Algebraic_kernel_for_circles (instead of Algebraic_kernel)

Curved_kernel -> Circular_kernel_2
This commit is contained in:
Pedro Machado Manhaes de Castro 2006-08-25 11:51:36 +00:00
parent 26b3a35d3d
commit 11a13f7417
3 changed files with 0 additions and 88 deletions

View File

@ -1,51 +0,0 @@
\begin{ccRefClass}{Circular_kernel_2<LinearKernel,AlgebraicKernelForCircles>}
\ccInclude{CGAL/Circular_kernel.h}
\ccIsModel
\ccc{CircularKernel}
\ccParameters
The circular kernel is parameterized by a \ccc{LinearKernel} parameter
(and derives from it), in order to reuse all needed functionalities on
basic linear objects provided by one of the \cgal\ kernels. It also
allows other implementations of these basic functionalities.
The second parameter, \ccc{AlgebraicKernelForCircles}, is meant to provide the
circular kernel with all the algebraic functionalities required for the
manipulation of algebraic curves.
\ccInheritsFrom
\ccc{LinearKernel}
\ccTypes
\ccThree{typedef Circular_arc_point_2<Circular-Kernel>}{Root_of_4xxx}{}
\ccThreeToTwo
The circular kernel uses basic number types of the algebraic kernel:
\ccTypedef{typedef AlgebraicKernelForCircles::RT RT;}{Ring number type.}
\ccTypedef{typedef AlgebraicKernelForCircles::FT FT;}{Field number type.}
In fact, the two number types \ccc{AlgebraicKernelForCircles::RT} and
\ccc{LinearKernel::RT} must coincide, as well as
\ccc{AlgebraicKernelForCircles::FT} and \ccc{LinearKernel::FT}.
The following types are available, as well as all the functionality on
them described in the \ccc{CircularKernel} concept.
\ccTypedef{typedef Line_arc_2<Circular_kernel_2> Line_arc_2;}{}
\ccGlue
\ccTypedef{typedef Circular_arc_2<Circular_kernel_2> Circular_arc_2;}{}
\ccGlue
\ccTypedef{typedef Circular_arc_point_2<Circular_kernel_2> Circular_arc_point_2;}{}
\ccSeeAlso
\ccRefIdfierPage{LinearKernel}\\
\ccRefIdfierPage{AlgebraicKernelForCircles}\\
\ccRefIdfierPage{CGAL::Exact_circular_kernel_2}
\end{ccRefClass}

View File

@ -1,17 +0,0 @@
\begin{ccRefClass}{Filtered_hexagon_curved_kernel<CircularKernel>}
\ccDefinition
This kernel uses an approximation of objects by hexagons to filter the computations.
\ccInclude{CGAL/Filtered_hexagon_curved_kernel.h}
\ccIsModel
\ccc{CircularKernel}
\ccParameters
This filtered kernel is parameterized by (and derives from) a \ccc{CircularKernel}.
\end{ccRefClass}

View File

@ -1,20 +0,0 @@
\begin{ccRefClass}{Filtered_interval_circular_kernel<CircularKernel>}
\ccDefinition
At first, this kernel uses an approximation of objects by bounding boxes to filter the
computations. When the first approximation isn't sufficient to filter the intersect_2
functor, it approximates the solutions with more accuracy on operations using
interval arithmetic. (this works only with circular arcs and line arcs)
\ccInclude{CGAL/Filtered_interval_circular_kernel.h}
\ccIsModel
\ccc{CircularKernel}
\ccParameters
This filtered kernel is parameterized by (and derives from) a \ccc{CircularKernel}.
\end{ccRefClass}