diff --git a/Periodic_4_hyperbolic_triangulation_2/doc/Periodic_4_hyperbolic_triangulation_2/Doxyfile.in b/Periodic_4_hyperbolic_triangulation_2/doc/Periodic_4_hyperbolic_triangulation_2/Doxyfile.in index 9f9187d23b2..d163c185af0 100644 --- a/Periodic_4_hyperbolic_triangulation_2/doc/Periodic_4_hyperbolic_triangulation_2/Doxyfile.in +++ b/Periodic_4_hyperbolic_triangulation_2/doc/Periodic_4_hyperbolic_triangulation_2/Doxyfile.in @@ -12,7 +12,8 @@ HTML_EXTRA_FILES = ${CGAL_PACKAGE_DOC_DIR}/fig/octagon_identification.svg \ ${CGAL_PACKAGE_DOC_DIR}/fig/dt-construction.svg \ ${CGAL_PACKAGE_DOC_DIR}/fig/periodic_face.svg \ ${CGAL_PACKAGE_DOC_DIR}/fig/ds_cgal.svg \ - ${CGAL_PACKAGE_DOC_DIR}/fig/dummy-points.png + ${CGAL_PACKAGE_DOC_DIR}/fig/dummy-points.png \ + ${CGAL_PACKAGE_DOC_DIR}/fig/non-triangulation.svg \ HTML_EXTRA_STYLESHEET = ${CGAL_PACKAGE_DOC_DIR}/css/customstyle.css diff --git a/Periodic_4_hyperbolic_triangulation_2/doc/Periodic_4_hyperbolic_triangulation_2/Periodic_4_hyperbolic_triangulation_2.txt b/Periodic_4_hyperbolic_triangulation_2/doc/Periodic_4_hyperbolic_triangulation_2/Periodic_4_hyperbolic_triangulation_2.txt index cd3586bc24c..cecaa7ce518 100644 --- a/Periodic_4_hyperbolic_triangulation_2/doc/Periodic_4_hyperbolic_triangulation_2/Periodic_4_hyperbolic_triangulation_2.txt +++ b/Periodic_4_hyperbolic_triangulation_2/doc/Periodic_4_hyperbolic_triangulation_2/Periodic_4_hyperbolic_triangulation_2.txt @@ -237,6 +237,19 @@ Some point sets do not admit a triangulation of \f$\mathcal M\f$. For instance, a single point does not define a triangulation of \f$\mathcal M\f$, as the result would not be a simplicial complex. \cgalModifEnd + +\cgalFigureAnchor{P4HNonSimplicialExample} +
+ +
+\cgalFigureCaptionBegin{P4HNonSimplicialExample} + Example of a non-simplicial decomposition of the Bolza surface. Note that with the three + points in the central octagon, we obtain a decomposition that is not a triangulation, + since it is non-simplicial. On the figure a few cycles of length 2 are shown in color. Such + cycles are double edges in the triangulation. Note also the pink edge between the two blue + vertices: it corresponds to a loop on the surface. +\cgalFigureCaptionEnd + For this reason, we initialize a triangulation of \f$\mathcal M\f$ with a predetermined set of 14 points, called dummy points, whose triangulation in \f$\mathcal M\f$ is a simplicial complex and has the empty circle property. The set of dummy points has been proposed in