mirror of https://github.com/CGAL/cgal
manual bugfix (ccHowToCiteCgal)
This commit is contained in:
parent
2cd8af5d42
commit
0e3d6b8143
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Alpha Shapes\label{Pkg:AlphaShape2}}
|
||||
\ccHowToCiteCgal{cgal:d-as2-06}
|
||||
\ccPkgHowToCiteCgal{cgal:d-as2-06}
|
||||
\ccPkgSummary{
|
||||
This package offers a data structure encoding the whole family of alpha-complexes
|
||||
related to a given 2D Delaunay or regular triangulation. In particular, the data structure
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Alpha Shapes\label{Pkg:AlphaShapes3}}
|
||||
\ccHowToCiteCgal{cgal:d-as3-06}
|
||||
\ccPkgHowToCiteCgal{cgal:d-as3-06}
|
||||
\ccPkgSummary{This package offers a data structure encoding the whole family of alpha-complexes
|
||||
related to a given 3D Delaunay or regular triangulation. In particular, the data structure
|
||||
allows to retrieve the alpha-complex for any alpha value, the whole spectrum of critical
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Apollonius Graphs (Delaunay Graphs of Disks)\label{Pkg::ApolloniusGraph2}}
|
||||
\ccHowToCiteCgal{cgal:k-ag2-06}
|
||||
\ccPkgHowToCiteCgal{cgal:k-ag2-06}
|
||||
\ccPkgSummary{
|
||||
Algorithms for computing the Apollonius
|
||||
graph in two dimensions. The Apollonius graph is the dual of the
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{2D Arrangement\label{Pkg:Arrangement2}}
|
||||
\ccHowToCiteCgal{cgal:wfzh-a2-06}
|
||||
\ccPkgHowToCiteCgal{cgal:wfzh-a2-06}
|
||||
\ccPkgSummary{
|
||||
This package can be used to construct, maintain, alter, and display
|
||||
arrangements in the plane. Once an arrangement is constructed, the
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{2D Intersection of Curves\label{Pkg:IntersectionOfCurves2}}
|
||||
\ccHowToCiteCgal{cgal:wfz-ic2-06}
|
||||
\ccPkgHowToCiteCgal{cgal:wfz-ic2-06}
|
||||
\ccPkgSummary{This package provides three free functions implemented
|
||||
based on the sweep-line paradigm: given a collection of input curves,
|
||||
compute all intersection points, compute the set of subcurves that are
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Regularized Boolean Set-Operations\label{Pkg:BooleanSetOperations2}}
|
||||
\ccHowToCiteCgal{cgal:fwzh-rbso2-06}
|
||||
\ccPkgHowToCiteCgal{cgal:fwzh-rbso2-06}
|
||||
\ccPkgSummary{
|
||||
This package consists of the implementation of Boolean set-operations
|
||||
on point sets bounded by weakly x-monotone curves in 2-dimensional
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Intersecting Sequences of dD Iso-oriented Boxes\label{Pkg:BoxIntersectionD}}
|
||||
\ccHowToCiteCgal{cgal:kmz-isiobd-06}
|
||||
\ccPkgHowToCiteCgal{cgal:kmz-isiobd-06}
|
||||
\ccPkgSummary{
|
||||
An efficient algorithm for finding all intersecting pairs for large
|
||||
numbers of iso-oriented boxes, in order to apply a user defined callback
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Convex Hulls and Extreme Points \label{Pkg:ConvexHull2}}
|
||||
\ccHowToCiteCgal{cgal:hs-chep2-06}
|
||||
\ccPkgHowToCiteCgal{cgal:hs-chep2-06}
|
||||
\ccPkgSummary{This package provides functions
|
||||
for computing convex hulls in two dimensions as well as functions for
|
||||
checking if sets of points are strongly convex are not. There are also
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Convex Hulls\label{Pkg:ConvexHull3}}
|
||||
\ccHowToCiteCgal{cgal:hs-ch3-06}
|
||||
\ccPkgHowToCiteCgal{cgal:hs-ch3-06}
|
||||
\ccPkgSummary{This package provides functions
|
||||
for computing convex hulls in three dimensions as well as functions
|
||||
for checking if sets of points are strongly convex are not. One can
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{2D Circular Kernel \label{Pkg:CircularKernel2}}
|
||||
\ccHowToCiteCgal{cgal:pt-cc2-06}
|
||||
\ccPkgHowToCiteCgal{cgal:pt-cc2-06}
|
||||
\ccPkgSummary{
|
||||
This package is an extension of the linear \cgal\ Kernel. It offers
|
||||
functionalities on circles, circular arcs and line segments in the
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Halfedge Data Structures \label{Pkg:HDS}}
|
||||
\ccHowToCiteCgal{cgal:k-hds-06}
|
||||
\ccPkgHowToCiteCgal{cgal:k-hds-06}
|
||||
\ccPkgSummary{A halfedge data structure is an edge-centered data structure
|
||||
capable of maintaining incidence informations of vertices, edges and
|
||||
faces, for example for planar maps, polyhedra, or other orientable,
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D and Surface Function Interpolation\label{Pkg:Interpolation2}}
|
||||
\ccHowToCiteCgal{cgal:f-i-06}
|
||||
\ccPkgHowToCiteCgal{cgal:f-i-06}
|
||||
\ccPkgSummary{
|
||||
This package implements different methods for scattered data
|
||||
interpolation: Given measures of a function on a set of discrete data
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Interval Skip List\label{Pkg:IntervalSkipList}}
|
||||
\ccHowToCiteCgal{cgal:f-isl-06}
|
||||
\ccPkgHowToCiteCgal{cgal:f-isl-06}
|
||||
\ccPkgSummary{An interval skip list is a data strucure for finding all
|
||||
intervals that contain a point, and for stabbing queries, that is for
|
||||
answering the question whether a given point is contained in an
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D and 3D Linear Kernel\label{Pkg:Kernel23}}
|
||||
\ccHowToCiteCgal{cgal:bfghhkps-k23-06}
|
||||
\ccPkgHowToCiteCgal{cgal:bfghhkps-k23-06}
|
||||
\ccPkgSummary{ This package contains kernels each containing objects of
|
||||
constant size, such as point, vector, direction, line, ray, segment, circle
|
||||
as well as predicates and constructions for these objects. The kernels
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{dD Convex Hulls and Delaunay Triangulations\label{Pkg:ConvexHullD}}
|
||||
\ccHowToCiteCgal{cgal:hs-chdt3-06}
|
||||
\ccPkgHowToCiteCgal{cgal:hs-chdt3-06}
|
||||
\ccPkgSummary{This package provides functions
|
||||
for computing convex hulls and Delaunay triagulations in $d$-dimensional Euclidean space.}
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Boolean Operations on Nef Polygons \label{Pkg:Nef2}}
|
||||
\ccHowToCiteCgal{cgal:s-bonp2-06}
|
||||
\ccPkgHowToCiteCgal{cgal:s-bonp2-06}
|
||||
\ccPkgSummary{
|
||||
A Nef polygon is any set that can be obtained from a
|
||||
finite set of open halfspaces by set complement and set intersection
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Boolean Operations on Nef Polyhedra}
|
||||
\ccHowToCiteCgal{cgal:s-bonp3-06}
|
||||
\ccPkgHowToCiteCgal{cgal:s-bonp3-06}
|
||||
\ccPkgSummary{
|
||||
3D Nef polyhedra, are a
|
||||
boundary representation for cell-complexes bounded by halfspaces that
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Boolean Operations on Nef Polygons Embedded on the Sphere \label{Pkg:NefS2}}
|
||||
\ccHowToCiteCgal{cgal:s-bonpes2-06}
|
||||
\ccPkgHowToCiteCgal{cgal:s-bonpes2-06}
|
||||
\ccPkgSummary{This package offers the equivalent to 2D Nef Polygons in the plane.
|
||||
Here halfplanes correspond to half spheres delimited by great circles. }
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Geometric Optimisation \label{Pkg:Optimisation}}
|
||||
\ccHowToCiteCgal{cgal:fghhps-go-06}
|
||||
\ccPkgHowToCiteCgal{cgal:fghhps-go-06}
|
||||
\ccPkgSummary{
|
||||
This package provides algorithms for computing bounding volumes, inscribed areas and polytope distances.
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Search Structures\label{Pkg:PointSet2}}
|
||||
\ccHowToCiteCgal{cgal:b-ss2-06}
|
||||
\ccPkgHowToCiteCgal{cgal:b-ss2-06}
|
||||
\ccPkgSummary{
|
||||
This package supports circular, triangular, and isorectangular range search
|
||||
queries as well as (k) nearest neighbor search queries on 2D point sets.}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Polygon\label{Pkg:Polygon2}}
|
||||
\ccHowToCiteCgal{cgal:gw-p2-06}
|
||||
\ccPkgHowToCiteCgal{cgal:gw-p2-06}
|
||||
\ccPkgSummary{
|
||||
This package provides a polygon class and operations on
|
||||
sequences of points, like the simplicity test.}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Polyhedral Surface \label{Pkg:Polyhedron}}
|
||||
\ccHowToCiteCgal{cgal:k-ps-06}
|
||||
\ccPkgHowToCiteCgal{cgal:k-ps-06}
|
||||
\ccPkgSummary{Polyhedral surfaces in three dimensions are composed of
|
||||
vertices, edges, facets and an incidence relationship on them. The
|
||||
organization beneath is a halfedge data structure, which restricts the
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Principal Component Analysis\label{Pkg:PrincipalComponentAnalysisD}}
|
||||
\ccHowToCiteCgal{cgal:ap-pcad-06}
|
||||
\ccPkgHowToCiteCgal{cgal:ap-pcad-06}
|
||||
\ccPkgSummary{
|
||||
This package provides functions to compute global informations on the
|
||||
shape of a set of 2D or 3D objects such as points. It provides the
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{dD Range and Segment Trees \label{Pkg:RangeSegmentTreesD}}
|
||||
\ccHowToCiteCgal{cgal:n-rstd-06}
|
||||
\ccPkgHowToCiteCgal{cgal:n-rstd-06}
|
||||
\ccPkgSummary{Range and segment trees allow to perform window queries on point
|
||||
sets, and to enumerate all ranges enclosing a query point. The provided data structures
|
||||
are static and they are optimized for fast queries.}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Segment Delaunay Graph \label{Pkg::SegmentDelaunayGraph2}}
|
||||
\ccHowToCiteCgal{cgal:k-sdg2-06}
|
||||
\ccPkgHowToCiteCgal{cgal:k-sdg2-06}
|
||||
\ccPkgSummary{
|
||||
An algorithm for computing the dual of a Voronoi diagram of a set
|
||||
of segments under the Euclidean metric. It is a generalization of the
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Snap Rounding \label{Pkg:SnapRounding2}}
|
||||
\ccHowToCiteCgal{cgal:p-sr2-06}
|
||||
\ccPkgHowToCiteCgal{cgal:p-sr2-06}
|
||||
\ccPkgSummary{
|
||||
Snap Rounding is a well known method for converting
|
||||
arbitrary-precision arrangements of segments into a fixed-precision
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{dD Spatial Searching\label{Pkg:SpatialSearchingD}}
|
||||
\ccHowToCiteCgal{cgal:tf-ssd-06}
|
||||
\ccPkgHowToCiteCgal{cgal:tf-ssd-06}
|
||||
\ccPkgSummary{
|
||||
|
||||
This package implements exact and approximate distance browsing by
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Straight Skeleton and Polygon Offsetting \label{Pkg:StraightSkeleton2}}
|
||||
\ccHowToCiteCgal{cgal:c-sspo2-06}
|
||||
\ccPkgHowToCiteCgal{cgal:c-sspo2-06}
|
||||
\ccPkgSummary{This package implements an algorithm to construct a halfedge data
|
||||
structure representing the straight skeleton in the interior of 2D
|
||||
polygon with holes and an algorithm to construct inward offset
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Placement of Streamlines\label{Pkg:PlacementOfStreamlines2}}
|
||||
\ccHowToCiteCgal{cgal:m-ps-06}
|
||||
\ccPkgHowToCiteCgal{cgal:m-ps-06}
|
||||
\ccPkgSummary{
|
||||
Visualizing vector fields is important for many application domains. A
|
||||
good way to do it is to generate streamlines that describe the flow
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Surface Subdivision Methods\label{Pkg:SurfaceSubdivisionMethods3}}
|
||||
\ccHowToCiteCgal{cgal:s-ssm2-06}
|
||||
\ccPkgHowToCiteCgal{cgal:s-ssm2-06}
|
||||
\ccPkgSummary{
|
||||
Subdivision methods recursively refine a control mesh and generate
|
||||
points approximating the limit surface. This package consists of four
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Planar Parameterization of Triangulated Surface Meshes\label{Pkg:SurfaceParameterization}}
|
||||
\ccHowToCiteCgal{cgal:sal-pptsm2-06}
|
||||
\ccPkgHowToCiteCgal{cgal:sal-pptsm2-06}
|
||||
\ccPkgSummary{Parameterizing a surface amounts to finding a one-to-one mapping from
|
||||
a suitable domain to the surface. In this package, we focus on
|
||||
triangulated surfaces that are homeomorphic to a disk and on piecewise
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Surface Mesher\label{Pkg:SurfaceMesher3}}
|
||||
\ccHowToCiteCgal{cgal:ry-sm2-06}
|
||||
\ccPkgHowToCiteCgal{cgal:ry-sm2-06}
|
||||
\ccPkgSummary{
|
||||
This package provides functions to generate
|
||||
surface meshes that interpolate
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Triangulation Data Structure \label{Pkg:TDS2}}
|
||||
\ccHowToCiteCgal{cgal:py-tds2-06}
|
||||
\ccPkgHowToCiteCgal{cgal:py-tds2-06}
|
||||
\ccPkgSummary{
|
||||
This package provides a data structure to store a two-dimensional
|
||||
triangulation that has the topology of a two-dimensional sphere.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Triangulation \label{Pkg:Triangulation2}}
|
||||
\ccHowToCiteCgal{cgal:y-t2-06}
|
||||
\ccPkgHowToCiteCgal{cgal:y-t2-06}
|
||||
\ccPkgSummary{This package allows to build and handle
|
||||
various triangulations for point sets two dimensions.
|
||||
Any CGAL triangulation covers the convex hull of its
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Triangulation Data Structure \label{Pkg:TDS3}}
|
||||
\ccHowToCiteCgal{cgal:pt-tds3-06}
|
||||
\ccPkgHowToCiteCgal{cgal:pt-tds3-06}
|
||||
\ccPkgSummary{
|
||||
This package provides a data structure to store a three-dimensional
|
||||
triangulation that has the topology of a three-dimensional sphere.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Triangulations\label{Pkg:Triangulation3}}
|
||||
\ccHowToCiteCgal{cgal:pt-t3-06}
|
||||
\ccPkgHowToCiteCgal{cgal:pt-t3-06}
|
||||
\ccPkgSummary{
|
||||
This package allows to build and handle
|
||||
triangulations for point sets in three dimensions.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Voronoi Diagram \label{Pkg::VoronoiDiagram2}}
|
||||
\ccHowToCiteCgal{cgal:r-ctm2-06}
|
||||
\ccPkgHowToCiteCgal{cgal:r-ctm2-06}
|
||||
\ccPkgSummary{
|
||||
The 2D Voronoi diagram package provides an adaptor that adapts a
|
||||
2-dimensional triangulated Delaunay graph to the corresponding a
|
||||
|
|
|
|||
Loading…
Reference in New Issue