no border and non click-able images (shuld solve the ref. pb)

This commit is contained in:
Sébastien Loriot 2009-09-14 13:38:06 +00:00
parent 25c3aaf066
commit 0daa115357
1 changed files with 14 additions and 16 deletions

View File

@ -96,16 +96,15 @@ The $\theta$-coordinates of meridians $A_0$ and $A_1$ are $\theta_0$ and $\theta
\end{ccTexOnly}
\begin{ccHtmlOnly}
<CENTER>
<A HREF="def_meridian.png">
<img src="def_meridian.png"
alt="Definition of two meridians on $S$, a sphere of center $c$.
The intersection of the plane $P$ (passing through the two poles of $S$)
and the sphere $S$ is a circle. The two poles of $S$ split that circle
into two circular arcs $A_0$ and $A_1$, each being a meridian of $S$.
The $\theta$-coordinates of meridians $A_0$ and $A_1$ are $\theta_0$
and $\theta_1= \theta_0 + \pi$ respectively."></A><P>
</CENTER>
<CENTER>
<img border=0 src="def_meridian.png"
alt="Definition of two meridians on $S$, a sphere of center $c$.
The intersection of the plane $P$ (passing through the two poles of $S$)
and the sphere $S$ is a circle. The two poles of $S$ split that circle
into two circular arcs $A_0$ and $A_1$, each being a meridian of $S$.
The $\theta$-coordinates of meridians $A_0$ and $A_1$ are $\theta_0$
and $\theta_1= \theta_0 + \pi$ respectively.">
</CENTER>
\end{ccHtmlOnly}
@ -129,12 +128,11 @@ definitions are illustrated on Fig.~\ref{fig-def-circles}.
\begin{ccHtmlOnly}
<CENTER>
<A HREF="def_circles_extreme_pt.png">
<img src="def_circles_extreme_pt.png"
alt="The four types of circles on a sphere. Black dots are the
$\theta$-extremal points."></A><P>
</CENTER>
<CENTER>
<img border=0 src="def_circles_extreme_pt.png"
alt="The four types of circles on a sphere. Black dots are the
$\theta$-extremal points.">
</CENTER>
\end{ccHtmlOnly}