mirror of https://github.com/CGAL/cgal
no border and non click-able images (shuld solve the ref. pb)
This commit is contained in:
parent
25c3aaf066
commit
0daa115357
|
|
@ -96,16 +96,15 @@ The $\theta$-coordinates of meridians $A_0$ and $A_1$ are $\theta_0$ and $\theta
|
|||
\end{ccTexOnly}
|
||||
|
||||
\begin{ccHtmlOnly}
|
||||
<CENTER>
|
||||
<A HREF="def_meridian.png">
|
||||
<img src="def_meridian.png"
|
||||
alt="Definition of two meridians on $S$, a sphere of center $c$.
|
||||
The intersection of the plane $P$ (passing through the two poles of $S$)
|
||||
and the sphere $S$ is a circle. The two poles of $S$ split that circle
|
||||
into two circular arcs $A_0$ and $A_1$, each being a meridian of $S$.
|
||||
The $\theta$-coordinates of meridians $A_0$ and $A_1$ are $\theta_0$
|
||||
and $\theta_1= \theta_0 + \pi$ respectively."></A><P>
|
||||
</CENTER>
|
||||
<CENTER>
|
||||
<img border=0 src="def_meridian.png"
|
||||
alt="Definition of two meridians on $S$, a sphere of center $c$.
|
||||
The intersection of the plane $P$ (passing through the two poles of $S$)
|
||||
and the sphere $S$ is a circle. The two poles of $S$ split that circle
|
||||
into two circular arcs $A_0$ and $A_1$, each being a meridian of $S$.
|
||||
The $\theta$-coordinates of meridians $A_0$ and $A_1$ are $\theta_0$
|
||||
and $\theta_1= \theta_0 + \pi$ respectively.">
|
||||
</CENTER>
|
||||
\end{ccHtmlOnly}
|
||||
|
||||
|
||||
|
|
@ -129,12 +128,11 @@ definitions are illustrated on Fig.~\ref{fig-def-circles}.
|
|||
|
||||
|
||||
\begin{ccHtmlOnly}
|
||||
<CENTER>
|
||||
<A HREF="def_circles_extreme_pt.png">
|
||||
<img src="def_circles_extreme_pt.png"
|
||||
alt="The four types of circles on a sphere. Black dots are the
|
||||
$\theta$-extremal points."></A><P>
|
||||
</CENTER>
|
||||
<CENTER>
|
||||
<img border=0 src="def_circles_extreme_pt.png"
|
||||
alt="The four types of circles on a sphere. Black dots are the
|
||||
$\theta$-extremal points.">
|
||||
</CENTER>
|
||||
\end{ccHtmlOnly}
|
||||
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue