mirror of https://github.com/CGAL/cgal
move Vector into package namespace
This commit is contained in:
parent
59ba28d8ef
commit
0f00f06fd4
|
|
@ -28,11 +28,13 @@
|
||||||
namespace CGAL {
|
namespace CGAL {
|
||||||
namespace internal {
|
namespace internal {
|
||||||
|
|
||||||
|
namespace Surface_modeling{
|
||||||
typedef CGAL::Simple_cartesian<double>::Vector_3 Vector;
|
typedef CGAL::Simple_cartesian<double>::Vector_3 Vector;
|
||||||
|
} //end of namespace Surface_modeling
|
||||||
|
|
||||||
template<class Point>
|
template<class Point>
|
||||||
Vector to_vector(const Point& b, const Point& a) {
|
Surface_modeling::Vector to_vector(const Point& b, const Point& a) {
|
||||||
return Vector(a[0] - b[0], a[1] - b[1], a[2] - b[2]);
|
return Surface_modeling::Vector(a[0] - b[0], a[1] - b[1], a[2] - b[2]);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns the cotangent value of half angle v0 v1 v2
|
// Returns the cotangent value of half angle v0 v1 v2
|
||||||
|
|
@ -51,11 +53,11 @@ public:
|
||||||
template<class VertexPointMap>
|
template<class VertexPointMap>
|
||||||
double operator()(vertex_descriptor v0, vertex_descriptor v1, vertex_descriptor v2, VertexPointMap vpm)
|
double operator()(vertex_descriptor v0, vertex_descriptor v1, vertex_descriptor v2, VertexPointMap vpm)
|
||||||
{
|
{
|
||||||
const Vector& a = to_vector(get(vpm, v1), get(vpm, v0));
|
const Surface_modeling::Vector& a = to_vector(get(vpm, v1), get(vpm, v0));
|
||||||
const Vector& b = to_vector(get(vpm, v1), get(vpm, v2));
|
const Surface_modeling::Vector& b = to_vector(get(vpm, v1), get(vpm, v2));
|
||||||
|
|
||||||
double dot_ab = a*b;
|
double dot_ab = a*b;
|
||||||
Vector cross_ab = CGAL::cross_product(a, b);
|
Surface_modeling::Vector cross_ab = CGAL::cross_product(a, b);
|
||||||
double divider = std::sqrt(cross_ab*cross_ab);
|
double divider = std::sqrt(cross_ab*cross_ab);
|
||||||
|
|
||||||
if(divider == 0 /*|| divider != divider*/)
|
if(divider == 0 /*|| divider != divider*/)
|
||||||
|
|
@ -207,7 +209,7 @@ public:
|
||||||
{
|
{
|
||||||
vertex_descriptor v0 = target(he, halfedge_graph);
|
vertex_descriptor v0 = target(he, halfedge_graph);
|
||||||
vertex_descriptor v1 = source(he, halfedge_graph);
|
vertex_descriptor v1 = source(he, halfedge_graph);
|
||||||
Vector vec(v1->point(), v0->point());
|
Surface_modeling::Vector vec(v1->point(), v0->point());
|
||||||
double norm = std::sqrt( vec.squared_length() );
|
double norm = std::sqrt( vec.squared_length() );
|
||||||
|
|
||||||
// Only one triangle for border edges
|
// Only one triangle for border edges
|
||||||
|
|
@ -240,9 +242,9 @@ private:
|
||||||
// Returns the tangent value of half angle v0_v1_v2/2
|
// Returns the tangent value of half angle v0_v1_v2/2
|
||||||
double half_tan_value(vertex_descriptor v0, vertex_descriptor v1, vertex_descriptor v2)
|
double half_tan_value(vertex_descriptor v0, vertex_descriptor v1, vertex_descriptor v2)
|
||||||
{
|
{
|
||||||
Vector vec0(v2->point(), v1->point());
|
Surface_modeling::Vector vec0(v2->point(), v1->point());
|
||||||
Vector vec1(v0->point(), v2->point());
|
Surface_modeling::Vector vec1(v0->point(), v2->point());
|
||||||
Vector vec2(v1->point(), v0->point());
|
Surface_modeling::Vector vec2(v1->point(), v0->point());
|
||||||
double e0_square = vec0.squared_length();
|
double e0_square = vec0.squared_length();
|
||||||
double e1_square = vec1.squared_length();
|
double e1_square = vec1.squared_length();
|
||||||
double e2_square = vec2.squared_length();
|
double e2_square = vec2.squared_length();
|
||||||
|
|
@ -258,8 +260,8 @@ private:
|
||||||
// My deviation built on Meyer_02
|
// My deviation built on Meyer_02
|
||||||
double half_tan_value_2(vertex_descriptor v0, vertex_descriptor v1, vertex_descriptor v2)
|
double half_tan_value_2(vertex_descriptor v0, vertex_descriptor v1, vertex_descriptor v2)
|
||||||
{
|
{
|
||||||
Vector a(v1->point(), v0->point());
|
Surface_modeling::Vector a(v1->point(), v0->point());
|
||||||
Vector b(v1->point(), v2->point());
|
Surface_modeling::Vector b(v1->point(), v2->point());
|
||||||
double dot_ab = a[0]*b[0] + a[1]*b[1] + a[2]*b[2];
|
double dot_ab = a[0]*b[0] + a[1]*b[1] + a[2]*b[2];
|
||||||
double dot_aa = a.squared_length();
|
double dot_aa = a.squared_length();
|
||||||
double dot_bb = b.squared_length();
|
double dot_bb = b.squared_length();
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue