mirror of https://github.com/CGAL/cgal
Algebraic_kernel_for_circles (instead of Algebraic_kernel)
Curved_kernel -> Circular_kernel_2
This commit is contained in:
parent
26b3a35d3d
commit
11a13f7417
|
|
@ -1,51 +0,0 @@
|
|||
\begin{ccRefClass}{Circular_kernel_2<LinearKernel,AlgebraicKernelForCircles>}
|
||||
|
||||
\ccInclude{CGAL/Circular_kernel.h}
|
||||
|
||||
\ccIsModel
|
||||
|
||||
\ccc{CircularKernel}
|
||||
|
||||
\ccParameters
|
||||
|
||||
The circular kernel is parameterized by a \ccc{LinearKernel} parameter
|
||||
(and derives from it), in order to reuse all needed functionalities on
|
||||
basic linear objects provided by one of the \cgal\ kernels. It also
|
||||
allows other implementations of these basic functionalities.
|
||||
|
||||
The second parameter, \ccc{AlgebraicKernelForCircles}, is meant to provide the
|
||||
circular kernel with all the algebraic functionalities required for the
|
||||
manipulation of algebraic curves.
|
||||
|
||||
\ccInheritsFrom
|
||||
|
||||
\ccc{LinearKernel}
|
||||
|
||||
\ccTypes
|
||||
|
||||
\ccThree{typedef Circular_arc_point_2<Circular-Kernel>}{Root_of_4xxx}{}
|
||||
\ccThreeToTwo
|
||||
|
||||
The circular kernel uses basic number types of the algebraic kernel:
|
||||
\ccTypedef{typedef AlgebraicKernelForCircles::RT RT;}{Ring number type.}
|
||||
\ccTypedef{typedef AlgebraicKernelForCircles::FT FT;}{Field number type.}
|
||||
In fact, the two number types \ccc{AlgebraicKernelForCircles::RT} and
|
||||
\ccc{LinearKernel::RT} must coincide, as well as
|
||||
\ccc{AlgebraicKernelForCircles::FT} and \ccc{LinearKernel::FT}.
|
||||
|
||||
The following types are available, as well as all the functionality on
|
||||
them described in the \ccc{CircularKernel} concept.
|
||||
|
||||
\ccTypedef{typedef Line_arc_2<Circular_kernel_2> Line_arc_2;}{}
|
||||
\ccGlue
|
||||
\ccTypedef{typedef Circular_arc_2<Circular_kernel_2> Circular_arc_2;}{}
|
||||
\ccGlue
|
||||
\ccTypedef{typedef Circular_arc_point_2<Circular_kernel_2> Circular_arc_point_2;}{}
|
||||
|
||||
\ccSeeAlso
|
||||
|
||||
\ccRefIdfierPage{LinearKernel}\\
|
||||
\ccRefIdfierPage{AlgebraicKernelForCircles}\\
|
||||
\ccRefIdfierPage{CGAL::Exact_circular_kernel_2}
|
||||
|
||||
\end{ccRefClass}
|
||||
|
|
@ -1,17 +0,0 @@
|
|||
\begin{ccRefClass}{Filtered_hexagon_curved_kernel<CircularKernel>}
|
||||
|
||||
\ccDefinition
|
||||
|
||||
This kernel uses an approximation of objects by hexagons to filter the computations.
|
||||
|
||||
\ccInclude{CGAL/Filtered_hexagon_curved_kernel.h}
|
||||
|
||||
\ccIsModel
|
||||
|
||||
\ccc{CircularKernel}
|
||||
|
||||
\ccParameters
|
||||
|
||||
This filtered kernel is parameterized by (and derives from) a \ccc{CircularKernel}.
|
||||
|
||||
\end{ccRefClass}
|
||||
|
|
@ -1,20 +0,0 @@
|
|||
\begin{ccRefClass}{Filtered_interval_circular_kernel<CircularKernel>}
|
||||
|
||||
\ccDefinition
|
||||
|
||||
At first, this kernel uses an approximation of objects by bounding boxes to filter the
|
||||
computations. When the first approximation isn't sufficient to filter the intersect_2
|
||||
functor, it approximates the solutions with more accuracy on operations using
|
||||
interval arithmetic. (this works only with circular arcs and line arcs)
|
||||
|
||||
\ccInclude{CGAL/Filtered_interval_circular_kernel.h}
|
||||
|
||||
\ccIsModel
|
||||
|
||||
\ccc{CircularKernel}
|
||||
|
||||
\ccParameters
|
||||
|
||||
This filtered kernel is parameterized by (and derives from) a \ccc{CircularKernel}.
|
||||
|
||||
\end{ccRefClass}
|
||||
Loading…
Reference in New Issue