add face variance map

This commit is contained in:
Julian Komaromy 2021-07-12 16:51:34 +02:00
parent 3d8f6281f7
commit 119fea4eb0
1 changed files with 43 additions and 28 deletions

View File

@ -22,6 +22,10 @@
#include <CGAL/Surface_mesh_simplification/Policies/Edge_collapse/internal/GarlandHeckbert_plane_quadrics.h>
#include <CGAL/Polygon_mesh_processing/compute_normal.h>
#include <CGAL/boost/graph/Named_function_parameters.h>
//CGAL_add_named_parameter(face_variance_map_t, face_variance_map, face_variance_map);
namespace CGAL {
namespace Surface_mesh_simplification {
@ -29,7 +33,10 @@ namespace Surface_mesh_simplification {
// takes the derived class as template argument - see "CRTP"
//
// derives from cost_base and placement_base
template<typename TriangleMesh, typename GeomTraits>
template<typename TriangleMesh, typename GeomTraits, typename
FaceVarianceMap = Constant_property_map<
typename boost::graph_traits<TriangleMesh>::face_descriptor, typename GeomTraits::FT
>>
class GarlandHeckbert_probabilistic_policies :
public internal::GarlandHeckbert_plane_edges<TriangleMesh, GeomTraits>,
public internal::GarlandHeckbert_invertible_optimizer<GeomTraits>,
@ -50,9 +57,14 @@ class GarlandHeckbert_probabilistic_policies :
GarlandHeckbert_probabilistic_policies<TriangleMesh, GeomTraits>
>
{
typedef typename GeomTraits::FT FT;
typedef typename boost::graph_traits<TriangleMesh>::face_descriptor face_descriptor;
typedef typename boost::property_traits<FaceVarianceMap>::value_type Face_variance;
public:
typedef typename GeomTraits::FT FT;
typedef typename Eigen::Matrix<FT, 4, 4, Eigen::DontAlign> GH_matrix;
typedef CGAL::dynamic_vertex_property_t<GH_matrix> Cost_property;
@ -95,45 +107,47 @@ class GarlandHeckbert_probabilistic_policies :
// initialize the private variable vcm so it's lifetime is bound to that of the policy's
vcm_ = get(Cost_property(), tmesh);
std::tie(normal_variance, mean_variance) = estimate_variances(tmesh, GeomTraits());
FT variance;
std::tie(variance, variance) = estimate_variances(tmesh, GeomTraits());
// initialize both vcms
Cost_base::init_vcm(vcm_);
Placement_base::init_vcm(vcm_);
}
GarlandHeckbert_probabilistic_policies(TriangleMesh& tmesh,
FT dm,
FT sdn,
FT sdp) : Cost_base(dm)
{
// we need positive variances so that we always get an invertible matrix
CGAL_precondition(sdn > 0.0 && sdp > 0.0);
// initialize the private variable vcm so it's lifetime is bound to that of the policy's
// try to initialize the face variance map using the estimated variance
// TODO use the mean variance as well, should be easy to have pairs as value types
face_variance_map = FaceVarianceMap { variance };
}
GarlandHeckbert_probabilistic_policies(TriangleMesh& tmesh, FT dm, const FaceVarianceMap& fvm)
: Cost_base(dm), face_variance_map(fvm)
{
// initialize the private variable vcm so it's lifetime is bound to that of the policy's
vcm_ = get(Cost_property(), tmesh);
// initialize both vcms
Cost_base::init_vcm(vcm_);
Placement_base::init_vcm(vcm_);
}
template<typename VPM, typename TM>
template<typename VPM>
Mat_4 construct_quadric_from_face(
const VPM& point_map,
const TM& tmesh,
typename boost::graph_traits<TM>::face_descriptor f,
const TriangleMesh& tmesh,
face_descriptor f,
const GeomTraits& gt) const
{
const Vector_3 normal = internal::common::construct_unit_normal_from_face<
GeomTraits, VPM, TM>(point_map, tmesh, f, gt);
GeomTraits, VPM, TriangleMesh>(point_map, tmesh, f, gt);
const Point_3 p = get(point_map, source(halfedge(f, tmesh), tmesh));
return construct_quadric_from_normal(normal, p, gt);
FT variance = get(face_variance_map, f);
return construct_quadric_from_normal(normal, p, gt, variance, variance);
}
const Get_cost& get_cost() const { return *this; }
const Get_placement& get_placement() const { return *this; }
private:
@ -142,7 +156,9 @@ class GarlandHeckbert_probabilistic_policies :
Mat_4 construct_quadric_from_normal(
const Vector_3& mean_normal,
const Point_3& point,
const GeomTraits& gt) const
const GeomTraits& gt,
FT face_nv,
FT face_mv) const
{
auto squared_length = gt.compute_squared_length_3_object();
auto dot_product = gt.compute_scalar_product_3_object();
@ -155,7 +171,7 @@ class GarlandHeckbert_probabilistic_policies :
const Eigen::Matrix<FT, 3, 1> mean_n_col{mean_normal.x(), mean_normal.y(), mean_normal.z()};
// start by setting values along the diagonal
Mat_4 mat = normal_variance * Mat_4::Identity();
Mat_4 mat = face_nv * Mat_4::Identity();
// add outer product of the mean normal with itself
// to the upper left 3x3 block
@ -165,7 +181,7 @@ class GarlandHeckbert_probabilistic_policies :
// 3 values of the last column
// the negative sign comes from the fact that in the paper,
// the b column and row appear with a negative sign
const auto b1 = -(dot_mnmv * mean_normal + normal_variance * mean_vec);
const auto b1 = -(dot_mnmv * mean_normal + face_nv * mean_vec);
const Eigen::Matrix<FT, 3, 1> b {b1.x(), b1.y(), b1.z()};
@ -175,9 +191,9 @@ class GarlandHeckbert_probabilistic_policies :
// set the value in the bottom right corner, we get this by considering
// that we only have single variances given instead of covariance matrices
mat(3, 3) = CGAL::square(dot_mnmv)
+ normal_variance * squared_length(mean_vec)
+ mean_variance * squared_length(mean_normal)
+ 3 * normal_variance * mean_variance;
+ face_nv * squared_length(mean_vec)
+ face_mv * squared_length(mean_normal)
+ 3 * face_nv * face_mv;
return mat;
}
@ -216,8 +232,7 @@ class GarlandHeckbert_probabilistic_policies :
static constexpr FT good_default_variance_unit = 0.05;
private:
FT mean_variance;
FT normal_variance;
FaceVarianceMap face_variance_map;
};
} // namespace Surface_mesh_simplification