 && abs(theta1)==abs(theta2)) continue;
|
||||
const double angle2 = CGAL_PI*theta2/180.;
|
||||
if ( CGAL::compare(abs(theta1), abs(theta2)) != CGAL::compare_angle(a, b, c, FT(std::cos(angle2))) )
|
||||
return false;
|
||||
if ( CGAL::compare(abs(theta1), abs(theta2)) != compare_angle(a, b, c, FT(std::cos(angle2))) )
|
||||
return false;
|
||||
} // end loop on theta2
|
||||
} // end loop and theta1
|
||||
return true;
|
||||
}
|
||||
|
|
@ -22,6 +22,7 @@
|
|||
#include <CGAL/intersections.h>
|
||||
#include <CGAL/squared_distance_3.h>
|
||||
#include <CGAL/_test_compare_dihedral_angle_3.h>
|
||||
#include <CGAL/_test_compare_angle_3.h>
|
||||
|
||||
#include <CGAL/use.h>
|
||||
|
||||
|
|
@ -599,6 +600,10 @@ test_new_3(const R& rep)
|
|||
bool tmp = _test_compare_dihedral_angle_3(rep);
|
||||
assert(tmp);
|
||||
}
|
||||
{
|
||||
bool tmp = _test_compare_angle_3(rep);
|
||||
assert(tmp);
|
||||
}
|
||||
|
||||
typename R::Compare_distance_3 compare_dist
|
||||
= rep.compare_distance_3_object();
|
||||
|
|
|
|||
|
|
@ -56,6 +56,8 @@ if(TARGET CGAL::Eigen3_support)
|
|||
target_link_libraries(mesh_smoothing_example PUBLIC CGAL::Eigen3_support)
|
||||
create_single_source_cgal_program("delaunay_remeshing_example.cpp")
|
||||
target_link_libraries(delaunay_remeshing_example PUBLIC CGAL::Eigen3_support)
|
||||
create_single_source_cgal_program("decimation_planar_patches.cpp")
|
||||
target_link_libraries(decimation_planar_patches PUBLIC CGAL::Eigen3_support)
|
||||
endif()
|
||||
|
||||
create_single_source_cgal_program( "extrude.cpp" )
|
||||
|
|
|
|||
|
|
@ -0,0 +1,46 @@
|
|||
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
|
||||
#include <CGAL/Surface_mesh.h>
|
||||
#include <CGAL/Polygon_mesh_processing/remesh_planar_patches.h>
|
||||
#include <CGAL/Polygon_mesh_processing/remesh.h>
|
||||
#include <CGAL/Polygon_mesh_processing/detect_features.h>
|
||||
#include <CGAL/Polygon_mesh_processing/triangulate_faces.h>
|
||||
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
|
||||
|
||||
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
|
||||
typedef Kernel::Point_3 Point_3;
|
||||
typedef CGAL::Surface_mesh<Kernel::Point_3> Surface_mesh;
|
||||
|
||||
namespace PMP = CGAL::Polygon_mesh_processing;
|
||||
int main()
|
||||
{
|
||||
Surface_mesh sm;
|
||||
std::ifstream in("data/cube_quad.off");
|
||||
in >> sm;
|
||||
|
||||
// triangulate faces;
|
||||
PMP::triangulate_faces(sm);
|
||||
assert(faces(sm).size()==12);
|
||||
|
||||
Surface_mesh::Property_map<Surface_mesh::Edge_index, bool> ecm =
|
||||
sm.add_property_map<Surface_mesh::Edge_index, bool>("ecm",false).first;
|
||||
|
||||
// detect sharp edges of the cube
|
||||
PMP::detect_sharp_edges(sm, 60, ecm);
|
||||
|
||||
// create a remeshed version of the cube with many elements
|
||||
PMP::isotropic_remeshing(faces(sm), 0.1, sm, CGAL::parameters::edge_is_constrained_map(ecm));
|
||||
std::ofstream("cube_remeshed.off") << sm;
|
||||
assert(faces(sm).size()>100);
|
||||
|
||||
// decimate the mesh
|
||||
PMP::remesh_planar_patches(sm);
|
||||
std::ofstream("cube_decimated.off") << sm;
|
||||
|
||||
// we should be back to 12 faces
|
||||
assert(faces(sm).size()==12);
|
||||
|
||||
return 0;
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
|
|
@ -44,6 +44,8 @@ if(TARGET CGAL::Eigen3_support)
|
|||
target_link_libraries(test_shape_smoothing PUBLIC CGAL::Eigen3_support)
|
||||
create_single_source_cgal_program("delaunay_remeshing_test.cpp")
|
||||
target_link_libraries(delaunay_remeshing_test PUBLIC CGAL::Eigen3_support)
|
||||
create_single_source_cgal_program("test_decimation_of_planar_patches.cpp")
|
||||
target_link_libraries(test_decimation_of_planar_patches PUBLIC CGAL::Eigen3_support)
|
||||
endif()
|
||||
|
||||
find_package(OpenMesh QUIET)
|
||||
|
|
|
|||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
|
@ -0,0 +1,114 @@
|
|||
OFF
|
||||
38 72 0
|
||||
|
||||
-1.5425534248352051 2.0011272430419922 2.1056604385375977
|
||||
-2.4678716659545898 1.843524694442749 1.0478570461273193
|
||||
-2.3172659873962402 1.3054063320159912 1.9416441917419434
|
||||
-2.2937459945678711 2.210951566696167 2.7315070629119873
|
||||
-2.4685182571411133 1.9557313919067383 2.6072971820831299
|
||||
-2.6432909965515137 1.7005102634429932 2.4830870628356934
|
||||
-2.0433511734008789 2.1410109996795654 2.5228936672210693
|
||||
-2.718266487121582 1.9134653806686401 1.2564704418182373
|
||||
-1.6762199401855469 2.2038135528564453 1.8772693872451782
|
||||
-2.9517297744750977 1.6479761600494385 2.1304864883422852
|
||||
-2.5676684379577637 1.3753491640090942 2.1502640247344971
|
||||
-1.7929482460021973 2.0710680484771729 2.3142738342285156
|
||||
-1.7173261642456055 1.7459070682525635 1.9814505577087402
|
||||
-1.9435539245605469 2.6091864109039307 1.4204866886138916
|
||||
-1.8920989036560059 1.4906859397888184 1.8572404384613037
|
||||
-2.3342046737670898 1.6408385038375854 1.2762479782104492
|
||||
-2.642967700958252 1.6444073915481567 1.7033674716949463
|
||||
-2.0052127838134766 1.9223260879516602 1.576758861541748
|
||||
-2.1183261871337891 2.353966236114502 1.2962768077850342
|
||||
-2.5813088417053223 2.3312678337097168 1.5470952987670898
|
||||
-2.4443511962890625 2.7490699291229248 1.8377199172973633
|
||||
-2.6947460174560547 2.8190107345581055 2.0463333129882812
|
||||
-2.066871166229248 1.2354656457901001 1.7330307960510254
|
||||
-2.2005376815795898 1.4381518363952637 1.5046396255493164
|
||||
-3.2190637588500977 2.0533490180969238 1.673703670501709
|
||||
-2.8180632591247559 1.4452899694442749 2.358877420425415
|
||||
-2.8695182800292969 2.5637903213500977 1.9221234321594238
|
||||
-2.4274125099182129 2.4136378765106201 2.5031161308288574
|
||||
-2.118649959564209 2.4100689888000488 2.0759971141815186
|
||||
-2.7564048767089844 2.132150411605835 2.2026054859161377
|
||||
-3.0853967666625977 1.8506628274917603 1.9020946025848389
|
||||
-2.5610795021057129 2.6163244247436523 2.2747242450714111
|
||||
-2.2930994033813477 2.0987448692321777 1.1720666885375977
|
||||
-2.1939487457275391 2.6791272163391113 1.6291000843048096
|
||||
-1.8098869323730469 2.4065003395080566 1.6488776206970215
|
||||
-2.9686689376831055 1.9834082126617432 1.465090274810791
|
||||
-2.1803088188171387 1.7232086658477783 2.2322690486907959
|
||||
-3.0442914962768555 2.3085691928863525 1.7979133129119873
|
||||
3 8 11 0
|
||||
3 8 12 17
|
||||
3 32 15 1
|
||||
3 13 18 33
|
||||
3 36 10 2
|
||||
3 2 10 16
|
||||
3 4 6 3
|
||||
3 25 10 5
|
||||
3 9 5 29
|
||||
3 5 4 29
|
||||
3 7 1 15
|
||||
3 32 1 7
|
||||
3 28 6 11
|
||||
3 20 31 28
|
||||
3 32 7 19
|
||||
3 36 14 12
|
||||
3 8 28 11
|
||||
3 16 10 9
|
||||
3 28 27 6
|
||||
3 12 11 36
|
||||
3 0 11 12
|
||||
3 35 16 30
|
||||
3 13 34 18
|
||||
3 12 14 17
|
||||
3 15 17 23
|
||||
3 15 23 16
|
||||
3 7 15 16
|
||||
3 3 6 27
|
||||
3 3 27 4
|
||||
3 17 18 34
|
||||
3 5 10 36
|
||||
3 22 2 23
|
||||
3 19 18 32
|
||||
3 26 20 19
|
||||
3 23 2 16
|
||||
3 21 20 26
|
||||
3 31 20 21
|
||||
3 31 21 26
|
||||
3 5 36 4
|
||||
3 22 14 2
|
||||
3 14 22 23
|
||||
3 30 37 24
|
||||
3 12 8 0
|
||||
3 9 10 25
|
||||
3 35 24 37
|
||||
3 13 33 34
|
||||
3 30 24 35
|
||||
3 14 36 2
|
||||
3 29 31 26
|
||||
3 4 27 29
|
||||
3 34 33 28
|
||||
3 28 33 20
|
||||
3 29 37 30
|
||||
3 25 5 9
|
||||
3 9 29 30
|
||||
3 30 16 9
|
||||
3 31 27 28
|
||||
3 29 27 31
|
||||
3 35 37 19
|
||||
3 23 17 14
|
||||
3 15 32 17
|
||||
3 19 20 33
|
||||
3 34 8 17
|
||||
3 28 8 34
|
||||
3 7 16 35
|
||||
3 7 35 19
|
||||
3 36 6 4
|
||||
3 11 6 36
|
||||
3 18 19 33
|
||||
3 37 26 19
|
||||
3 26 37 29
|
||||
3 32 18 17
|
||||
|
||||
|
|
@ -0,0 +1,114 @@
|
|||
OFF
|
||||
38 72 0
|
||||
|
||||
3.5397257804870605 0.50155007839202881 0.71940517425537109
|
||||
2.6144077777862549 0.34394717216491699 -0.33839845657348633
|
||||
2.7891786098480225 0.59916532039642334 -0.21418976783752441
|
||||
2.3258743286132812 0.63257288932800293 0.81634986400604248
|
||||
2.6379303932189941 1.2494919300079346 0.4514625072479248
|
||||
2.6137626171112061 0.45615625381469727 1.2210431098937988
|
||||
2.5211987495422363 1.1167490482330322 0.88846683502197266
|
||||
3.2893285751342773 0.57149136066436768 0.92802047729492188
|
||||
2.8883283138275146 1.1795504093170166 0.24284648895263672
|
||||
2.7885334491729736 0.71137428283691406 1.3452516794204712
|
||||
2.5146126747131348 -0.12422895431518555 0.76400661468505859
|
||||
2.2642157077789307 -0.054287552833557129 0.97262191772460938
|
||||
1.863215446472168 0.5537714958190918 0.28744816780090332
|
||||
2.0379862785339355 0.80898964405059814 0.41165685653686523
|
||||
3.1901788711547852 -0.0088937282562255859 0.47098398208618164
|
||||
2.7480731010437012 0.14126282930374146 -0.11000943183898926
|
||||
3.4060602188110352 0.70423442125320435 0.49101614952087402
|
||||
2.5009703636169434 0.83169031143188477 0.16083979606628418
|
||||
2.2127623558044434 1.0642153024673462 0.53586924076080322
|
||||
2.6548681259155273 0.9140586256980896 1.1168627738952637
|
||||
3.1387255191802979 1.1096091270446777 0.034231185913085938
|
||||
2.1136126518249512 0.48383009433746338 0.078832864761352539
|
||||
2.3875331878662109 1.319433331489563 0.66007781028747559
|
||||
2.9076576232910156 0.21673417091369629 0.83656430244445801
|
||||
1.9968808889389038 0.35108715295791626 0.51583719253540039
|
||||
3.0763490200042725 0.41475355625152588 0.1923222541809082
|
||||
2.9639546871185303 0.85439109802246094 -0.089977264404296875
|
||||
2.8817424774169922 -0.061427593231201172 0.11838626861572266
|
||||
3.0154080390930176 -0.26411187648773193 0.34677529335021973
|
||||
2.7650105953216553 -0.19417047500610352 0.55539059638977051
|
||||
3.2723908424377441 0.9069247841835022 0.26262021064758301
|
||||
2.4503841400146484 0.13884997367858887 0.31381893157958984
|
||||
2.9636294841766357 0.9104917049407959 0.68974149227142334
|
||||
3.0389304161071777 0.6414330005645752 1.1366362571716309
|
||||
2.3640105724334717 0.41388857364654541 -0.12978315353393555
|
||||
2.1305503845214844 0.14839679002761841 0.74423301219940186
|
||||
2.4389865398406982 0.20093059539794922 1.0968306064605713
|
||||
3.364954948425293 0.24633204936981201 0.59519648551940918
|
||||
3 15 34 1
|
||||
3 0 7 37
|
||||
3 16 7 0
|
||||
3 0 37 16
|
||||
3 31 24 21
|
||||
3 17 8 26
|
||||
3 10 29 23
|
||||
3 31 29 10
|
||||
3 2 15 1
|
||||
3 19 6 3
|
||||
3 32 6 19
|
||||
3 17 4 8
|
||||
3 5 3 36
|
||||
3 6 18 3
|
||||
3 23 37 7
|
||||
3 30 8 32
|
||||
3 33 19 9
|
||||
3 11 10 36
|
||||
3 35 10 11
|
||||
3 11 36 35
|
||||
3 12 24 13
|
||||
3 21 24 12
|
||||
3 12 13 21
|
||||
3 3 18 13
|
||||
3 34 17 2
|
||||
3 23 29 14
|
||||
3 32 7 16
|
||||
3 15 25 27
|
||||
3 30 32 16
|
||||
3 3 35 36
|
||||
3 29 31 27
|
||||
3 13 18 17
|
||||
3 9 19 5
|
||||
3 9 5 33
|
||||
3 20 30 26
|
||||
3 8 30 20
|
||||
3 20 26 8
|
||||
3 34 21 17
|
||||
3 6 4 22
|
||||
3 33 5 23
|
||||
3 13 24 3
|
||||
3 17 26 2
|
||||
3 32 4 6
|
||||
3 2 26 25
|
||||
3 14 28 27
|
||||
3 29 28 14
|
||||
3 27 28 29
|
||||
3 22 4 18
|
||||
3 22 18 6
|
||||
3 30 25 26
|
||||
3 31 15 27
|
||||
3 33 7 32
|
||||
3 34 31 21
|
||||
3 10 35 31
|
||||
3 35 24 31
|
||||
3 25 16 37
|
||||
3 17 18 4
|
||||
3 32 8 4
|
||||
3 1 34 2
|
||||
3 25 30 16
|
||||
3 25 14 27
|
||||
3 23 5 36
|
||||
3 10 23 36
|
||||
3 19 33 32
|
||||
3 17 21 13
|
||||
3 25 37 14
|
||||
3 24 35 3
|
||||
3 15 31 34
|
||||
3 37 23 14
|
||||
3 7 33 23
|
||||
3 2 25 15
|
||||
3 19 3 5
|
||||
|
||||
|
|
@ -0,0 +1,171 @@
|
|||
OFF
|
||||
57 110 0
|
||||
|
||||
3.3128511905670166 1.4770362377166748 1.7178813219070435
|
||||
2.9636294841766357 0.9104917049407959 0.68974149227142334
|
||||
2.5211987495422363 1.1167490482330322 0.88846683502197266
|
||||
2.5623040199279785 1.5746514797210693 0.7842864990234375
|
||||
4.0646886825561523 1.1550029516220093 -0.4674065113067627
|
||||
2.7885334491729736 0.71137428283691406 1.3452516794204712
|
||||
2.9633042812347412 0.96659243106842041 1.4694602489471436
|
||||
3.7945542335510254 1.3824794292449951 -0.10743498802185059
|
||||
3.408212423324585 0.99434208869934082 1.2337028980255127
|
||||
4.0640435218811035 1.2672119140625 1.0920348167419434
|
||||
4.3144383430480957 1.1972712278366089 0.88342142105102539
|
||||
3.1380801200866699 1.2218180894851685 1.5936727523803711
|
||||
4.1638407707214355 1.7353873252868652 -0.010372161865234375
|
||||
4.8152356147766113 1.0573877096176147 0.46618819236755371
|
||||
3.1791858673095703 1.679720401763916 1.4894924163818359
|
||||
4.352576732635498 0.97858625650405884 -0.062713623046875
|
||||
4.2559938430786133 1.4854962825775146 0.37342500686645508
|
||||
3.9134383201599121 1.8053302764892578 0.19824743270874023
|
||||
2.6548681259155273 0.9140586256980896 1.1168627738952637
|
||||
2.7370800971984863 1.8298771381378174 0.90849888324737549
|
||||
4.0235834121704102 0.69710057973861694 -0.36322617530822754
|
||||
2.9118509292602539 2.0850951671600342 1.0327074527740479
|
||||
2.3875331878662109 1.319433331489563 0.66007781028747559
|
||||
3.2723908424377441 0.9069247841835022 0.26262021064758301
|
||||
4.5479011535644531 1.4627623558044434 0.0094034671783447266
|
||||
4.4142355918884277 1.6654467582702637 -0.21898555755615234
|
||||
4.2394647598266602 1.4102286100387573 -0.34319424629211426
|
||||
4.157252311706543 0.49441021680831909 -0.13483047485351562
|
||||
4.2909178733825684 0.29172587394714355 0.093558549880981445
|
||||
4.4656887054443359 0.54694390296936035 0.21776723861694336
|
||||
3.4126460552215576 1.9452122449874878 0.61547625064849854
|
||||
3.1622481346130371 2.0151538848876953 0.82409214973449707
|
||||
3.38912034034729 1.0396684408187866 -0.17438220977783203
|
||||
3.0072121620178223 1.6024011373519897 0.54852914810180664
|
||||
2.8883283138275146 1.1795504093170166 0.24284648895263672
|
||||
3.2893285751342773 0.57149136066436768 0.92802047729492188
|
||||
3.0389304161071777 0.6414330005645752 1.1366362571716309
|
||||
4.5648407936096191 1.1273283958435059 0.67480158805847168
|
||||
4.195554256439209 0.77442049980163574 0.57773876190185547
|
||||
3.4060602188110352 0.70423442125320435 0.49101614952087402
|
||||
3.7901206016540527 0.4316093921661377 0.51079177856445312
|
||||
3.7148218154907227 0.70066744089126587 0.063894748687744141
|
||||
3.6395230293273926 0.96972554922103882 -0.38300180435180664
|
||||
3.7174763679504395 1.6378555297851562 0.81809937953948975
|
||||
3.5397257804870605 0.50155007839202881 0.71940517425537109
|
||||
2.6379303932189941 1.2494919300079346 0.4514625072479248
|
||||
3.8899178504943848 0.89978492259979248 -0.59161520004272461
|
||||
4.6815700531005859 1.2600719928741455 0.23779916763305664
|
||||
4.6404647827148438 0.8021695613861084 0.3419795036315918
|
||||
3.1387255191802979 1.1096091270446777 0.034231185913085938
|
||||
3.0455164909362793 1.8824107646942139 1.2610964775085449
|
||||
3.5632481575012207 1.4070948362350464 1.5092660188674927
|
||||
3.8136463165283203 1.3371531963348389 1.3006501197814941
|
||||
4.0405230522155762 0.36166656017303467 0.30217194557189941
|
||||
3.4710955619812012 1.6569856405258179 1.1254680156707764
|
||||
2.8501920700073242 1.3982347249984741 1.1889796257019043
|
||||
3.6630432605743408 1.8752709627151489 0.4068608283996582
|
||||
3 44 35 39
|
||||
3 0 51 14
|
||||
3 11 51 0
|
||||
3 11 0 14
|
||||
3 3 2 55
|
||||
3 18 2 1
|
||||
3 22 2 3
|
||||
3 20 46 4
|
||||
3 1 34 23
|
||||
3 5 18 36
|
||||
3 6 18 5
|
||||
3 6 5 36
|
||||
3 12 7 17
|
||||
3 12 17 16
|
||||
3 24 12 16
|
||||
3 11 8 51
|
||||
3 29 27 15
|
||||
3 9 43 52
|
||||
3 10 43 9
|
||||
3 52 8 9
|
||||
3 6 8 11
|
||||
3 39 35 1
|
||||
3 12 26 7
|
||||
3 39 1 23
|
||||
3 47 37 13
|
||||
3 19 50 21
|
||||
3 4 7 26
|
||||
3 19 55 50
|
||||
3 55 11 14
|
||||
3 29 15 48
|
||||
3 16 10 37
|
||||
3 33 45 3
|
||||
3 43 16 17
|
||||
3 55 2 18
|
||||
3 53 41 27
|
||||
3 33 19 31
|
||||
3 20 15 27
|
||||
3 20 27 41
|
||||
3 3 19 33
|
||||
3 55 19 3
|
||||
3 49 23 34
|
||||
3 31 19 21
|
||||
3 21 50 31
|
||||
3 22 45 2
|
||||
3 3 45 22
|
||||
3 41 39 23
|
||||
3 25 24 26
|
||||
3 12 24 25
|
||||
3 25 26 12
|
||||
3 38 37 10
|
||||
3 2 45 1
|
||||
3 4 26 15
|
||||
3 28 53 27
|
||||
3 29 53 28
|
||||
3 28 27 29
|
||||
3 16 37 47
|
||||
3 54 43 30
|
||||
3 30 33 31
|
||||
3 31 54 30
|
||||
3 49 32 23
|
||||
3 49 34 33
|
||||
3 36 35 8
|
||||
3 1 35 36
|
||||
3 37 48 13
|
||||
3 8 44 9
|
||||
3 48 38 29
|
||||
3 8 35 44
|
||||
3 6 36 8
|
||||
3 48 37 38
|
||||
3 39 40 44
|
||||
3 24 16 47
|
||||
3 32 42 41
|
||||
3 56 30 43
|
||||
3 38 9 44
|
||||
3 45 34 1
|
||||
3 33 34 45
|
||||
3 40 39 41
|
||||
3 46 42 4
|
||||
3 42 32 7
|
||||
3 24 47 15
|
||||
3 13 48 47
|
||||
3 20 42 46
|
||||
3 53 40 41
|
||||
3 7 32 49
|
||||
3 7 49 56
|
||||
3 31 50 54
|
||||
3 50 14 54
|
||||
3 51 54 14
|
||||
3 55 14 50
|
||||
3 8 52 51
|
||||
3 10 9 38
|
||||
3 56 33 30
|
||||
3 53 38 40
|
||||
3 1 36 18
|
||||
3 56 49 33
|
||||
3 42 7 4
|
||||
3 43 54 52
|
||||
3 20 41 42
|
||||
3 55 6 11
|
||||
3 17 7 56
|
||||
3 23 32 41
|
||||
3 43 10 16
|
||||
3 15 20 4
|
||||
3 26 24 15
|
||||
3 48 15 47
|
||||
3 44 40 38
|
||||
3 29 38 53
|
||||
3 6 55 18
|
||||
3 51 52 54
|
||||
3 56 43 17
|
||||
|
||||
|
|
@ -0,0 +1,213 @@
|
|||
OFF
|
||||
71 138 0
|
||||
|
||||
-1.3677825927734375 2.2563455104827881 2.2298691272735596
|
||||
-2.1802701950073242 3.0913705825805664 3.4464244842529297
|
||||
-2.2822113037109375 2.8249242305755615 4.1373443603515625
|
||||
-1.2788395881652832 2.8395814895629883 2.695408821105957
|
||||
-3.0684585571289062 1.515230655670166 2.5674910545349121
|
||||
-2.6432909965515137 1.7005102634429932 2.4830870628356934
|
||||
-2.5676684379577637 1.3753491640090942 2.1502640247344971
|
||||
-2.4685182571411133 1.9557313919067383 2.6072971820831299
|
||||
-2.3584427833557129 0.97177004814147949 2.6851232051849365
|
||||
-1.7186203002929688 1.9703198671340942 5.1003313064575195
|
||||
-2.5206203460693359 3.1864378452301025 3.7299833297729492
|
||||
-1.7929482460021973 2.0710680484771729 2.3142738342285156
|
||||
-1.6410198211669922 2.4823627471923828 2.5903611183166504
|
||||
-2.6165375709533691 2.3563733100891113 3.8931472301483154
|
||||
-1.0182356834411621 2.7667891979217529 2.4782900810241699
|
||||
-0.86400508880615234 2.5329205989837646 2.7418184280395508
|
||||
-3.1484746932983398 1.7375944852828979 3.462127685546875
|
||||
-1.8920989036560059 1.4906859397888184 1.8572404384613037
|
||||
-1.7173261642456055 1.7459070682525635 1.9814505577087402
|
||||
-0.46300315856933594 1.9248586893081665 3.4269955158233643
|
||||
-2.9409670829772949 1.9158768653869629 2.8484303951263428
|
||||
-2.1803088188171387 1.7232086658477783 2.2322690486907959
|
||||
-2.8180632591247559 1.4452899694442749 2.358877420425415
|
||||
-2.3172659873962402 1.3054063320159912 1.9416441917419434
|
||||
-0.21623563766479492 1.5506713390350342 3.8486378192901611
|
||||
-1.5425534248352051 2.0011272430419922 2.1056604385375977
|
||||
-1.9537248611450195 2.579941987991333 2.8599698543548584
|
||||
-1.4801898002624512 0.999869704246521 4.0995607376098633
|
||||
-0.71703314781188965 1.6905548572540283 4.2658710479736328
|
||||
-0.91532588005065918 0.52978909015655518 3.3517982959747314
|
||||
-2.5816426277160645 0.82760387659072876 3.2954068183898926
|
||||
-1.2648711204528809 0.019347667694091797 3.1033785343170166
|
||||
-1.7656683921813965 0.15923118591308594 3.5206117630004883
|
||||
-1.2178230285644531 1.8304363489151001 4.6830978393554688
|
||||
-2.436521053314209 2.5928385257720947 3.1539731025695801
|
||||
-2.7581782341003418 2.8395316600799561 3.5611522197723389
|
||||
-1.9126405715942383 1.0015970468521118 1.9965589046478271
|
||||
-3.0140233039855957 0.81318360567092896 3.933429479598999
|
||||
-2.066871166229248 1.2354656457901001 1.7330307960510254
|
||||
-2.7672557830810547 0.43899619579315186 4.355072021484375
|
||||
-3.5692558288574219 1.6551141738891602 2.9847240447998047
|
||||
-1.8192925453186035 2.703794002532959 3.7348763942718506
|
||||
-3.3873605728149414 1.9207360744476318 3.1139960289001465
|
||||
-3.4150252342224121 1.4212455749511719 3.2482523918151855
|
||||
-3.0005402565002441 1.2597334384918213 2.9969079494476318
|
||||
-2.0148792266845703 2.4195537567138672 4.5941247940063477
|
||||
-2.0433511734008789 2.1410109996795654 2.5228936672210693
|
||||
-1.18631911277771 2.592656135559082 3.072596549987793
|
||||
-1.119194507598877 2.1355414390563965 2.5687465667724609
|
||||
-0.67892789840698242 2.2522778511047363 3.0580527782440186
|
||||
-2.2664585113525391 0.29911267757415771 3.9378387928009033
|
||||
-2.727027416229248 2.242955207824707 3.0134880542755127
|
||||
-1.1930065155029297 2.5115711688995361 2.354081392288208
|
||||
-1.5116386413574219 0.3935350775718689 2.6817362308502197
|
||||
-3.3188605308532715 1.5851733684539795 2.7761104106903076
|
||||
-2.7535190582275391 1.8265565633773804 3.9063596725463867
|
||||
-2.4177103042602539 0.94943761825561523 4.6034917831420898
|
||||
-1.3535199165344238 2.436643123626709 3.6284284591674805
|
||||
-2.0681672096252441 1.4598760604858398 4.8519101142883301
|
||||
-1.7275633811950684 0.72095417976379395 2.312793493270874
|
||||
-2.2937459945678711 2.210951566696167 2.7315070629119873
|
||||
-3.1915493011474609 2.2066793441772461 3.2531578540802002
|
||||
-2.9818205833435059 2.5129463672637939 3.4022109508514404
|
||||
-3.2299480438232422 1.140602707862854 3.5644867420196533
|
||||
-0.56578254699707031 1.0402275323867798 3.6002168655395508
|
||||
-1.2428500652313232 1.1113617420196533 2.7636961936950684
|
||||
-1.5593795776367188 2.9179425239562988 2.9291374683380127
|
||||
-1.6152782440185547 1.331046462059021 2.2430253028869629
|
||||
-1.1374824047088623 1.7621533870697021 2.6719796657562256
|
||||
-1.8598566055297852 3.0018720626831055 3.1794760227203369
|
||||
-2.2797942161560059 1.0937072038650513 2.3239080905914307
|
||||
3 11 0 25
|
||||
3 35 10 1
|
||||
3 42 16 61
|
||||
3 61 20 42
|
||||
3 1 2 41
|
||||
3 12 3 52
|
||||
3 15 3 47
|
||||
3 20 5 4
|
||||
3 23 6 21
|
||||
3 31 29 32
|
||||
3 60 46 7
|
||||
3 22 70 8
|
||||
3 22 6 70
|
||||
3 5 6 22
|
||||
3 58 33 9
|
||||
3 34 69 26
|
||||
3 5 20 7
|
||||
3 2 1 10
|
||||
3 35 2 10
|
||||
3 44 43 54
|
||||
3 46 12 11
|
||||
3 45 13 55
|
||||
3 3 15 14
|
||||
3 14 15 52
|
||||
3 52 3 14
|
||||
3 16 63 55
|
||||
3 18 17 21
|
||||
3 67 17 18
|
||||
3 49 19 68
|
||||
3 42 43 16
|
||||
3 37 39 56
|
||||
3 20 54 42
|
||||
3 21 11 18
|
||||
3 4 22 44
|
||||
3 70 6 23
|
||||
3 13 2 35
|
||||
3 58 27 33
|
||||
3 28 64 24
|
||||
3 18 11 25
|
||||
3 18 25 67
|
||||
3 66 12 26
|
||||
3 28 27 64
|
||||
3 0 12 52
|
||||
3 66 3 12
|
||||
3 59 8 70
|
||||
3 55 61 16
|
||||
3 49 57 19
|
||||
3 57 33 28
|
||||
3 56 50 27
|
||||
3 51 20 61
|
||||
3 32 29 27
|
||||
3 8 30 44
|
||||
3 29 53 65
|
||||
3 29 31 53
|
||||
3 58 56 27
|
||||
3 21 6 5
|
||||
3 66 47 3
|
||||
3 8 32 30
|
||||
3 9 33 45
|
||||
3 1 69 34
|
||||
3 17 67 36
|
||||
3 7 21 5
|
||||
3 62 13 35
|
||||
3 62 35 34
|
||||
3 36 23 38
|
||||
3 30 50 37
|
||||
3 38 17 36
|
||||
3 23 17 38
|
||||
3 56 39 50
|
||||
3 50 39 37
|
||||
3 54 43 40
|
||||
3 1 41 69
|
||||
3 40 43 42
|
||||
3 43 63 16
|
||||
3 44 63 43
|
||||
3 58 9 45
|
||||
3 45 2 13
|
||||
3 41 2 45
|
||||
3 46 26 12
|
||||
3 49 15 47
|
||||
3 40 42 54
|
||||
3 49 47 57
|
||||
3 24 64 19
|
||||
3 19 28 24
|
||||
3 23 21 17
|
||||
3 15 49 48
|
||||
3 31 32 53
|
||||
3 0 11 12
|
||||
3 28 33 27
|
||||
3 48 49 68
|
||||
3 27 50 32
|
||||
3 19 57 28
|
||||
3 4 5 22
|
||||
3 7 20 51
|
||||
3 52 48 0
|
||||
3 65 53 59
|
||||
3 4 44 54
|
||||
3 37 56 55
|
||||
3 41 45 57
|
||||
3 57 45 33
|
||||
3 58 55 56
|
||||
3 55 13 62
|
||||
3 64 68 19
|
||||
3 36 67 59
|
||||
3 4 54 20
|
||||
3 51 34 60
|
||||
3 62 51 61
|
||||
3 55 62 61
|
||||
3 25 48 68
|
||||
3 53 32 8
|
||||
3 53 8 59
|
||||
3 25 0 48
|
||||
3 45 55 58
|
||||
3 63 37 55
|
||||
3 67 25 68
|
||||
3 7 46 21
|
||||
3 51 62 34
|
||||
3 30 37 63
|
||||
3 21 46 11
|
||||
3 22 8 44
|
||||
3 50 30 32
|
||||
3 26 60 34
|
||||
3 34 35 1
|
||||
3 29 65 64
|
||||
3 60 26 46
|
||||
3 60 7 51
|
||||
3 52 15 48
|
||||
3 57 47 66
|
||||
3 67 65 59
|
||||
3 67 68 65
|
||||
3 63 44 30
|
||||
3 26 69 66
|
||||
3 69 57 66
|
||||
3 69 41 57
|
||||
3 59 70 36
|
||||
3 36 70 23
|
||||
3 65 68 64
|
||||
3 29 64 27
|
||||
|
||||
|
|
@ -0,0 +1,246 @@
|
|||
OFF
|
||||
82 160 0
|
||||
|
||||
3.0558681488037109 0.30599963665008545 1.8020365238189697
|
||||
3.8656063079833984 -0.085526466369628906 1.4671635627746582
|
||||
4.0150866508483887 0.32877802848815918 1.7473554611206055
|
||||
5.2177524566650391 -0.46321010589599609 0.34063982963562012
|
||||
4.3774218559265137 0.94689667224884033 1.3092564344406128
|
||||
4.3899240493774414 0.68013536930084229 1.8397932052612305
|
||||
4.9923949241638184 -0.40026283264160156 0.52839374542236328
|
||||
4.691159725189209 0.13993620872497559 1.1840934753417969
|
||||
4.8152356147766113 1.0573877096176147 0.46618819236755371
|
||||
4.7670373916625977 -0.33731555938720703 0.71614789962768555
|
||||
4.6152820587158203 0.61718809604644775 1.6520392894744873
|
||||
2.7885334491729736 0.71137428283691406 1.3452516794204712
|
||||
3.7138512134552002 0.86897718906402588 2.4030551910400391
|
||||
5.0656304359436035 0.98744702339172363 0.25757479667663574
|
||||
5.5209474563598633 0.55406481027603149 0.50740349292755127
|
||||
4.7508416175842285 0.82979440689086914 1.024443507194519
|
||||
5.8337626457214355 0.44218873977661133 0.29712653160095215
|
||||
5.200221061706543 0.7059246301651001 0.64665389060974121
|
||||
5.2913551330566406 0.42834627628326416 1.0887775421142578
|
||||
3.0389304161071777 0.6414330005645752 1.1366362571716309
|
||||
5.5047693252563477 0.16070300340652466 -0.0033862590789794922
|
||||
4.6759033203125 -0.059737205505371094 0.27402424812316895
|
||||
4.3144383430480957 1.1972712278366089 0.88342142105102539
|
||||
3.408212423324585 0.99434208869934082 1.2337028980255127
|
||||
2.9633042812347412 0.96659243106842041 1.4694602489471436
|
||||
5.443110466003418 -0.52615737915039062 0.15288591384887695
|
||||
5.0659971237182617 0.49129354953765869 1.276531457901001
|
||||
3.1895334720611572 0.10331535339355469 2.0304255485534668
|
||||
2.9221987724304199 0.5086899995803833 1.5736407041549683
|
||||
5.7926568984985352 -0.01571357250213623 0.4013068675994873
|
||||
3.3128511905670166 1.4770362377166748 1.7178813219070435
|
||||
3.9005718231201172 0.17780786752700806 0.87687802314758301
|
||||
3.3643043041229248 0.35853338241577148 2.1546342372894287
|
||||
5.3160333633422852 0.91750407218933105 0.048954963684082031
|
||||
5.5664281845092773 0.84756338596343994 -0.15965843200683594
|
||||
3.4465165138244629 1.2743518352508545 1.9462703466415405
|
||||
5.9674282073974609 0.23950445652008057 0.52551555633544922
|
||||
5.742070198059082 0.3024517297744751 0.71326947212219238
|
||||
5.5167126655578613 0.36539900302886963 0.90102338790893555
|
||||
5.0421104431152344 0.08190155029296875 -0.5322880744934082
|
||||
5.2168807983398438 0.33711957931518555 -0.40807938575744629
|
||||
3.5397257804870605 0.50155007839202881 0.71940517425537109
|
||||
3.7901206016540527 0.4316093921661377 0.51079177856445312
|
||||
3.6402487754821777 -0.022579193115234375 1.6549174785614014
|
||||
4.5648407936096191 1.1273283958435059 0.67480158805847168
|
||||
5.7000932693481445 0.64487910270690918 0.068730592727661133
|
||||
4.0405230522155762 0.36166656017303467 0.30217194557189941
|
||||
4.0909643173217773 -0.14847373962402344 1.279409646987915
|
||||
5.3094449043273926 -0.32347309589385986 -0.075503110885620117
|
||||
4.9966297149658203 -0.21159696578979492 0.13477373123168945
|
||||
3.5390803813934326 0.61375910043716431 2.2788465023040771
|
||||
5.3916568756103516 0.59234535694122314 -0.28386712074279785
|
||||
4.0798654556274414 1.010907769203186 1.5964139699935913
|
||||
3.8136463165283203 1.3371531963348389 1.3006501197814941
|
||||
5.1418747901916504 0.014041662216186523 0.80858564376831055
|
||||
4.5416793823242188 -0.2743682861328125 0.90390181541442871
|
||||
5.1757755279541016 -0.12078273296356201 -0.30389904975891113
|
||||
3.2893285751342773 0.57149136066436768 0.92802047729492188
|
||||
4.6404647827148438 0.8021695613861084 0.3419795036315918
|
||||
5.6178808212280273 -0.27093935012817383 0.27709460258483887
|
||||
4.4656887054443359 0.54694390296936035 0.21776723861694336
|
||||
3.8533940315246582 1.0198484659194946 1.8967046737670898
|
||||
4.1645665168762207 0.74308264255523682 2.0275471210479736
|
||||
3.1380801200866699 1.2218180894851685 1.5936727523803711
|
||||
4.0640435218811035 1.2672119140625 1.0920348167419434
|
||||
4.840639591217041 0.55424082279205322 1.4642853736877441
|
||||
5.4737510681152344 0.028314352035522461 0.62702035903930664
|
||||
4.2909178733825684 0.29172587394714355 0.093558549880981445
|
||||
4.5413126945495605 0.22178506851196289 -0.11505484580993652
|
||||
4.2265238761901855 0.064132571220397949 0.65181386470794678
|
||||
3.5491154193878174 0.25499922037124634 1.2127940654754639
|
||||
4.316321849822998 -0.21142101287841797 1.0916557312011719
|
||||
3.5632481575012207 1.4070948362350464 1.5092660188674927
|
||||
4.195554256439209 0.77442049980163574 0.57773876190185547
|
||||
3.6832141876220703 0.31450438499450684 1.9289175271987915
|
||||
3.2511923313140869 0.79017573595046997 1.8741533756256104
|
||||
4.9286727905273438 0.56964457035064697 -0.033050060272216797
|
||||
3.5801858901977539 1.0716614723205566 2.174666166305542
|
||||
4.7917156219482422 0.15184223651885986 -0.32367467880249023
|
||||
3.9392087459564209 0.80602991580963135 2.2153012752532959
|
||||
3.414891242980957 0.040368080139160156 1.8426716327667236
|
||||
3.3290765285491943 0.25418663024902344 1.524074912071228
|
||||
3 28 0 75
|
||||
3 81 0 28
|
||||
3 1 2 43
|
||||
3 6 49 3
|
||||
3 15 22 4
|
||||
3 30 72 63
|
||||
3 5 2 10
|
||||
3 9 6 54
|
||||
3 15 26 18
|
||||
3 18 26 7
|
||||
3 8 44 15
|
||||
3 47 31 71
|
||||
3 71 7 47
|
||||
3 9 69 21
|
||||
3 4 5 10
|
||||
3 19 11 24
|
||||
3 77 12 79
|
||||
3 50 12 77
|
||||
3 79 12 50
|
||||
3 64 52 4
|
||||
3 17 33 13
|
||||
3 3 48 25
|
||||
3 13 76 58
|
||||
3 52 5 4
|
||||
3 72 23 63
|
||||
3 13 33 76
|
||||
3 16 14 37
|
||||
3 14 45 33
|
||||
3 17 8 15
|
||||
3 45 14 16
|
||||
3 17 18 38
|
||||
3 38 18 54
|
||||
3 38 54 66
|
||||
3 28 19 81
|
||||
3 59 48 20
|
||||
3 6 9 21
|
||||
3 10 47 7
|
||||
3 16 29 20
|
||||
3 60 58 76
|
||||
3 49 21 78
|
||||
3 64 4 22
|
||||
3 64 23 53
|
||||
3 63 23 24
|
||||
3 75 63 24
|
||||
3 59 3 25
|
||||
3 31 1 70
|
||||
3 44 22 15
|
||||
3 78 76 40
|
||||
3 17 14 33
|
||||
3 65 7 26
|
||||
3 26 15 65
|
||||
3 27 32 0
|
||||
3 80 32 27
|
||||
3 27 0 80
|
||||
3 28 11 19
|
||||
3 24 11 28
|
||||
3 13 58 8
|
||||
3 17 13 8
|
||||
3 33 51 76
|
||||
3 59 20 29
|
||||
3 35 72 30
|
||||
3 31 69 71
|
||||
3 50 75 32
|
||||
3 33 34 51
|
||||
3 35 61 72
|
||||
3 36 29 16
|
||||
3 37 29 36
|
||||
3 37 36 16
|
||||
3 17 38 14
|
||||
3 39 40 56
|
||||
3 40 51 20
|
||||
3 76 51 40
|
||||
3 41 42 31
|
||||
3 65 10 7
|
||||
3 38 66 37
|
||||
3 38 37 14
|
||||
3 1 43 70
|
||||
3 22 44 73
|
||||
3 5 52 62
|
||||
3 33 45 34
|
||||
3 67 46 60
|
||||
3 48 59 25
|
||||
3 31 70 41
|
||||
3 31 47 1
|
||||
3 48 56 20
|
||||
3 49 56 48
|
||||
3 69 46 67
|
||||
3 55 9 7
|
||||
3 49 48 3
|
||||
3 80 0 81
|
||||
3 74 79 50
|
||||
3 70 57 41
|
||||
3 45 20 51
|
||||
3 52 53 61
|
||||
3 60 68 67
|
||||
3 7 9 54
|
||||
3 69 9 55
|
||||
3 52 61 62
|
||||
3 49 6 21
|
||||
3 78 39 56
|
||||
3 40 39 78
|
||||
3 23 57 19
|
||||
3 8 58 44
|
||||
3 59 66 3
|
||||
3 62 2 5
|
||||
3 64 41 23
|
||||
3 60 73 58
|
||||
3 40 20 56
|
||||
3 41 57 23
|
||||
3 10 2 47
|
||||
3 77 79 61
|
||||
3 2 62 74
|
||||
3 23 19 24
|
||||
3 57 70 19
|
||||
3 73 44 58
|
||||
3 35 30 63
|
||||
3 41 64 73
|
||||
3 2 1 47
|
||||
3 65 4 10
|
||||
3 65 15 4
|
||||
3 16 20 45
|
||||
3 75 24 28
|
||||
3 56 49 78
|
||||
3 53 52 64
|
||||
3 45 51 34
|
||||
3 66 6 3
|
||||
3 21 69 67
|
||||
3 21 67 68
|
||||
3 42 46 69
|
||||
3 81 19 70
|
||||
3 7 71 55
|
||||
3 50 77 75
|
||||
3 17 15 18
|
||||
3 72 53 23
|
||||
3 61 53 72
|
||||
3 73 64 22
|
||||
3 42 73 46
|
||||
3 32 75 0
|
||||
3 74 32 80
|
||||
3 2 74 43
|
||||
3 75 35 63
|
||||
3 74 50 32
|
||||
3 68 60 76
|
||||
3 75 77 35
|
||||
3 68 76 78
|
||||
3 21 68 78
|
||||
3 69 55 71
|
||||
3 61 79 62
|
||||
3 62 79 74
|
||||
3 73 42 41
|
||||
3 46 73 60
|
||||
3 66 29 37
|
||||
3 66 59 29
|
||||
3 66 54 6
|
||||
3 35 77 61
|
||||
3 43 74 80
|
||||
3 80 81 43
|
||||
3 43 81 70
|
||||
3 54 18 7
|
||||
3 31 42 69
|
||||
|
||||
|
|
@ -0,0 +1,258 @@
|
|||
OFF
|
||||
86 168 0
|
||||
|
||||
1.7636244297027588 3.7739925384521484 3.2035260200500488
|
||||
2.5089099407196045 3.029773473739624 5.0258541107177734
|
||||
3.0859766006469727 2.4525222778320312 2.7163577079772949
|
||||
2.8186419010162354 2.8578970432281494 2.2595727443695068
|
||||
2.9523112773895264 2.6552066802978516 2.4879686832427979
|
||||
4.0112943649291992 2.6101250648498535 3.7741611003875732
|
||||
1.8509267568588257 2.4667961597442627 4.4248356819152832
|
||||
1.1825919151306152 3.4802298545837402 3.2828769683837891
|
||||
1.5321388244628906 3.9906735420227051 3.5312979221343994
|
||||
1.3573627471923828 3.735447883605957 3.4070854187011719
|
||||
1.7069096565246582 4.2458915710449219 3.6555066108703613
|
||||
1.840575098991394 4.0432071685791016 3.8838956356048584
|
||||
2.9588992595672607 3.8961837291717529 2.6124267578125
|
||||
3.209294319152832 3.8262429237365723 2.403813362121582
|
||||
3.0345234870910645 3.5710251331329346 2.2796049118041992
|
||||
1.9742443561553955 3.8405168056488037 4.1122913360595703
|
||||
3.009706974029541 2.8898899555206299 4.6086211204528809
|
||||
1.984592080116272 2.2641119956970215 4.6532249450683594
|
||||
2.2349870204925537 2.1941711902618408 4.4446110725402832
|
||||
2.3752443790435791 3.2324576377868652 4.7974653244018555
|
||||
3.5789151191711426 2.4854092597961426 3.2969968318939209
|
||||
2.3341391086578369 2.7745556831359863 4.9016456604003906
|
||||
2.1593630313873291 2.5193300247192383 4.7774333953857422
|
||||
2.526820182800293 2.5260300636291504 3.3520922660827637
|
||||
3.8365235328674316 2.3549070358276367 3.6499524116516113
|
||||
2.6671512126922607 3.209723949432373 4.433443546295166
|
||||
1.703233003616333 3.1106529235839844 3.3096849918365479
|
||||
1.432986855506897 3.4102892875671387 3.074263334274292
|
||||
2.5267350673675537 2.8806309700012207 2.6235945224761963
|
||||
3.054966926574707 3.4559760093688965 3.3817710876464844
|
||||
2.5745716094970703 3.7045795917510986 3.5469036102294922
|
||||
2.3983871936798096 3.6393728256225586 3.9287924766540527
|
||||
2.4853894710540771 2.1242284774780273 4.2359914779663086
|
||||
1.9573045969009399 4.1759510040283203 3.4468929767608643
|
||||
3.2196419239044189 2.2498378753662109 2.9447464942932129
|
||||
2.1079096794128418 3.6378324031829834 4.3406801223754883
|
||||
3.6617474555969238 2.0996813774108887 3.5257401466369629
|
||||
3.4869766235351562 1.8444633483886719 3.401531457901001
|
||||
2.0403156280517578 2.8848550319671631 4.5119953155517578
|
||||
2.9663355350494385 2.2140402793884277 3.3747231960296631
|
||||
3.2601022720336914 2.8199493885040283 4.4000077247619629
|
||||
2.1287035942077637 2.4480090141296387 4.0725860595703125
|
||||
3.0510528087615967 3.6462926864624023 2.9962241649627686
|
||||
3.760899543762207 2.6800656318664551 3.9827744960784912
|
||||
2.8727421760559082 2.4720897674560547 4.3180027008056641
|
||||
2.8597474098205566 3.3157992362976074 2.1553924083709717
|
||||
3.1030998229980469 3.1317973136901855 2.5091733932495117
|
||||
2.4345815181732178 3.1305220127105713 2.2397971153259277
|
||||
2.6849765777587891 3.0605812072753906 2.0311837196350098
|
||||
3.4906532764434814 2.9797019958496094 3.7473530769348145
|
||||
1.3162573575973511 3.2775454521179199 3.5112659931182861
|
||||
2.5656247138977051 2.5578744411468506 4.5738735198974609
|
||||
1.8404836654663086 2.8830921649932861 3.584144115447998
|
||||
3.8776290416717529 2.8128094673156738 3.5457720756530762
|
||||
3.5104970932006836 2.7500085830688477 4.1913943290710449
|
||||
2.1031477451324463 2.6443707942962646 3.7050697803497314
|
||||
2.2415752410888672 3.4351482391357422 4.5690693855285645
|
||||
3.3429596424102783 3.6235587596893311 2.6322023868560791
|
||||
3.4766290187835693 3.4208683967590332 2.8605983257293701
|
||||
2.7593047618865967 2.9598329067230225 4.8172407150268555
|
||||
2.0693492889404297 2.9099621772766113 3.2069017887115479
|
||||
1.9337842464447021 3.2704055309295654 2.6570303440093994
|
||||
2.4198434352874756 2.378488302230835 3.8057780265808105
|
||||
3.6102943420410156 3.2181839942932129 3.0889873504638672
|
||||
3.4149701595306396 2.7340078353881836 3.0168702602386475
|
||||
1.6007152795791626 3.5514457225799561 3.7608664035797119
|
||||
2.7084968090057373 3.9661264419555664 2.8210465908050537
|
||||
2.2200078964233398 3.8877522945404053 3.6694266796112061
|
||||
1.6833891868591309 3.3403463363647461 2.8656437397003174
|
||||
3.35331130027771 2.0471477508544922 3.1731424331665039
|
||||
3.4349298477172852 2.3589587211608887 3.8885822296142578
|
||||
2.9861793518066406 1.984346866607666 3.8187646865844727
|
||||
2.6329295635223389 3.5750765800476074 2.5182344913482666
|
||||
2.1841790676116943 3.2004647254943848 2.4484169483184814
|
||||
3.2365818023681641 1.914404034614563 3.6101448535919189
|
||||
2.8007354736328125 3.3616344928741455 3.9333415031433105
|
||||
2.2077069282531738 4.1060080528259277 3.2382733821868896
|
||||
3.7439596652984619 3.0154998302459717 3.3173761367797852
|
||||
1.4499266147613525 3.0748550891876221 3.739661693572998
|
||||
1.7172573804855347 2.6694865226745605 4.1964397430419922
|
||||
2.7357842922210693 2.0542874336242676 4.0273780822753906
|
||||
2.4581019878387451 4.0360674858093262 3.0296599864959717
|
||||
2.0707418918609619 3.6882078647613525 2.9476549625396729
|
||||
2.7561142444610596 3.7390527725219727 3.2206258773803711
|
||||
1.5835920572280884 2.8721709251403809 3.9680507183074951
|
||||
1.9398711919784546 3.1935017108917236 4.2879552841186523
|
||||
3 6 22 38
|
||||
3 29 49 63
|
||||
3 2 23 28
|
||||
3 33 76 0
|
||||
3 1 59 19
|
||||
3 64 34 2
|
||||
3 2 34 39
|
||||
3 26 60 52
|
||||
3 71 44 80
|
||||
3 46 4 3
|
||||
3 24 53 5
|
||||
3 5 53 43
|
||||
3 43 24 5
|
||||
3 18 6 41
|
||||
3 44 70 54
|
||||
3 50 9 7
|
||||
3 7 9 27
|
||||
3 27 50 7
|
||||
3 20 53 24
|
||||
3 8 0 9
|
||||
3 8 9 65
|
||||
3 10 11 33
|
||||
3 13 12 57
|
||||
3 14 12 13
|
||||
3 15 11 65
|
||||
3 0 27 9
|
||||
3 2 39 23
|
||||
3 16 40 25
|
||||
3 17 22 6
|
||||
3 18 22 17
|
||||
3 17 6 18
|
||||
3 1 19 21
|
||||
3 64 20 34
|
||||
3 21 22 51
|
||||
3 62 55 23
|
||||
3 2 28 4
|
||||
3 41 32 18
|
||||
3 29 58 42
|
||||
3 67 15 31
|
||||
3 24 70 36
|
||||
3 20 24 36
|
||||
3 25 75 31
|
||||
3 50 27 26
|
||||
3 73 28 61
|
||||
3 67 76 33
|
||||
3 68 27 0
|
||||
3 26 27 68
|
||||
3 30 75 29
|
||||
3 31 30 67
|
||||
3 32 44 51
|
||||
3 10 33 8
|
||||
3 8 11 10
|
||||
3 14 57 46
|
||||
3 62 41 55
|
||||
3 34 69 39
|
||||
3 56 31 35
|
||||
3 36 74 37
|
||||
3 36 37 69
|
||||
3 6 38 79
|
||||
3 71 62 39
|
||||
3 20 64 77
|
||||
3 40 44 54
|
||||
3 54 49 40
|
||||
3 35 31 15
|
||||
3 35 15 85
|
||||
3 72 66 12
|
||||
3 79 55 41
|
||||
3 3 28 47
|
||||
3 83 29 42
|
||||
3 70 24 43
|
||||
3 16 51 44
|
||||
3 45 72 14
|
||||
3 45 14 46
|
||||
3 48 47 45
|
||||
3 3 47 48
|
||||
3 48 45 3
|
||||
3 49 77 63
|
||||
3 82 73 61
|
||||
3 14 13 57
|
||||
3 78 65 50
|
||||
3 77 64 63
|
||||
3 32 51 18
|
||||
3 81 30 83
|
||||
3 78 26 52
|
||||
3 71 80 62
|
||||
3 43 53 49
|
||||
3 43 49 54
|
||||
3 54 70 43
|
||||
3 21 59 1
|
||||
3 60 23 55
|
||||
3 19 25 56
|
||||
3 56 38 19
|
||||
3 46 64 4
|
||||
3 65 9 50
|
||||
3 57 42 58
|
||||
3 46 57 58
|
||||
3 72 12 14
|
||||
3 19 59 25
|
||||
3 28 23 60
|
||||
3 60 26 68
|
||||
3 59 21 51
|
||||
3 59 51 16
|
||||
3 2 4 64
|
||||
3 61 60 68
|
||||
3 41 62 32
|
||||
3 23 39 62
|
||||
3 30 76 67
|
||||
3 55 84 52
|
||||
3 63 58 29
|
||||
3 64 58 63
|
||||
3 65 11 8
|
||||
3 85 15 65
|
||||
3 37 74 69
|
||||
3 12 66 42
|
||||
3 25 59 16
|
||||
3 11 15 67
|
||||
3 49 29 75
|
||||
3 4 28 3
|
||||
3 50 26 78
|
||||
3 56 35 85
|
||||
3 38 21 19
|
||||
3 21 38 22
|
||||
3 66 72 82
|
||||
3 30 29 83
|
||||
3 82 61 68
|
||||
3 69 20 36
|
||||
3 70 71 74
|
||||
3 47 73 72
|
||||
3 28 73 47
|
||||
3 74 39 69
|
||||
3 30 81 76
|
||||
3 49 75 40
|
||||
3 0 76 82
|
||||
3 20 77 53
|
||||
3 31 56 25
|
||||
3 56 85 38
|
||||
3 20 69 34
|
||||
3 72 73 82
|
||||
3 31 75 30
|
||||
3 85 65 78
|
||||
3 68 0 82
|
||||
3 36 70 74
|
||||
3 41 6 79
|
||||
3 84 55 79
|
||||
3 64 46 58
|
||||
3 49 53 77
|
||||
3 71 70 44
|
||||
3 52 60 55
|
||||
3 62 80 32
|
||||
3 32 80 44
|
||||
3 25 40 75
|
||||
3 66 82 81
|
||||
3 51 22 18
|
||||
3 81 82 76
|
||||
3 45 46 3
|
||||
3 57 12 42
|
||||
3 81 83 66
|
||||
3 28 60 61
|
||||
3 72 45 47
|
||||
3 74 71 39
|
||||
3 52 84 78
|
||||
3 84 85 78
|
||||
3 67 33 11
|
||||
3 44 40 16
|
||||
3 33 0 8
|
||||
3 79 38 85
|
||||
3 85 84 79
|
||||
3 83 42 66
|
||||
|
||||
|
|
@ -0,0 +1,315 @@
|
|||
OFF
|
||||
105 206 0
|
||||
|
||||
3.1777701377868652 -0.44245564937591553 1.5529642105102539
|
||||
4.2831711769104004 -1.114276647567749 0.30981612205505371
|
||||
2.9221987724304199 0.5086899995803833 1.5736407041549683
|
||||
4.3675537109375 -0.64179539680480957 -0.77974843978881836
|
||||
5.9269676208496094 -0.33060705661773682 -0.92974567413330078
|
||||
5.2177524566650391 -0.46321010589599609 0.34063982963562012
|
||||
3.9436547756195068 -0.55960845947265625 1.000760555267334
|
||||
4.1421966552734375 -0.57884824275970459 -0.5919945240020752
|
||||
5.6935052871704102 -0.59609818458557129 -0.055727720260620117
|
||||
5.4388504028320312 -1.4370827674865723 -0.65302348136901855
|
||||
4.8937244415283203 -0.81869900226593018 0.21479892730712891
|
||||
5.54290771484375 -0.057981967926025391 -0.94952106475830078
|
||||
2.9076576232910156 0.21673417091369629 0.83656430244445801
|
||||
3.364954948425293 0.24633204936981201 0.59519648551940918
|
||||
2.7322597503662109 0.025431156158447266 1.5076801776885986
|
||||
2.397881031036377 -0.25697183609008789 1.2010109424591064
|
||||
2.8094565868377686 -0.50518798828125 1.1319161653518677
|
||||
4.7454395294189453 -1.2433981895446777 -0.075317144393920898
|
||||
3.1274881362915039 -0.79146921634674072 1.2726593017578125
|
||||
2.2642157077789307 -0.054287552833557129 0.97262191772460938
|
||||
2.4389865398406982 0.20093059539794922 1.0968306064605713
|
||||
4.0909643173217773 -0.14847373962402344 1.279409646987915
|
||||
3.8656063079833984 -0.085526466369628906 1.4671635627746582
|
||||
4.2358798980712891 -0.10285103321075439 -0.22439837455749512
|
||||
5.2925052642822266 0.011960744857788086 -0.74090170860290527
|
||||
4.7670373916625977 -0.33731555938720703 0.71614789962768555
|
||||
2.5146126747131348 -0.12422895431518555 0.76400661468505859
|
||||
4.8182697296142578 -0.76769018173217773 -1.1552565097808838
|
||||
4.9966297149658203 -0.21159696578979492 0.13477373123168945
|
||||
4.7917156219482422 0.15184223651885986 -0.32367467880249023
|
||||
3.2407655715942383 -0.32705914974212646 0.15902137756347656
|
||||
3.1895334720611572 0.10331535339355469 2.0304255485534668
|
||||
3.0558681488037109 0.30599963665008545 1.8020365238189697
|
||||
4.9720802307128906 -0.3470611572265625 -0.87198662757873535
|
||||
4.5413126945495605 0.22178506851196289 -0.11505484580993652
|
||||
2.7885334491729736 0.71137428283691406 1.3452516794204712
|
||||
2.8399865627288818 -0.40712833404541016 1.7820045948028564
|
||||
3.4919171333312988 -0.43520689010620117 1.3755416870117188
|
||||
5.1766414642333984 -0.51870644092559814 -1.1440339088439941
|
||||
4.9765739440917969 -1.3079590797424316 -0.2678837776184082
|
||||
2.7650105953216553 -0.19417047500610352 0.55539059638977051
|
||||
4.316321849822998 -0.21142101287841797 1.0916557312011719
|
||||
4.2265238761901855 0.064132571220397949 0.65181386470794678
|
||||
4.9923949241638184 -0.40026283264160156 0.52839374542236328
|
||||
5.2077159881591797 -1.3725218772888184 -0.46045684814453125
|
||||
4.514305591583252 -1.1788372993469238 0.11724972724914551
|
||||
3.0389304161071777 0.6414330005645752 1.1366362571716309
|
||||
4.5416793823242188 -0.2743682861328125 0.90390181541442871
|
||||
3.9005718231201172 0.17780786752700806 0.87687802314758301
|
||||
5.5748271942138672 -1.1120054721832275 -0.44411396980285645
|
||||
3.466123104095459 -0.39000630378723145 -0.028732538223266602
|
||||
3.5491154193878174 0.25499922037124634 1.2127940654754639
|
||||
5.3575758934020996 -0.95263171195983887 -0.17553043365478516
|
||||
3.5090847015380859 -0.052921772003173828 0.2452704906463623
|
||||
4.0023097991943359 -0.78489339351654053 0.028208255767822266
|
||||
4.4537153244018555 -0.9118340015411377 -0.34612107276916504
|
||||
5.443110466003418 -0.52615737915039062 0.15288591384887695
|
||||
3.5397257804870605 0.50155007839202881 0.71940517425537109
|
||||
5.3094449043273926 -0.32347309589385986 -0.075503110885620117
|
||||
5.1757755279541016 -0.12078273296356201 -0.30389904975891113
|
||||
3.5044949054718018 -0.64327847957611084 0.43768715858459473
|
||||
3.0154080390930176 -0.26411187648773193 0.34677529335021973
|
||||
5.9439077377319336 -0.66604089736938477 -0.26434707641601562
|
||||
4.2909178733825684 0.29172587394714355 0.093558549880981445
|
||||
3.0400538444519043 -0.51592600345611572 0.82951295375823975
|
||||
3.5897607803344727 -0.92059195041656494 0.88752269744873047
|
||||
3.8208949565887451 -0.9851527214050293 0.69495606422424316
|
||||
3.414891242980957 0.040368080139160156 1.8426716327667236
|
||||
6.1943025588989258 -0.73598170280456543 -0.4729607105255127
|
||||
3.3586239814758301 -0.85603046417236328 1.0800912380218506
|
||||
3.9168386459350586 -0.51590096950531006 -0.40424060821533203
|
||||
5.6118040084838867 -0.32813858985900879 -0.49135804176330566
|
||||
5.0421104431152344 0.08190155029296875 -0.5322880744934082
|
||||
4.90521240234375 -1.0389144420623779 -0.72029304504394531
|
||||
4.0520291328430176 -1.0497136116027832 0.50238943099975586
|
||||
3.1901788711547852 -0.0088937282562255859 0.47098398208618164
|
||||
3.2893285751342773 0.57149136066436768 0.92802047729492188
|
||||
2.531550407409668 -0.45966219902038574 1.4294068813323975
|
||||
2.6652157306671143 -0.6623464822769165 1.6577959060668945
|
||||
3.0147626399993896 -0.15190267562866211 1.9062168598175049
|
||||
5.4437556266784668 -0.6383664608001709 -1.4065556526184082
|
||||
5.2689847946166992 -0.8935847282409668 -1.530764102935791
|
||||
5.4026498794555664 -1.096268892288208 -1.302375316619873
|
||||
5.7933025360107422 -0.12792277336120605 -1.1581346988677979
|
||||
3.8452918529510498 -0.032324790954589844 0.06678318977355957
|
||||
2.6137626171112061 0.45615625381469727 1.2210431098937988
|
||||
5.6699848175048828 -1.5016436576843262 -0.84559035301208496
|
||||
4.6759033203125 -0.059737205505371094 0.27402424812316895
|
||||
5.6185317039489746 -0.38314080238342285 -1.2823433876037598
|
||||
3.7901206016540527 0.4316093921661377 0.51079177856445312
|
||||
4.0405230522155762 0.36166656017303467 0.30217194557189941
|
||||
3.3290765285491943 0.25418663024902344 1.524074912071228
|
||||
4.3952722549438477 -0.68418610095977783 0.62589359283447266
|
||||
3.6914811134338379 -0.45295369625091553 -0.21648669242858887
|
||||
6.0606374740600586 -0.53329741954803467 -0.70134973526000977
|
||||
5.7316436767578125 -0.81478309631347656 -1.0018625259399414
|
||||
5.8447556495666504 -1.2464253902435303 -0.72138166427612305
|
||||
6.0195317268371582 -0.99119973182678223 -0.59716939926147461
|
||||
2.8963515758514404 -0.72690773010253906 1.4652278423309326
|
||||
4.5929117202758789 -0.7047426700592041 -0.96750235557556152
|
||||
4.5196189880371094 -0.22371625900268555 -0.49771952629089355
|
||||
5.5363197326660156 -1.298959493637085 -1.073979377746582
|
||||
5.2065134048461914 -1.1747376918792725 -0.86516213417053223
|
||||
5.0436267852783203 -0.83063721656799316 -1.3430101871490479
|
||||
3.6402487754821777 -0.022579193115234375 1.6549174785614014
|
||||
3 36 0 79
|
||||
3 1 45 10
|
||||
3 54 45 1
|
||||
3 2 32 91
|
||||
3 3 99 55
|
||||
3 4 88 83
|
||||
3 13 76 57
|
||||
3 5 28 43
|
||||
3 5 43 10
|
||||
3 6 41 21
|
||||
3 7 3 55
|
||||
3 36 14 77
|
||||
3 12 40 26
|
||||
3 52 49 8
|
||||
3 86 9 101
|
||||
3 10 52 56
|
||||
3 24 59 71
|
||||
3 38 33 11
|
||||
3 41 48 21
|
||||
3 87 42 25
|
||||
3 76 13 12
|
||||
3 77 14 15
|
||||
3 16 77 15
|
||||
3 54 7 55
|
||||
3 10 45 17
|
||||
3 8 71 58
|
||||
3 18 16 64
|
||||
3 14 2 85
|
||||
3 20 26 19
|
||||
3 56 58 5
|
||||
3 5 10 56
|
||||
3 22 6 21
|
||||
3 61 60 64
|
||||
3 63 34 23
|
||||
3 24 33 72
|
||||
3 59 24 72
|
||||
3 91 46 2
|
||||
3 87 25 43
|
||||
3 19 26 15
|
||||
3 73 27 102
|
||||
3 29 87 28
|
||||
3 75 40 12
|
||||
3 60 30 50
|
||||
3 51 22 48
|
||||
3 67 32 31
|
||||
3 53 30 75
|
||||
3 33 100 72
|
||||
3 34 29 100
|
||||
3 46 35 2
|
||||
3 0 36 98
|
||||
3 18 37 0
|
||||
3 80 38 88
|
||||
3 80 88 95
|
||||
3 52 17 39
|
||||
3 16 26 40
|
||||
3 41 42 48
|
||||
3 10 43 92
|
||||
3 79 32 14
|
||||
3 44 9 49
|
||||
3 64 65 69
|
||||
3 30 60 61
|
||||
3 61 75 30
|
||||
3 46 85 35
|
||||
3 55 17 45
|
||||
3 12 85 46
|
||||
3 79 14 36
|
||||
3 47 41 92
|
||||
3 102 44 73
|
||||
3 89 13 57
|
||||
3 48 89 57
|
||||
3 97 95 94
|
||||
3 49 62 8
|
||||
3 33 27 99
|
||||
3 19 15 20
|
||||
3 97 62 49
|
||||
3 53 84 50
|
||||
3 54 50 93
|
||||
3 51 104 22
|
||||
3 60 50 54
|
||||
3 52 44 49
|
||||
3 84 53 89
|
||||
3 39 17 55
|
||||
3 74 60 54
|
||||
3 73 39 55
|
||||
3 8 58 56
|
||||
3 57 51 48
|
||||
3 22 21 48
|
||||
3 66 74 92
|
||||
3 60 74 66
|
||||
3 58 59 28
|
||||
3 65 64 60
|
||||
3 75 61 40
|
||||
3 71 8 62
|
||||
3 63 90 42
|
||||
3 84 90 63
|
||||
3 35 85 2
|
||||
3 80 103 38
|
||||
3 64 40 61
|
||||
3 5 58 28
|
||||
3 93 50 84
|
||||
3 65 66 6
|
||||
3 91 32 67
|
||||
3 104 37 22
|
||||
3 62 97 68
|
||||
3 68 97 94
|
||||
3 94 62 68
|
||||
3 57 76 51
|
||||
3 64 69 18
|
||||
3 65 6 69
|
||||
3 71 11 24
|
||||
3 24 11 33
|
||||
3 70 23 7
|
||||
3 7 54 70
|
||||
3 47 25 42
|
||||
3 92 25 47
|
||||
3 37 6 22
|
||||
3 64 16 40
|
||||
3 11 71 4
|
||||
3 87 43 28
|
||||
3 59 72 29
|
||||
3 73 99 27
|
||||
3 92 43 25
|
||||
3 32 2 14
|
||||
3 71 59 58
|
||||
3 74 1 92
|
||||
3 18 0 98
|
||||
3 75 13 53
|
||||
3 8 56 52
|
||||
3 46 51 76
|
||||
3 78 77 98
|
||||
3 36 77 78
|
||||
3 36 78 98
|
||||
3 50 30 53
|
||||
3 79 31 32
|
||||
3 67 31 79
|
||||
3 71 62 94
|
||||
3 29 28 59
|
||||
3 72 100 29
|
||||
3 82 81 80
|
||||
3 82 103 81
|
||||
3 55 45 54
|
||||
3 83 11 4
|
||||
3 6 37 69
|
||||
3 63 42 87
|
||||
3 84 23 93
|
||||
3 14 85 20
|
||||
3 86 96 9
|
||||
3 60 66 65
|
||||
3 34 63 87
|
||||
3 96 86 101
|
||||
3 83 88 11
|
||||
3 1 10 92
|
||||
3 80 81 103
|
||||
3 42 90 89
|
||||
3 89 90 84
|
||||
3 51 46 91
|
||||
3 53 13 89
|
||||
3 66 92 6
|
||||
3 14 20 15
|
||||
3 20 85 12
|
||||
3 39 73 44
|
||||
3 10 17 52
|
||||
3 20 12 26
|
||||
3 52 39 44
|
||||
3 100 7 23
|
||||
3 100 23 34
|
||||
3 16 15 26
|
||||
3 9 44 102
|
||||
3 55 99 73
|
||||
3 92 41 6
|
||||
3 69 37 18
|
||||
3 54 93 70
|
||||
3 38 27 33
|
||||
3 38 103 27
|
||||
3 93 23 70
|
||||
3 1 74 54
|
||||
3 29 34 87
|
||||
3 41 47 42
|
||||
3 84 63 23
|
||||
3 4 71 94
|
||||
3 4 94 95
|
||||
3 96 49 9
|
||||
3 104 0 37
|
||||
3 97 96 95
|
||||
3 95 96 101
|
||||
3 97 49 96
|
||||
3 101 82 95
|
||||
3 82 80 95
|
||||
3 4 95 88
|
||||
3 75 12 13
|
||||
3 12 46 76
|
||||
3 98 16 18
|
||||
3 98 77 16
|
||||
3 33 99 100
|
||||
3 7 100 3
|
||||
3 101 102 82
|
||||
3 9 102 101
|
||||
3 102 27 103
|
||||
3 82 102 103
|
||||
3 104 67 0
|
||||
3 0 67 79
|
||||
3 88 38 11
|
||||
3 104 91 67
|
||||
3 51 91 104
|
||||
3 99 3 100
|
||||
3 42 89 48
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
|
@ -0,0 +1,210 @@
|
|||
OFF 71 138 0
|
||||
1 4 0
|
||||
1 4.33333 0
|
||||
1.33333 4 0
|
||||
2 5.54692 0
|
||||
1.54692 6 0
|
||||
2 6 0
|
||||
0.720377 6 0
|
||||
0.346918 6 0
|
||||
0.46167 6 0.445685
|
||||
0.478292 5.49745 0
|
||||
2 5.37496 0.578061
|
||||
2 6 0.594537
|
||||
1.49745 4.47829 0
|
||||
1.66667 4 0
|
||||
2 4.34692 0
|
||||
2 4.46167 0.445685
|
||||
2 4 0.384615
|
||||
0 5.33333 0
|
||||
0.333333 5 0
|
||||
0 4.33333 0
|
||||
0.5 4.5 0
|
||||
0 4.66667 0
|
||||
0 4.66667 2
|
||||
0 4 2
|
||||
0.666667 4 2
|
||||
1 5 0
|
||||
0.666667 5 0
|
||||
1 4.66667 0
|
||||
0 5 0
|
||||
0 4.75956 0.695771
|
||||
0 4.5 0.405669
|
||||
1.33333 6 2
|
||||
2 6 2
|
||||
2 5.33333 2
|
||||
1.37496 5.45178 0
|
||||
1.50867 4.9024 0
|
||||
2 5.12038 0
|
||||
0 5.49745 0.476818
|
||||
0 5.66667 0
|
||||
0 6 0.384615
|
||||
2 6 1.2612
|
||||
0.902401 6 0.854344
|
||||
1.37496 6 0.578061
|
||||
2 4 0
|
||||
0 6 0.846154
|
||||
0.666667 4 0
|
||||
0.333333 4 0
|
||||
0.5 4 0.472405
|
||||
2 4 0.846154
|
||||
1.24044 4 0.695771
|
||||
2 4 1.38462
|
||||
0 6 1.38462
|
||||
0.666667 6 2
|
||||
0 6 2
|
||||
1.00906 4.99094 2
|
||||
2 4 2
|
||||
2 4.66667 2
|
||||
1.33333 4 2
|
||||
2 4.72038 0
|
||||
0 4 0.846154
|
||||
2 4.9024 0.854344
|
||||
0 5.33333 2
|
||||
0.902401 5.50867 0
|
||||
0 5.27892 1.11208
|
||||
0.721084 4 1.11208
|
||||
0 4 1.38462
|
||||
0 4 0.384615
|
||||
1.12038 6 0
|
||||
0 4 0
|
||||
0 6 0
|
||||
1.49745 4 0.40533
|
||||
3 0 1 2
|
||||
3 3 4 5
|
||||
3 6 7 8
|
||||
3 7 6 9
|
||||
3 10 3 11
|
||||
3 13 12 14
|
||||
3 15 16 14
|
||||
3 17 9 18
|
||||
3 20 19 21
|
||||
3 22 23 24
|
||||
3 26 25 27
|
||||
3 29 28 30
|
||||
3 30 28 21
|
||||
3 28 18 21
|
||||
3 32 31 33
|
||||
3 35 34 36
|
||||
3 26 18 9
|
||||
3 5 11 3
|
||||
3 5 4 11
|
||||
3 38 37 39
|
||||
3 1 27 12
|
||||
3 41 40 42
|
||||
3 43 14 16
|
||||
3 13 43 16
|
||||
3 43 13 14
|
||||
3 41 8 44
|
||||
3 20 45 46
|
||||
3 45 47 46
|
||||
3 49 48 50
|
||||
3 8 7 39
|
||||
3 52 51 53
|
||||
3 7 9 38
|
||||
3 45 20 1
|
||||
3 37 17 28
|
||||
3 19 30 21
|
||||
3 4 42 11
|
||||
3 33 31 54
|
||||
3 55 56 57
|
||||
3 0 45 1
|
||||
3 47 45 0
|
||||
3 35 58 12
|
||||
3 57 56 54
|
||||
3 13 2 12
|
||||
3 12 58 14
|
||||
3 30 59 29
|
||||
3 8 41 6
|
||||
3 50 48 60
|
||||
3 56 60 33
|
||||
3 54 52 61
|
||||
3 6 62 9
|
||||
3 54 22 24
|
||||
3 37 29 63
|
||||
3 64 24 65
|
||||
3 65 24 23
|
||||
3 54 31 52
|
||||
3 18 20 21
|
||||
3 14 58 15
|
||||
3 63 29 22
|
||||
3 40 32 33
|
||||
3 34 3 36
|
||||
3 66 46 47
|
||||
3 18 26 20
|
||||
3 4 67 42
|
||||
3 34 67 4
|
||||
3 68 66 19
|
||||
3 51 63 61
|
||||
3 66 68 46
|
||||
3 68 19 46
|
||||
3 61 52 53
|
||||
3 51 61 53
|
||||
3 69 38 39
|
||||
3 36 3 10
|
||||
3 7 69 39
|
||||
3 8 39 44
|
||||
3 39 37 44
|
||||
3 40 31 32
|
||||
3 42 40 11
|
||||
3 40 10 11
|
||||
3 12 27 35
|
||||
3 15 48 16
|
||||
3 38 69 7
|
||||
3 60 48 15
|
||||
3 50 55 57
|
||||
3 55 50 56
|
||||
3 46 19 20
|
||||
3 70 16 48
|
||||
3 65 23 22
|
||||
3 12 2 1
|
||||
3 54 56 33
|
||||
3 49 70 48
|
||||
3 22 54 61
|
||||
3 56 50 60
|
||||
3 28 17 18
|
||||
3 62 26 9
|
||||
3 2 13 70
|
||||
3 59 64 65
|
||||
3 38 17 37
|
||||
3 41 51 52
|
||||
3 60 10 40
|
||||
3 33 60 40
|
||||
3 52 31 41
|
||||
3 67 41 42
|
||||
3 50 57 49
|
||||
3 59 66 47
|
||||
3 9 17 38
|
||||
3 25 62 34
|
||||
3 6 67 62
|
||||
3 6 41 67
|
||||
3 49 0 70
|
||||
3 29 65 22
|
||||
3 59 65 29
|
||||
3 70 0 2
|
||||
3 31 40 41
|
||||
3 41 44 51
|
||||
3 49 47 0
|
||||
3 20 26 27
|
||||
3 34 62 67
|
||||
3 44 63 51
|
||||
3 1 20 27
|
||||
3 37 28 29
|
||||
3 22 61 63
|
||||
3 34 35 25
|
||||
3 3 34 4
|
||||
3 57 24 64
|
||||
3 27 25 35
|
||||
3 62 25 26
|
||||
3 70 13 16
|
||||
3 58 60 15
|
||||
3 59 47 64
|
||||
3 64 47 49
|
||||
3 63 44 37
|
||||
3 58 35 36
|
||||
3 58 36 60
|
||||
3 60 36 10
|
||||
3 66 59 30
|
||||
3 19 66 30
|
||||
3 57 64 49
|
||||
3 54 24 57
|
||||
|
|
@ -0,0 +1,111 @@
|
|||
OFF 38 72 0
|
||||
1 4 0
|
||||
1 4 -0.333333
|
||||
1 4.33333 0
|
||||
0.5 4 -0.5
|
||||
0.666667 4 0
|
||||
0 4 -1
|
||||
0.333333 4 -1
|
||||
0 4 -0.666667
|
||||
1 4 -1
|
||||
1 4.33333 -1
|
||||
0.666667 4 -1
|
||||
0 4.33333 0
|
||||
0.5 4.5 0
|
||||
0 4.66667 0
|
||||
0 4.5 -0.5
|
||||
1 5 0
|
||||
0.666667 5 0
|
||||
1 4.66667 0
|
||||
0 5 0
|
||||
0.333333 5 0
|
||||
0 5 -0.333333
|
||||
0.5 5 -0.5
|
||||
0 4.33333 -1
|
||||
1 4.5 -0.5
|
||||
1 4.66667 -1
|
||||
1 5 -0.666667
|
||||
0.5 4.5 -1
|
||||
0.333333 4 0
|
||||
1 5 -0.333333
|
||||
0 4.66667 -1
|
||||
0 5 -0.666667
|
||||
1 4 -0.666667
|
||||
0 4 -0.333333
|
||||
0 4 0
|
||||
0.666667 5 -1
|
||||
1 5 -1
|
||||
0 5 -1
|
||||
0.333333 5 -1
|
||||
3 0 1 2
|
||||
3 3 1 4
|
||||
3 5 6 7
|
||||
3 9 8 10
|
||||
3 11 12 13
|
||||
3 14 11 13
|
||||
3 15 16 17
|
||||
3 19 18 13
|
||||
3 21 20 19
|
||||
3 21 19 16
|
||||
3 7 22 5
|
||||
3 22 6 5
|
||||
3 2 23 17
|
||||
3 23 24 25
|
||||
3 26 6 22
|
||||
3 4 12 27
|
||||
3 2 1 23
|
||||
3 20 14 13
|
||||
3 17 23 28
|
||||
3 12 4 2
|
||||
3 4 0 2
|
||||
3 30 29 14
|
||||
3 10 8 31
|
||||
3 3 4 27
|
||||
3 32 7 3
|
||||
3 14 7 32
|
||||
3 14 22 7
|
||||
3 28 15 17
|
||||
3 16 15 28
|
||||
3 31 3 10
|
||||
3 12 19 13
|
||||
3 32 33 11
|
||||
3 6 26 10
|
||||
3 26 34 24
|
||||
3 14 32 11
|
||||
3 34 35 24
|
||||
3 35 25 24
|
||||
3 34 25 35
|
||||
3 16 19 12
|
||||
3 11 33 27
|
||||
3 32 27 33
|
||||
3 36 30 37
|
||||
3 0 4 1
|
||||
3 18 20 13
|
||||
3 37 29 36
|
||||
3 31 8 9
|
||||
3 29 30 36
|
||||
3 11 27 12
|
||||
3 34 21 25
|
||||
3 21 16 28
|
||||
3 23 31 9
|
||||
3 24 23 9
|
||||
3 30 21 37
|
||||
3 20 18 19
|
||||
3 30 20 21
|
||||
3 20 30 14
|
||||
3 23 25 28
|
||||
3 25 21 28
|
||||
3 26 29 37
|
||||
3 27 32 3
|
||||
3 3 7 6
|
||||
3 9 26 24
|
||||
3 3 31 1
|
||||
3 31 23 1
|
||||
3 29 22 14
|
||||
3 26 22 29
|
||||
3 16 12 17
|
||||
3 12 2 17
|
||||
3 9 10 26
|
||||
3 26 37 34
|
||||
3 21 34 37
|
||||
3 3 6 10
|
||||
|
|
@ -0,0 +1,255 @@
|
|||
OFF 86 168 0
|
||||
4.45187 3 2.54813
|
||||
4 3 2.66667
|
||||
4.33333 3 3
|
||||
5 1 2
|
||||
5 1.65029 1.83333
|
||||
5 1.45187 2.54813
|
||||
4 1 2
|
||||
4 1.45187 1.45187
|
||||
4 1.83333 2.16667
|
||||
5 2.66667 1
|
||||
4.5 2.57551 1
|
||||
5 2.33333 1
|
||||
5 3 3
|
||||
5 3 2.66667
|
||||
5 2.66667 3
|
||||
4.5 1 2.16667
|
||||
4 1 2.33333
|
||||
4 1.45187 2.54813
|
||||
4 2.56905 1.83333
|
||||
4 2.54813 1.45187
|
||||
4 2.16667 1.65029
|
||||
4 1.66667 3
|
||||
4 2 3
|
||||
4.5 2.16667 3
|
||||
4 1 1.33333
|
||||
4.45187 1 1.45187
|
||||
4 1 1.66667
|
||||
5 1 3
|
||||
4.66667 1 3
|
||||
5 1 2.66667
|
||||
5 1.33333 3
|
||||
4 2.56694 2.54813
|
||||
4 2.66667 3
|
||||
5 1.66667 3
|
||||
4.54813 1.45187 3
|
||||
4 3 1
|
||||
4 3 1.33333
|
||||
4.33333 3 1
|
||||
4 2.66667 1
|
||||
4.5 1 2.57551
|
||||
4.66667 3 1
|
||||
4.45187 3 1.45187
|
||||
5 3 1
|
||||
5 3 1.33333
|
||||
5 1 1
|
||||
5 1 1.33333
|
||||
5 1.33333 1
|
||||
4.66667 1 1
|
||||
5 3 1.66667
|
||||
5 2.54813 2.54813
|
||||
5 2.33333 3
|
||||
5 2 3
|
||||
4 3 3
|
||||
4.66667 3 3
|
||||
4.5 2.57551 3
|
||||
4 2.16667 2.52434
|
||||
4 2.39733 2.16667
|
||||
4 2.33333 3
|
||||
5 1.45187 1.45187
|
||||
5 1 1.66667
|
||||
5 2.54813 1.43306
|
||||
5 2.52434 1.83333
|
||||
4.33333 1 3
|
||||
5 2.16667 2.16667
|
||||
4 1.66667 1
|
||||
4 2 1
|
||||
4 2.33333 1
|
||||
5 2.16667 1.60267
|
||||
4 1 2.66667
|
||||
5 3 2
|
||||
5 3 2.33333
|
||||
4 1 3
|
||||
4 1.33333 3
|
||||
4 3 2.33333
|
||||
5 1 2.33333
|
||||
4.55204 3 2.16667
|
||||
4.54813 1.45187 1
|
||||
5 1.66667 1
|
||||
4 1.33333 1
|
||||
5 1.83333 1.43095
|
||||
4.33333 1 1
|
||||
4 1 1
|
||||
4.5 2.16667 1
|
||||
4 3 1.66667
|
||||
5 2 1
|
||||
4 3 2
|
||||
3 0 1 2
|
||||
3 3 4 5
|
||||
3 7 6 8
|
||||
3 10 9 11
|
||||
3 13 12 14
|
||||
3 6 15 16
|
||||
3 17 6 16
|
||||
3 18 19 20
|
||||
3 22 21 23
|
||||
3 24 25 26
|
||||
3 27 28 29
|
||||
3 30 27 29
|
||||
3 27 30 28
|
||||
3 31 32 1
|
||||
3 33 23 34
|
||||
3 35 36 37
|
||||
3 38 35 37
|
||||
3 35 38 36
|
||||
3 28 39 29
|
||||
3 37 40 10
|
||||
3 41 40 37
|
||||
3 9 42 43
|
||||
3 45 44 46
|
||||
3 44 47 46
|
||||
3 41 48 43
|
||||
3 37 10 38
|
||||
3 8 6 17
|
||||
3 49 50 51
|
||||
3 1 52 2
|
||||
3 52 32 2
|
||||
3 32 52 1
|
||||
3 53 12 13
|
||||
3 16 15 39
|
||||
3 54 53 2
|
||||
3 8 55 56
|
||||
3 26 6 7
|
||||
3 32 31 57
|
||||
3 58 4 59
|
||||
3 61 60 48
|
||||
3 62 28 34
|
||||
3 62 39 28
|
||||
3 61 49 63
|
||||
3 19 36 38
|
||||
3 65 64 7
|
||||
3 9 60 11
|
||||
3 10 66 38
|
||||
3 66 19 38
|
||||
3 4 67 63
|
||||
3 60 61 67
|
||||
3 54 57 23
|
||||
3 40 42 9
|
||||
3 42 40 43
|
||||
3 25 47 45
|
||||
3 56 55 31
|
||||
3 17 16 68
|
||||
3 69 70 61
|
||||
3 71 62 72
|
||||
3 68 62 71
|
||||
3 73 1 0
|
||||
3 17 21 55
|
||||
3 74 39 15
|
||||
3 33 51 23
|
||||
3 51 33 5
|
||||
3 48 69 61
|
||||
3 75 69 48
|
||||
3 46 76 77
|
||||
3 31 73 56
|
||||
3 78 24 7
|
||||
3 58 79 4
|
||||
3 30 34 28
|
||||
3 23 50 54
|
||||
3 47 80 76
|
||||
3 25 80 47
|
||||
3 80 81 78
|
||||
3 81 24 78
|
||||
3 24 81 80
|
||||
3 3 5 74
|
||||
3 65 82 64
|
||||
3 45 47 44
|
||||
3 36 83 41
|
||||
3 3 74 15
|
||||
3 32 57 54
|
||||
3 79 84 67
|
||||
3 18 83 19
|
||||
3 55 21 22
|
||||
3 5 30 29
|
||||
3 33 30 5
|
||||
3 30 33 34
|
||||
3 12 53 14
|
||||
3 56 20 8
|
||||
3 70 13 49
|
||||
3 13 70 0
|
||||
3 26 25 15
|
||||
3 36 41 37
|
||||
3 59 45 58
|
||||
3 59 25 45
|
||||
3 47 76 46
|
||||
3 49 13 14
|
||||
3 20 7 8
|
||||
3 66 20 19
|
||||
3 54 14 53
|
||||
3 50 14 54
|
||||
3 15 6 26
|
||||
3 66 65 20
|
||||
3 57 31 55
|
||||
3 55 8 17
|
||||
3 60 67 11
|
||||
3 18 56 85
|
||||
3 4 3 59
|
||||
3 3 15 59
|
||||
3 40 41 43
|
||||
3 41 75 48
|
||||
3 68 71 72
|
||||
3 58 46 77
|
||||
3 50 49 14
|
||||
3 60 43 48
|
||||
3 63 5 4
|
||||
3 24 26 7
|
||||
3 83 36 19
|
||||
3 75 70 69
|
||||
3 13 0 53
|
||||
3 2 53 0
|
||||
3 82 77 76
|
||||
3 79 67 4
|
||||
3 66 82 65
|
||||
3 62 68 39
|
||||
3 72 34 21
|
||||
3 76 78 64
|
||||
3 78 7 64
|
||||
3 68 72 17
|
||||
3 11 67 84
|
||||
3 51 5 63
|
||||
3 82 10 11
|
||||
3 29 39 74
|
||||
3 49 61 70
|
||||
3 0 70 75
|
||||
3 16 39 68
|
||||
3 82 76 64
|
||||
3 67 61 63
|
||||
3 83 75 41
|
||||
3 82 66 10
|
||||
3 72 62 34
|
||||
3 73 31 1
|
||||
3 73 85 56
|
||||
3 59 15 25
|
||||
3 74 5 29
|
||||
3 23 21 34
|
||||
3 56 18 20
|
||||
3 57 55 22
|
||||
3 23 57 22
|
||||
3 63 49 51
|
||||
3 84 77 82
|
||||
3 32 54 2
|
||||
3 11 84 82
|
||||
3 24 80 25
|
||||
3 58 45 46
|
||||
3 77 84 79
|
||||
3 65 7 20
|
||||
3 78 76 80
|
||||
3 17 72 21
|
||||
3 83 18 85
|
||||
3 83 85 75
|
||||
3 43 60 9
|
||||
3 50 23 51
|
||||
3 40 9 10
|
||||
3 75 73 0
|
||||
3 73 75 85
|
||||
3 77 79 58
|
||||
|
|
@ -0,0 +1,111 @@
|
|||
OFF 38 72 0
|
||||
1 -1 1
|
||||
1 -1 1.33333
|
||||
1 -0.666667 1
|
||||
2 -1 2
|
||||
1.66667 -1 2
|
||||
2 -0.666667 2
|
||||
2 -1 1.66667
|
||||
1 -0.511633 1.50582
|
||||
1 -0.333333 1
|
||||
1 0 1.33333
|
||||
1.66667 -1 1
|
||||
1.5 -0.5 1
|
||||
2 -0.666667 1
|
||||
1 -0.333333 2
|
||||
1.49418 -0.511633 2
|
||||
1 -0.666667 2
|
||||
1.33333 -1 1
|
||||
2 0 1.66667
|
||||
1.5 0 1.5
|
||||
2 0 1.33333
|
||||
2 -0.5 1.5
|
||||
2 -0.333333 1
|
||||
1.33333 0 2
|
||||
1.66667 0 2
|
||||
1.66667 0 1
|
||||
2 -1 1.33333
|
||||
2 -0.333333 2
|
||||
2 0 2
|
||||
1 0 2
|
||||
1 0 1.66667
|
||||
1 0 1
|
||||
1.33333 0 1
|
||||
1.33333 -1 2
|
||||
1 -1 1.66667
|
||||
1.49418 -1 1.50582
|
||||
2 -1 1
|
||||
2 0 1
|
||||
1 -1 2
|
||||
3 0 1 2
|
||||
3 4 3 5
|
||||
3 3 6 5
|
||||
3 6 3 4
|
||||
3 8 7 9
|
||||
3 10 11 12
|
||||
3 14 13 15
|
||||
3 13 7 15
|
||||
3 0 16 1
|
||||
3 18 17 19
|
||||
3 17 20 19
|
||||
3 12 11 21
|
||||
3 22 23 18
|
||||
3 18 19 24
|
||||
3 5 14 4
|
||||
3 20 25 12
|
||||
3 27 26 17
|
||||
3 22 28 13
|
||||
3 28 29 13
|
||||
3 29 28 22
|
||||
3 31 30 9
|
||||
3 30 8 9
|
||||
3 8 30 31
|
||||
3 31 18 24
|
||||
3 16 2 11
|
||||
3 32 14 15
|
||||
3 6 20 5
|
||||
3 33 1 34
|
||||
3 6 25 20
|
||||
3 22 18 29
|
||||
3 33 15 7
|
||||
3 11 31 24
|
||||
3 23 27 17
|
||||
3 26 27 23
|
||||
3 10 35 25
|
||||
3 35 12 25
|
||||
3 12 35 10
|
||||
3 11 2 8
|
||||
3 36 19 21
|
||||
3 14 26 23
|
||||
3 18 31 9
|
||||
3 16 11 10
|
||||
3 19 20 21
|
||||
3 34 16 10
|
||||
3 33 32 37
|
||||
3 32 15 37
|
||||
3 15 33 37
|
||||
3 24 36 21
|
||||
3 19 36 24
|
||||
3 10 25 34
|
||||
3 33 7 1
|
||||
3 20 26 5
|
||||
3 8 2 7
|
||||
3 7 13 29
|
||||
3 7 29 9
|
||||
3 4 34 6
|
||||
3 21 11 24
|
||||
3 21 20 12
|
||||
3 16 0 2
|
||||
3 6 34 25
|
||||
3 33 34 32
|
||||
3 22 14 23
|
||||
3 22 13 14
|
||||
3 20 17 26
|
||||
3 31 11 8
|
||||
3 32 34 4
|
||||
3 18 9 29
|
||||
3 2 1 7
|
||||
3 32 4 14
|
||||
3 14 5 26
|
||||
3 1 16 34
|
||||
3 23 17 18
|
||||
|
|
@ -0,0 +1,168 @@
|
|||
OFF 57 110 0
|
||||
2 -1 2
|
||||
2 -1 1.66667
|
||||
2 -0.666667 2
|
||||
3 0 1.66667
|
||||
3 0 2
|
||||
3 -0.333333 2
|
||||
2.66667 0 2
|
||||
2.33333 0 1
|
||||
2.5 0 1.5
|
||||
2 0 1.33333
|
||||
2 0 1.66667
|
||||
2 -0.5 1.5
|
||||
2 0 1
|
||||
2.33333 -2 1
|
||||
2 -2 1.33333
|
||||
2 -2 1
|
||||
2 -1 1.33333
|
||||
2 -0.666667 1
|
||||
2 -0.333333 2
|
||||
2 0 2
|
||||
2.33333 0 2
|
||||
3 -1.66667 1
|
||||
3 -1.33333 1
|
||||
2.5 -1.52406 1
|
||||
3 -1.54813 1.45187
|
||||
3 -2 1.33333
|
||||
2.5 -0.475937 2
|
||||
2.33333 -2 2
|
||||
2.5 -2 1.5
|
||||
2 -2 1.66667
|
||||
3 -1 2
|
||||
3 -0.666667 2
|
||||
3 -0.833333 1.44796
|
||||
3 -1.33333 2
|
||||
2.66667 -2 1
|
||||
3 -2 1.66667
|
||||
3 -2 2
|
||||
3 -1.66667 2
|
||||
2.66667 0 1
|
||||
3 0 1
|
||||
3 0 1.33333
|
||||
2.66667 -2 2
|
||||
2.5 -0.475937 1
|
||||
2 -0.333333 1
|
||||
2 -1.66667 2
|
||||
2 -1.5 1.5
|
||||
3 -0.333333 1
|
||||
2 -1 1
|
||||
3 -2 1
|
||||
2.5 -1.52406 2
|
||||
2 -2 2
|
||||
3 -0.451874 1.54813
|
||||
3 -0.666667 1
|
||||
2 -1.33333 1
|
||||
2 -1.33333 2
|
||||
2 -1.66667 1
|
||||
3 -1 1
|
||||
3 1 0 2
|
||||
3 3 4 5
|
||||
3 4 6 5
|
||||
3 3 6 4
|
||||
3 8 7 9
|
||||
3 11 10 9
|
||||
3 7 12 9
|
||||
3 13 14 15
|
||||
3 16 11 17
|
||||
3 18 19 10
|
||||
3 19 20 10
|
||||
3 18 20 19
|
||||
3 22 21 23
|
||||
3 24 21 22
|
||||
3 24 25 21
|
||||
3 5 6 26
|
||||
3 28 27 29
|
||||
3 31 30 32
|
||||
3 30 33 32
|
||||
3 30 31 26
|
||||
3 6 20 26
|
||||
3 11 1 2
|
||||
3 23 21 34
|
||||
3 16 1 11
|
||||
3 36 35 37
|
||||
3 39 38 40
|
||||
3 34 13 23
|
||||
3 40 38 8
|
||||
3 3 8 6
|
||||
3 41 27 28
|
||||
3 37 24 33
|
||||
3 7 42 43
|
||||
3 22 32 24
|
||||
3 10 8 9
|
||||
3 29 44 45
|
||||
3 46 42 38
|
||||
3 29 14 28
|
||||
3 45 14 29
|
||||
3 42 7 38
|
||||
3 7 8 38
|
||||
3 17 47 16
|
||||
3 39 46 38
|
||||
3 46 39 40
|
||||
3 9 12 43
|
||||
3 12 7 43
|
||||
3 16 45 1
|
||||
3 34 48 25
|
||||
3 48 21 25
|
||||
3 21 48 34
|
||||
3 33 49 37
|
||||
3 11 9 43
|
||||
3 28 13 34
|
||||
3 29 50 44
|
||||
3 50 27 44
|
||||
3 27 50 29
|
||||
3 35 24 37
|
||||
3 52 51 32
|
||||
3 46 52 42
|
||||
3 52 46 51
|
||||
3 16 47 53
|
||||
3 42 47 17
|
||||
3 26 18 2
|
||||
3 18 11 2
|
||||
3 36 37 41
|
||||
3 30 26 0
|
||||
3 27 41 49
|
||||
3 0 26 2
|
||||
3 26 20 18
|
||||
3 49 41 37
|
||||
3 0 1 54
|
||||
3 35 25 24
|
||||
3 45 53 55
|
||||
3 32 56 52
|
||||
3 0 49 30
|
||||
3 11 43 17
|
||||
3 43 42 17
|
||||
3 45 54 1
|
||||
3 13 15 55
|
||||
3 23 55 53
|
||||
3 28 25 35
|
||||
3 35 36 41
|
||||
3 15 14 55
|
||||
3 45 44 54
|
||||
3 47 23 53
|
||||
3 56 23 47
|
||||
3 51 46 40
|
||||
3 51 40 3
|
||||
3 3 5 51
|
||||
3 40 8 3
|
||||
3 5 26 31
|
||||
3 49 33 30
|
||||
3 52 56 42
|
||||
3 54 44 49
|
||||
3 10 11 18
|
||||
3 42 56 47
|
||||
3 13 55 23
|
||||
3 31 32 51
|
||||
3 55 14 45
|
||||
3 6 8 20
|
||||
3 56 22 23
|
||||
3 45 16 53
|
||||
3 24 32 33
|
||||
3 13 28 14
|
||||
3 28 34 25
|
||||
3 35 41 28
|
||||
3 49 0 54
|
||||
3 44 27 49
|
||||
3 10 20 8
|
||||
3 51 5 31
|
||||
3 22 56 32
|
||||
|
|
@ -0,0 +1,243 @@
|
|||
OFF 82 160 0
|
||||
2.5 0 2.5
|
||||
2 0 2.33333
|
||||
2 0 2.66667
|
||||
2 -0.390065 2.61728
|
||||
2 -0.6 3
|
||||
2 -0.9 3
|
||||
2.5 -0.75 3
|
||||
2 -2.7 3
|
||||
2 -2.4 3
|
||||
2 -2.60994 2.61728
|
||||
3 -1.65 2.49507
|
||||
3 -1.16667 2.46927
|
||||
3 -1.33333 2
|
||||
2.66667 0 2
|
||||
3 0 2
|
||||
3 -0.333333 2
|
||||
3 -1.2 3
|
||||
3 -0.9 3
|
||||
2 -2.1 3
|
||||
2.5 -2.25 3
|
||||
3 -2.1 3
|
||||
3 -1.8 3
|
||||
2.5 -1.65 3
|
||||
3 -2 2
|
||||
3 -1.66667 2
|
||||
2 -1.5 3
|
||||
2 -1.2 3
|
||||
2 -1.24044 2.44945
|
||||
2 -2.25 2.49174
|
||||
2 -1.65 2.49507
|
||||
2.33333 0 2
|
||||
2 -0.333333 2
|
||||
2 0 2
|
||||
3 -0.3 3
|
||||
3 0 2.66667
|
||||
3 0 3
|
||||
2.66667 0 3
|
||||
3 -1 2
|
||||
3 -0.75 2.50778
|
||||
3 -2.25 2.49174
|
||||
3 -2.33333 2
|
||||
3 -2.66667 2
|
||||
2 -3 3
|
||||
2 -3 2.66667
|
||||
2.66667 -2 2
|
||||
2.5 -2.5 2
|
||||
2.5 -0.475937 2
|
||||
3 -3 2.66667
|
||||
3 -2.7 3
|
||||
3 -2.60994 2.61728
|
||||
3 -3 2.33333
|
||||
3 -2.4 3
|
||||
2.61728 -2.60994 3
|
||||
2.5 -3 2.5
|
||||
2.33333 -3 3
|
||||
2.66667 -3 3
|
||||
2.33333 -2 2
|
||||
2 -2.66667 2
|
||||
3 -0.666667 2
|
||||
2 -0.75 2.49174
|
||||
2.33333 -3 2
|
||||
3 -1.5 3
|
||||
2 0 3
|
||||
2.33333 0 3
|
||||
2 -0.3 3
|
||||
2.66667 -3 2
|
||||
3 0 2.33333
|
||||
3 -3 2
|
||||
3 -0.390065 2.61728
|
||||
3 -3 3
|
||||
2 -3 2.33333
|
||||
2 -3 2
|
||||
2 -1 2
|
||||
2 -1.33333 2
|
||||
2.5 -1.52406 2
|
||||
3 -0.6 3
|
||||
2 -2 2
|
||||
2 -1.66667 2
|
||||
2 -1.8 3
|
||||
2.38272 -0.390065 3
|
||||
2 -0.666667 2
|
||||
2 -2.33333 2
|
||||
3 0 1 2
|
||||
3 1 3 2
|
||||
3 4 5 6
|
||||
3 7 8 9
|
||||
3 11 10 12
|
||||
3 13 14 15
|
||||
3 16 17 6
|
||||
3 19 18 8
|
||||
3 20 10 21
|
||||
3 22 20 21
|
||||
3 10 23 24
|
||||
3 25 26 27
|
||||
3 26 25 22
|
||||
3 28 18 29
|
||||
3 16 11 17
|
||||
3 30 31 32
|
||||
3 33 34 35
|
||||
3 34 36 35
|
||||
3 36 33 35
|
||||
3 11 37 38
|
||||
3 40 39 41
|
||||
3 42 7 43
|
||||
3 44 40 45
|
||||
3 11 38 17
|
||||
3 13 15 46
|
||||
3 45 40 41
|
||||
3 48 47 49
|
||||
3 41 49 50
|
||||
3 10 39 23
|
||||
3 47 50 49
|
||||
3 51 39 20
|
||||
3 19 51 20
|
||||
3 52 51 19
|
||||
3 3 1 31
|
||||
3 53 54 43
|
||||
3 28 8 18
|
||||
3 22 16 26
|
||||
3 53 47 55
|
||||
3 45 56 44
|
||||
3 57 9 28
|
||||
3 12 37 11
|
||||
3 58 37 46
|
||||
3 30 13 46
|
||||
3 30 0 13
|
||||
3 42 54 7
|
||||
3 59 27 5
|
||||
3 10 24 12
|
||||
3 60 57 45
|
||||
3 41 39 49
|
||||
3 21 61 22
|
||||
3 61 21 10
|
||||
3 2 62 63
|
||||
3 62 64 63
|
||||
3 64 62 2
|
||||
3 31 1 32
|
||||
3 1 30 32
|
||||
3 23 40 44
|
||||
3 23 39 40
|
||||
3 45 41 65
|
||||
3 55 54 53
|
||||
3 14 66 15
|
||||
3 25 27 29
|
||||
3 63 36 0
|
||||
3 65 41 67
|
||||
3 15 66 68
|
||||
3 47 69 55
|
||||
3 69 48 55
|
||||
3 47 48 69
|
||||
3 49 39 51
|
||||
3 70 71 60
|
||||
3 53 60 65
|
||||
3 60 45 65
|
||||
3 27 72 73
|
||||
3 22 61 16
|
||||
3 48 51 52
|
||||
3 49 51 48
|
||||
3 59 5 4
|
||||
3 74 12 24
|
||||
3 75 17 38
|
||||
3 67 41 50
|
||||
3 56 76 77
|
||||
3 42 43 54
|
||||
3 72 27 59
|
||||
3 5 27 26
|
||||
3 53 43 70
|
||||
3 43 9 70
|
||||
3 76 29 77
|
||||
3 22 78 18
|
||||
3 7 9 43
|
||||
3 3 64 2
|
||||
3 36 79 33
|
||||
3 72 59 80
|
||||
3 65 50 53
|
||||
3 68 38 58
|
||||
3 76 56 81
|
||||
3 19 22 18
|
||||
3 78 29 18
|
||||
3 75 38 68
|
||||
3 28 9 8
|
||||
3 70 57 71
|
||||
3 57 60 71
|
||||
3 31 46 80
|
||||
3 24 23 44
|
||||
3 7 54 52
|
||||
3 17 75 6
|
||||
3 46 37 72
|
||||
3 44 56 74
|
||||
3 70 60 53
|
||||
3 46 72 80
|
||||
3 26 16 6
|
||||
3 68 34 33
|
||||
3 79 6 75
|
||||
3 30 46 31
|
||||
3 31 80 59
|
||||
3 44 74 24
|
||||
3 13 66 14
|
||||
3 74 72 37
|
||||
3 26 6 5
|
||||
3 16 61 11
|
||||
3 11 61 10
|
||||
3 50 47 53
|
||||
3 1 0 30
|
||||
3 57 70 9
|
||||
3 37 58 38
|
||||
3 67 50 65
|
||||
3 7 52 8
|
||||
3 76 28 29
|
||||
3 81 28 76
|
||||
3 29 73 77
|
||||
3 59 3 31
|
||||
3 78 22 25
|
||||
3 0 36 34
|
||||
3 20 39 10
|
||||
3 46 15 58
|
||||
3 15 68 58
|
||||
3 12 74 37
|
||||
3 77 73 74
|
||||
3 2 63 0
|
||||
3 64 79 63
|
||||
3 4 6 79
|
||||
3 13 0 66
|
||||
3 63 79 36
|
||||
3 45 81 56
|
||||
3 66 0 34
|
||||
3 57 81 45
|
||||
3 57 28 81
|
||||
3 25 29 78
|
||||
3 75 68 33
|
||||
3 79 75 33
|
||||
3 72 74 73
|
||||
3 56 77 74
|
||||
3 48 52 55
|
||||
3 55 52 54
|
||||
3 8 52 19
|
||||
3 68 66 34
|
||||
3 64 4 79
|
||||
3 4 64 3
|
||||
3 59 4 3
|
||||
3 22 19 20
|
||||
3 29 27 73
|
||||
|
|
@ -0,0 +1,312 @@
|
|||
OFF 105 206 0
|
||||
1.33333 0 3
|
||||
1.66667 0 3
|
||||
1.39804 -0.404497 3
|
||||
1 -2.15385 3
|
||||
1.51103 -2.60994 3
|
||||
1 -2.46154 3
|
||||
1 -2.05 2.49414
|
||||
2 -0.390065 2.61728
|
||||
2 0 2.33333
|
||||
2 0 2.66667
|
||||
1 -2.8 2
|
||||
1 -2.65 2.49586
|
||||
1 -3.1 2
|
||||
2 -4 2.33333
|
||||
2 -4 2
|
||||
1.66667 -4 2
|
||||
2 -1 2
|
||||
1.66667 -1 2
|
||||
2 -0.666667 2
|
||||
2 -2.7 3
|
||||
2 -2.4 3
|
||||
2 -2.60994 2.61728
|
||||
2 -1.2 3
|
||||
1.50414 -1.35 3
|
||||
2 -1.5 3
|
||||
1 -2.5 2
|
||||
1 0 2.66667
|
||||
1.50582 0 2.50582
|
||||
1 -0.333333 2
|
||||
1.49418 -0.511633 2
|
||||
1 -0.666667 2
|
||||
2 -3.33333 3
|
||||
1.50624 -3.23077 3
|
||||
1.39804 -3.5955 3
|
||||
1 -4 3
|
||||
1 -4 2.66667
|
||||
1 -3.69231 3
|
||||
2 -3 3
|
||||
2 -3.33333 2
|
||||
2 -3.48837 2.50582
|
||||
2 -3 2.33333
|
||||
2 -3.66667 2
|
||||
1.38272 -3.60994 2
|
||||
1.50826 -3.25 2
|
||||
2 -1.24044 2.44945
|
||||
2 -2.1 3
|
||||
2 -2.25 2.49174
|
||||
2 -1.65 2.49507
|
||||
1 0 2.33333
|
||||
1 -0.404497 2.60196
|
||||
1 -2.76923 3
|
||||
2 -3 2.66667
|
||||
1 -0.615385 3
|
||||
1 -0.769231 2.49376
|
||||
1.66667 0 2
|
||||
1 0 2
|
||||
1.33333 0 2
|
||||
2 -0.9 3
|
||||
1 -1 2
|
||||
1 -1.39006 2.48897
|
||||
1.55055 -2.24044 2
|
||||
2 -2 2
|
||||
2 -2.33333 2
|
||||
2 -3 2
|
||||
2 -0.333333 2
|
||||
1 -3.25 2.49781
|
||||
1 -3.5955 2.60196
|
||||
1 -3.4 2
|
||||
2 -2.66667 2
|
||||
1.33333 -1 2
|
||||
1 -1.6 2
|
||||
1 -1.3 2
|
||||
2 -0.75 2.49174
|
||||
2 0 3
|
||||
2 -0.3 3
|
||||
1.38272 -1.39006 2
|
||||
1.50493 -2.65 2
|
||||
2 0 2
|
||||
1 -0.307692 3
|
||||
1.50219 -0.75 3
|
||||
1.33333 -4 2
|
||||
1.5 -4 2.5
|
||||
1 -3.07692 3
|
||||
1.50586 -1.95 3
|
||||
1 -3.38462 3
|
||||
1 -0.923077 3
|
||||
1 -1.23077 3
|
||||
2 -1.8 3
|
||||
2 -1.33333 2
|
||||
1.66667 -4 3
|
||||
2 -4 2.66667
|
||||
2 -3.66667 3
|
||||
1.50826 -1.75 2
|
||||
1 -1.9 2
|
||||
2 -0.6 3
|
||||
1 -1.84615 3
|
||||
1 -1.53846 3
|
||||
2 -1.66667 2
|
||||
1 -3.7 2
|
||||
2 -4 3
|
||||
1 -2.2 2
|
||||
1 0 3
|
||||
1 -4 2.33333
|
||||
1 -4 2
|
||||
1.33333 -4 3
|
||||
3 1 0 2
|
||||
3 4 3 5
|
||||
3 3 6 5
|
||||
3 7 8 9
|
||||
3 11 10 12
|
||||
3 14 13 15
|
||||
3 16 17 18
|
||||
3 20 19 21
|
||||
3 4 19 20
|
||||
3 22 23 24
|
||||
3 11 25 10
|
||||
3 26 0 27
|
||||
3 28 29 30
|
||||
3 31 32 33
|
||||
3 35 34 36
|
||||
3 37 4 32
|
||||
3 39 38 40
|
||||
3 41 42 43
|
||||
3 22 24 44
|
||||
3 45 46 47
|
||||
3 29 18 17
|
||||
3 48 26 27
|
||||
3 48 49 26
|
||||
3 11 6 25
|
||||
3 50 4 5
|
||||
3 51 31 39
|
||||
3 53 52 49
|
||||
3 54 27 8
|
||||
3 55 56 28
|
||||
3 19 37 51
|
||||
3 37 19 4
|
||||
3 22 57 23
|
||||
3 53 58 59
|
||||
3 60 61 62
|
||||
3 63 38 43
|
||||
3 63 40 38
|
||||
3 8 7 64
|
||||
3 20 46 45
|
||||
3 48 55 28
|
||||
3 66 65 67
|
||||
3 21 68 46
|
||||
3 29 69 30
|
||||
3 70 59 71
|
||||
3 44 72 57
|
||||
3 73 74 9
|
||||
3 69 75 71
|
||||
3 63 43 76
|
||||
3 76 62 68
|
||||
3 8 64 77
|
||||
3 78 2 0
|
||||
3 2 52 79
|
||||
3 15 80 42
|
||||
3 81 80 15
|
||||
3 82 32 50
|
||||
3 30 49 28
|
||||
3 44 24 47
|
||||
3 83 4 20
|
||||
3 27 1 9
|
||||
3 33 84 36
|
||||
3 85 53 86
|
||||
3 58 71 59
|
||||
3 71 58 69
|
||||
3 77 64 54
|
||||
3 5 11 50
|
||||
3 64 29 54
|
||||
3 0 1 27
|
||||
3 83 87 24
|
||||
3 65 66 84
|
||||
3 16 88 17
|
||||
3 16 44 88
|
||||
3 90 89 81
|
||||
3 31 33 91
|
||||
3 12 43 67
|
||||
3 56 55 48
|
||||
3 33 89 91
|
||||
3 70 75 92
|
||||
3 93 6 70
|
||||
3 57 72 94
|
||||
3 6 59 70
|
||||
3 33 32 84
|
||||
3 88 92 75
|
||||
3 11 82 50
|
||||
3 6 95 59
|
||||
3 11 65 82
|
||||
3 37 31 51
|
||||
3 44 16 72
|
||||
3 44 57 22
|
||||
3 83 96 95
|
||||
3 96 59 95
|
||||
3 21 51 40
|
||||
3 59 86 53
|
||||
3 30 69 58
|
||||
3 91 39 31
|
||||
3 47 61 97
|
||||
3 61 92 97
|
||||
3 8 77 54
|
||||
3 42 80 98
|
||||
3 58 53 30
|
||||
3 21 19 51
|
||||
3 92 93 70
|
||||
3 23 86 96
|
||||
3 74 7 9
|
||||
3 57 94 79
|
||||
3 99 91 89
|
||||
3 90 99 89
|
||||
3 99 90 91
|
||||
3 72 16 18
|
||||
3 52 53 85
|
||||
3 85 86 23
|
||||
3 38 39 41
|
||||
3 43 38 41
|
||||
3 25 100 60
|
||||
3 100 25 6
|
||||
3 47 87 45
|
||||
3 87 83 45
|
||||
3 57 79 23
|
||||
3 30 53 49
|
||||
3 13 41 39
|
||||
3 21 46 20
|
||||
3 68 40 63
|
||||
3 67 65 12
|
||||
3 45 83 20
|
||||
3 27 9 8
|
||||
3 51 39 40
|
||||
3 83 95 3
|
||||
3 78 52 2
|
||||
3 75 69 17
|
||||
3 32 31 37
|
||||
3 18 64 72
|
||||
3 78 101 26
|
||||
3 101 0 26
|
||||
3 78 0 101
|
||||
3 75 70 71
|
||||
3 9 1 73
|
||||
3 1 74 73
|
||||
3 90 39 91
|
||||
3 40 68 21
|
||||
3 68 63 76
|
||||
3 80 102 103
|
||||
3 103 102 98
|
||||
3 6 11 5
|
||||
3 13 14 41
|
||||
3 85 23 79
|
||||
3 46 61 47
|
||||
3 93 92 60
|
||||
3 56 27 54
|
||||
3 36 34 104
|
||||
3 86 59 96
|
||||
3 46 62 61
|
||||
3 35 104 34
|
||||
3 41 14 15
|
||||
3 83 3 4
|
||||
3 98 80 103
|
||||
3 88 47 97
|
||||
3 92 88 97
|
||||
3 7 72 64
|
||||
3 88 75 17
|
||||
3 23 96 83
|
||||
3 48 27 56
|
||||
3 29 56 54
|
||||
3 84 82 65
|
||||
3 32 4 50
|
||||
3 28 56 29
|
||||
3 84 32 82
|
||||
3 60 76 25
|
||||
3 62 76 60
|
||||
3 28 49 48
|
||||
3 66 36 84
|
||||
3 65 11 12
|
||||
3 23 83 24
|
||||
3 52 85 79
|
||||
3 100 6 93
|
||||
3 43 42 67
|
||||
3 67 42 98
|
||||
3 100 93 60
|
||||
3 6 3 95
|
||||
3 46 68 62
|
||||
3 47 24 87
|
||||
3 60 92 61
|
||||
3 90 13 39
|
||||
3 81 13 90
|
||||
3 36 104 33
|
||||
3 79 94 2
|
||||
3 81 89 104
|
||||
3 35 81 104
|
||||
3 104 89 33
|
||||
3 81 35 102
|
||||
3 81 102 80
|
||||
3 15 13 81
|
||||
3 17 69 29
|
||||
3 18 29 64
|
||||
3 52 78 49
|
||||
3 49 78 26
|
||||
3 76 43 12
|
||||
3 10 25 76
|
||||
3 102 35 66
|
||||
3 35 36 66
|
||||
3 98 66 67
|
||||
3 98 102 66
|
||||
3 2 94 74
|
||||
3 1 2 74
|
||||
3 41 15 42
|
||||
3 74 94 7
|
||||
3 94 72 7
|
||||
3 76 12 10
|
||||
3 44 47 88
|
||||
|
|
@ -0,0 +1,332 @@
|
|||
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
|
||||
#ifdef USE_POLYHEDRON
|
||||
#include <CGAL/Polyhedron_3.h>
|
||||
#else
|
||||
#include <CGAL/Surface_mesh.h>
|
||||
#endif
|
||||
#include <CGAL/Polygon_mesh_processing/remesh_planar_patches.h>
|
||||
#include <CGAL/Polygon_mesh_processing/manifoldness.h>
|
||||
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
|
||||
|
||||
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
|
||||
#ifdef USE_POLYHEDRON
|
||||
typedef CGAL::Polyhedron_3<Kernel> Surface_mesh;
|
||||
#else
|
||||
typedef Kernel::Point_3 Point_3;
|
||||
typedef CGAL::Surface_mesh<Kernel::Point_3> Surface_mesh;
|
||||
#endif
|
||||
|
||||
|
||||
namespace PMP = CGAL::Polygon_mesh_processing;
|
||||
int main()
|
||||
{
|
||||
// testing decimate function
|
||||
bool OK = true;
|
||||
const int nb_meshes=5;
|
||||
|
||||
for (int i=1; i<=nb_meshes; ++i)
|
||||
{
|
||||
std::cout << "handling decimation of data/decimation/m" << i << ".off\n";
|
||||
std::stringstream ss;
|
||||
ss << "data/decimation/m" << i << ".off";
|
||||
Surface_mesh sm;
|
||||
std::ifstream in(ss.str().c_str());
|
||||
in >> sm;
|
||||
|
||||
// call the decimation function
|
||||
if (!PMP::remesh_planar_patches(sm))
|
||||
{
|
||||
std::cerr << "ERROR: decimate failed to remesh some patches\n";
|
||||
OK=false;
|
||||
}
|
||||
ss=std::stringstream();
|
||||
ss << "out" << i << ".off";
|
||||
std::ofstream out(ss.str().c_str());
|
||||
out << sm;
|
||||
std::cout << " output written to out" << i << ".off\n";
|
||||
assert(is_valid_polygon_mesh(sm));
|
||||
}
|
||||
// testing border non-manifold vertex: not working for now, test kept
|
||||
/*
|
||||
// in case we find a solution
|
||||
{
|
||||
std::cout << "testing handling of non-manifold patches\n";
|
||||
Surface_mesh sm;
|
||||
std::ifstream("data/decimation/m1.off") >> sm;
|
||||
auto f1 = *std::next(faces(sm).begin(), 594);
|
||||
auto f2 = *std::next(faces(sm).begin(), 2378);
|
||||
CGAL::Euler::remove_face(halfedge(f1, sm), sm);
|
||||
CGAL::Euler::remove_face(halfedge(f2, sm), sm);
|
||||
if (!PMP::remesh_planar_patches(sm))
|
||||
{
|
||||
OK=false;
|
||||
std::cerr << "ERROR: decimate failed to remesh some patches\n";
|
||||
}
|
||||
std::ofstream("nm_m1.off") << std::setprecision(17) << sm;
|
||||
assert(is_valid_polygon_mesh(sm));
|
||||
}
|
||||
*/
|
||||
// test duplicated vertex
|
||||
{
|
||||
std::cout << "testing handling of duplicated non-manifold vertex\n";
|
||||
Surface_mesh sm;
|
||||
std::ifstream("data/decimation/m1.off") >> sm;
|
||||
auto f1 = *std::next(faces(sm).begin(), 594);
|
||||
auto f2 = *std::next(faces(sm).begin(), 2378);
|
||||
CGAL::Euler::remove_face(halfedge(f1, sm), sm);
|
||||
CGAL::Euler::remove_face(halfedge(f2, sm), sm);
|
||||
PMP::duplicate_non_manifold_vertices(sm);
|
||||
std::size_t nbv_before = vertices(sm).size();
|
||||
if (!PMP::remesh_planar_patches(sm))
|
||||
std::cerr << "decimate failed to remesh some patches (expected)\n";
|
||||
assert(vertices(sm).size()<nbv_before);
|
||||
std::ofstream("nmd_m1.off") << std::setprecision(17) << sm;
|
||||
assert(is_valid_polygon_mesh(sm));
|
||||
}
|
||||
// test duplicated vertex at patch interface
|
||||
{
|
||||
std::cout << "testing handling of duplicated non-manifold vertex at patch interface\n";
|
||||
Surface_mesh sm;
|
||||
std::ifstream("data/decimation/m1.off") >> sm;
|
||||
auto f1 = *std::next(faces(sm).begin(), 244);
|
||||
auto f2 = *std::next(faces(sm).begin(), 2279);
|
||||
CGAL::Euler::remove_face(halfedge(f1, sm), sm);
|
||||
CGAL::Euler::remove_face(halfedge(f2, sm), sm);
|
||||
PMP::duplicate_non_manifold_vertices(sm);
|
||||
std::size_t nbv_before = vertices(sm).size();
|
||||
if (!PMP::remesh_planar_patches(sm))
|
||||
std::cerr << "decimate failed to remesh some patches (expected)\n";
|
||||
assert(vertices(sm).size()<nbv_before);
|
||||
std::ofstream("nmdi_m1.off") << std::setprecision(17) << sm;
|
||||
assert(is_valid_polygon_mesh(sm));
|
||||
}
|
||||
assert(OK);
|
||||
|
||||
// testing decimate function with almost coplanar/collinear tests
|
||||
for (int i=1; i<=nb_meshes; ++i)
|
||||
{
|
||||
std::cout << "handling decimation of data/decimation/am" << i << ".off (approximate coplanar/collinear)\n";
|
||||
std::stringstream ss;
|
||||
ss << "data/decimation/am" << i << ".off";
|
||||
Surface_mesh sm;
|
||||
std::ifstream in(ss.str().c_str());
|
||||
in >> sm;
|
||||
|
||||
// call the decimation function
|
||||
if (!PMP::remesh_planar_patches(sm, CGAL::parameters::cosinus_threshold(-0.99)))
|
||||
{
|
||||
OK=false;
|
||||
std::cerr << "ERROR: decimate failed to remesh some patches\n";
|
||||
}
|
||||
ss=std::stringstream();
|
||||
ss << "out_a" << i << ".off";
|
||||
std::ofstream out(ss.str().c_str());
|
||||
out << sm;
|
||||
std::cout << " output written to out_a" << i << ".off\n";
|
||||
assert(is_valid_polygon_mesh(sm));
|
||||
}
|
||||
|
||||
//testing decimation of meshes, preserving common interface
|
||||
const int nb_meshes_range=9;
|
||||
std::vector<Surface_mesh> meshes(nb_meshes_range);
|
||||
for (int i=1; i<=nb_meshes_range; ++i)
|
||||
{
|
||||
std::stringstream ss;
|
||||
ss << "data/decimation/range/m" << i << ".off";
|
||||
std::ifstream in(ss.str().c_str());
|
||||
in >> meshes[i-1];
|
||||
}
|
||||
|
||||
std::cout << "decimate a range of meshes with common interfaces\n";
|
||||
if (!PMP::decimate_meshes_with_common_interfaces(meshes))
|
||||
{
|
||||
OK=false;
|
||||
std::cerr << "ERROR: decimate failed to remesh some patches\n";
|
||||
}
|
||||
std::cout << " output written to";
|
||||
for (int i=0; i<nb_meshes_range; ++i)
|
||||
{
|
||||
std::stringstream ss;
|
||||
ss << "out_r" << i+1 << ".off";
|
||||
std::ofstream out(ss.str().c_str());
|
||||
out << meshes[i];
|
||||
std::cout << " out_r" << i+1 << ".off";
|
||||
}
|
||||
std::cout << "\n";
|
||||
for (int i=0; i<nb_meshes_range; ++i)
|
||||
assert(is_valid_polygon_mesh(meshes[i]));
|
||||
|
||||
//testing decimation of meshes, preserving common interface and a patch that fails to simplify at the interface
|
||||
meshes.clear();
|
||||
meshes.resize(nb_meshes_range);
|
||||
for (int i=1; i<=nb_meshes_range; ++i)
|
||||
{
|
||||
std::stringstream ss;
|
||||
ss << "data/decimation/range/m" << i << ".off";
|
||||
std::ifstream in(ss.str().c_str());
|
||||
in >> meshes[i-1];
|
||||
}
|
||||
auto f1 = *std::next(faces(meshes[4]).begin(), 1);
|
||||
auto f2 = *std::next(faces(meshes[4]).begin(), 109);
|
||||
CGAL::Euler::remove_face(halfedge(f1, meshes[4]), meshes[4]);
|
||||
CGAL::Euler::remove_face(halfedge(f2, meshes[4]), meshes[4]);
|
||||
PMP::duplicate_non_manifold_vertices(meshes[4]);
|
||||
f1 = *std::next(faces(meshes[0]).begin(), 322);
|
||||
f2 = *std::next(faces(meshes[0]).begin(), 963);
|
||||
CGAL::Euler::remove_face(halfedge(f1, meshes[0]), meshes[0]);
|
||||
CGAL::Euler::remove_face(halfedge(f2, meshes[0]), meshes[0]);
|
||||
PMP::duplicate_non_manifold_vertices(meshes[0]);
|
||||
f1 = *std::next(faces(meshes[8]).begin(), 23);
|
||||
f2 = *std::next(faces(meshes[8]).begin(), 164);
|
||||
CGAL::Euler::remove_face(halfedge(f1, meshes[8]), meshes[8]);
|
||||
CGAL::Euler::remove_face(halfedge(f2, meshes[8]), meshes[8]);
|
||||
PMP::duplicate_non_manifold_vertices(meshes[8]);
|
||||
|
||||
std::cout << "decimate a range of meshes with common interfaces and issue at the interface\n";
|
||||
if (!PMP::decimate_meshes_with_common_interfaces(meshes))
|
||||
std::cerr << "decimate failed to remesh some patches (expected)\n";
|
||||
std::cout << " output written to";
|
||||
for (int i=0; i<nb_meshes_range; ++i)
|
||||
{
|
||||
std::stringstream ss;
|
||||
ss << "out_fi_r" << i+1 << ".off";
|
||||
std::ofstream out(ss.str().c_str());
|
||||
out << meshes[i];
|
||||
std::cout << " out_fi_r" << i+1 << ".off";
|
||||
}
|
||||
std::cout << "\n";
|
||||
for (int i=0; i<nb_meshes_range; ++i)
|
||||
assert(is_valid_polygon_mesh(meshes[i]));
|
||||
|
||||
//testing decimation of meshes, preserving common interface with almost coplanar/collinear tests
|
||||
meshes.clear();
|
||||
meshes.resize(nb_meshes_range);
|
||||
for (int i=1; i<=nb_meshes_range; ++i)
|
||||
{
|
||||
std::stringstream ss;
|
||||
ss << "data/decimation/range/am" << i << ".off";
|
||||
std::ifstream in(ss.str().c_str());
|
||||
in >> meshes[i-1];
|
||||
}
|
||||
|
||||
std::cout << "decimate a range of meshes with common interfaces (approximate coplanar/collinear)\n";
|
||||
if (!PMP::decimate_meshes_with_common_interfaces(meshes, -0.99))
|
||||
{
|
||||
OK=false;
|
||||
std::cerr << "ERROR: decimate failed to remesh some patches\n";
|
||||
}
|
||||
std::cout << " output written to";
|
||||
for (int i=0; i<nb_meshes_range; ++i)
|
||||
{
|
||||
std::stringstream ss;
|
||||
ss << "out_ar" << i+1 << ".off";
|
||||
std::ofstream out(ss.str().c_str());
|
||||
out << meshes[i];
|
||||
std::cout << " out_ar" << i+1 << ".off";
|
||||
}
|
||||
std::cout << "\n";
|
||||
for (int i=0; i<nb_meshes_range; ++i)
|
||||
assert(is_valid_polygon_mesh(meshes[i]));
|
||||
|
||||
#ifndef CGAL_DO_NOT_USE_PCA
|
||||
// testing decimate function with almost coplanar/collinear tests using PCA
|
||||
for (int i=1; i<=nb_meshes; ++i)
|
||||
{
|
||||
std::cout << "handling decimation of data/decimation/am" << i << ".off (approximate coplanar/collinear with PCA)\n";
|
||||
std::stringstream ss;
|
||||
ss << "data/decimation/am" << i << ".off";
|
||||
Surface_mesh sm;
|
||||
std::ifstream in(ss.str().c_str());
|
||||
in >> sm;
|
||||
|
||||
// call the decimation function
|
||||
|
||||
if (!PMP::decimate_with_pca_for_coplanarity(sm, 1e-5, -0.99))
|
||||
{
|
||||
std::cerr << "ERROR: decimate failed to remesh some patches\n";
|
||||
OK=false;
|
||||
}
|
||||
ss=std::stringstream();
|
||||
ss << "out_a_pca" << i << ".off";
|
||||
std::ofstream out(ss.str().c_str());
|
||||
out << sm;
|
||||
std::cout << " output written to out_a_pca" << i << ".off\n";
|
||||
assert(is_valid_polygon_mesh(sm));
|
||||
}
|
||||
|
||||
// testing decimation of meshes, preserving common interface with almost coplanar/collinear tests using PCA
|
||||
std::cout << "decimate a range of meshes with common interfaces (approximate coplanar/collinear with PCA)\n";
|
||||
if (!PMP::decimate_meshes_with_common_interfaces_and_pca_for_coplanarity(meshes, 0.99, -0.99))
|
||||
std::cerr << "ERROR: decimate failed to remesh some patches\n";
|
||||
std::cout << " output written to";
|
||||
for (int i=0; i<nb_meshes_range; ++i)
|
||||
{
|
||||
std::stringstream ss;
|
||||
ss << "out_ar_pca" << i+1 << ".off";
|
||||
std::ofstream out(ss.str().c_str());
|
||||
out << meshes[i];
|
||||
std::cout << " out_ar_pca" << i+1 << ".off";
|
||||
}
|
||||
std::cout << "\n";
|
||||
for (int i=0; i<nb_meshes_range; ++i)
|
||||
assert(is_valid_polygon_mesh(meshes[i]));
|
||||
|
||||
// two examples that fails with approximate but works with PCA
|
||||
//PCA first
|
||||
{
|
||||
Surface_mesh sm;
|
||||
std::cout << "decimate of data/decimation/sphere.off using PCA\n";
|
||||
std::ifstream in("data/decimation/sphere.off");
|
||||
in >> sm;
|
||||
if (!PMP::decimate_with_pca_for_coplanarity(sm,1e-5,-0.99))
|
||||
{
|
||||
std::cerr << "ERROR: decimate failed to remesh some patches\n";
|
||||
}
|
||||
std::ofstream out("sphere_pca.off");
|
||||
out << sm;
|
||||
std::cout << "output written to sphere_pca.off\n";
|
||||
assert(is_valid_polygon_mesh(sm));
|
||||
}
|
||||
{
|
||||
Surface_mesh sm;
|
||||
std::cout << "decimate of data/decimation/sphere_selection.off using PCA\n";
|
||||
std::ifstream in("data/decimation/sphere_selection.off");
|
||||
in >> sm;
|
||||
if (!PMP::decimate_with_pca_for_coplanarity(sm,1e-5,-0.99))
|
||||
std::cerr << "decimate failed to remesh some patches\n";
|
||||
std::ofstream out("sphere_selection_pca.off");
|
||||
out << sm;
|
||||
std::cout << "output written to sphere_selection_pca.off\n";
|
||||
assert(is_valid_polygon_mesh(sm));
|
||||
}
|
||||
#endif
|
||||
// Approximation then
|
||||
{
|
||||
Surface_mesh sm;
|
||||
std::cout << "decimate of data/decimation/sphere.off using approximate predicates\n";
|
||||
std::ifstream in("data/decimation/sphere.off");
|
||||
in >> sm;
|
||||
if (!PMP::remesh_planar_patches(sm, CGAL::parameters::cosinus_threshold(-0.99)))
|
||||
std::cerr << "decimate failed to remesh some patches\n";
|
||||
}
|
||||
{
|
||||
Surface_mesh sm;
|
||||
std::cout << "decimate of data/decimation/sphere_selection.off using approximate predicates\n";
|
||||
std::ifstream in("data/decimation/sphere_selection.off");
|
||||
in >> sm;
|
||||
if (!PMP::remesh_planar_patches(sm, CGAL::parameters::cosinus_threshold(-0.99)))
|
||||
std::cout << "decimate failed to remesh some patches (this is the expected behavior)\n";
|
||||
std::ofstream out("sphere_selection_app.off");
|
||||
out << sm;
|
||||
std::cout << "output written to sphere_selection_app.off\n";
|
||||
assert(is_valid_polygon_mesh(sm));
|
||||
}
|
||||
|
||||
assert(OK);
|
||||
|
||||
return 0 ;
|
||||
}
|
||||
|
|
@ -143,6 +143,7 @@ CGAL_add_named_parameter(mesh_facet_angle_t, mesh_facet_angle, mesh_facet_angle)
|
|||
CGAL_add_named_parameter(mesh_facet_distance_t, mesh_facet_distance, mesh_facet_distance)
|
||||
CGAL_add_named_parameter(mesh_facet_topology_t, mesh_facet_topology, mesh_facet_topology)
|
||||
CGAL_add_named_parameter(polyline_constraints_t, polyline_constraints, polyline_constraints)
|
||||
CGAL_add_named_parameter(cosinus_threshold_t, cosinus_threshold, cosinus_threshold)
|
||||
|
||||
// List of named parameters that we use in the package 'Surface Mesh Simplification'
|
||||
CGAL_add_named_parameter(get_cost_policy_t, get_cost_policy, get_cost)
|
||||
|
|
|
|||
|
|
@ -358,10 +358,8 @@ private:
|
|||
it = indices.begin(), end = indices.end();
|
||||
it != end; ++it) {
|
||||
v_hint = insert(points[*it], hint);
|
||||
if(v_hint!=Vertex_handle()) {
|
||||
v_hint->info()=infos[*it];
|
||||
hint=v_hint->face();
|
||||
}
|
||||
v_hint->info()=infos[*it];
|
||||
hint=v_hint->face();
|
||||
}
|
||||
|
||||
return this->number_of_vertices() - n;
|
||||
|
|
|
|||
Loading…
Reference in New Issue