diff --git a/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/CGAL/Delaunay_triangulation_on_sphere_2.h b/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/CGAL/Delaunay_triangulation_on_sphere_2.h index ce00270f578..3486cec300e 100644 --- a/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/CGAL/Delaunay_triangulation_on_sphere_2.h +++ b/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/CGAL/Delaunay_triangulation_on_sphere_2.h @@ -81,7 +81,7 @@ public: /*! Inserts the point `p`. If the point `p` coincides with an already existing vertex, this vertex is returned - and the triangulation is not updated. + and the triangulation remains unchanged. The optional parameter `f` is used to give a hint about the location of `p`. */ Vertex_handle insert(const Point& p, Face_handle f = Face_handle()); diff --git a/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/CGAL/Delaunay_triangulation_sphere_traits_2.h b/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/CGAL/Delaunay_triangulation_sphere_traits_2.h index 4d969d77b66..5a93dd25842 100644 --- a/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/CGAL/Delaunay_triangulation_sphere_traits_2.h +++ b/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/CGAL/Delaunay_triangulation_sphere_traits_2.h @@ -62,7 +62,7 @@ public: /// typedef typename K::Compare_xyz_3 Compare_on_sphere_2; - /// If the kernel cannot represent algeabric coordinates exactly, there is a tolerance + /// If the kernel cannot represent algebraic coordinates exactly, there is a tolerance /// around the sphere, and thus different points can actually be the same point. /// This particular equality functor checks if both query points are on the sphere and /// are aligned (and on the same side) with the center of the sphere. @@ -109,7 +109,7 @@ public: /// or whether `p` is within an automatically computed small distance otherwise. bool is_on_sphere(const Point_on_sphere_2& p) const; - /// Returns `false` if `K` can represent algeabric coordinates, or whether the distance + /// Returns `false` if `K` can represent algebraic coordinates, or whether the distance /// between `p` and `q` is lower than \f$ 2 \sqrt{R\delta} \f$ otherwise. bool are_points_too_close(const Point_on_sphere_2& p, const Point_on_sphere_2& q) const; diff --git a/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/CGAL/Geographical_coordinates_traits_2.h b/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/CGAL/Geographical_coordinates_traits_2.h index cd4a9aae882..82668f7bb5e 100644 --- a/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/CGAL/Geographical_coordinates_traits_2.h +++ b/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/CGAL/Geographical_coordinates_traits_2.h @@ -102,7 +102,7 @@ public: \ingroup PkgTriangulationOnSphere2TriangulationClasses This class represents coordinates of the Geographical Coordinates System, -that is a pair of two values representing a longitude and a latitude. +that is a pair of two values representing a latitude and a longitude. \tparam K a kernel type; must be a model of `Kernel` @@ -115,7 +115,7 @@ public: typedef typename K::FT FT; /// - typedef FT latitude; + typedef FT Latitude; /// typedef FT Longitude; @@ -126,7 +126,7 @@ public: /// Construct a point on the sphere at coordinates `(la, lo)`. /// /// \pre `la` is within `[-90; 90[` and `lo` is within `[-180; 180[`. - Geographical_coordinates(const latitude la, const Longitude lo); + Geographical_coordinates(const Latitude la, const Longitude lo); }; } // namespace CGAL diff --git a/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/CGAL/Triangulation_on_sphere_2.h b/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/CGAL/Triangulation_on_sphere_2.h index 2b93415318c..3f4b76dd994 100644 --- a/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/CGAL/Triangulation_on_sphere_2.h +++ b/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/CGAL/Triangulation_on_sphere_2.h @@ -14,14 +14,14 @@ This triangulation class is very similar to `CGAL::Triangulation_2` as both clas triangulations of 2-manifold domain without boundary. A significant difference is that in the case of Euclidean 2D triangulation, it is necessary to introduce so-called infinite faces to complete the convex hull into an actual 2-manifold without boundary that the triangulation -data structure can represent. This is not necessary for triangulations of the sphere, -that is already perfectly adapted to the triangulation data structure. +data structure can represent. This is not necessary for triangulations on the sphere, +which are already perfectly adapted to the triangulation data structure. There is an exception to the previous statement: in the degenerate configuration where all points of \f$ \mathcal{S}\f$ lie on the same hemisphere, the triangulation has a border. Internally, the triangulation data structure must however remain a 2-manifold at all time, -and to ensure this fictitious faces called ghost faces are added. In contrast, faces that -not ghost-faces are called solid faces. +and to ensure this fictitious faces called ghost faces are added. We call faces that +are not ghost faces solid faces. \tparam Traits is the geometric traits, which must be a model of the concept `TriangulationOnSphereTraits_2`. @@ -241,7 +241,7 @@ public: size_type number_of_faces() const; /*! - Returns the number of ghost_faces. + Returns the number of ghost faces. */ size_type number_of_ghost_faces() const; @@ -251,12 +251,12 @@ public: /// @{ /*! - Returns the geometric position of the vertex `*v`. + Returns the geometric position of the vertex `v`. */ const Point& point(const Vertex_handle v); /*! - Returns the geometric position of the `i`-th vertex of the face `*f`. + Returns the geometric position of the `i`-th vertex of the face `f`. */ const Point& point(const Face_handle f, const int i); @@ -443,7 +443,7 @@ public: /*! Specifies which case occurs when locating a point in the triangulation. */ - enum Locate_type { VERTEX=0, /*!< when the located point coincides with a vertex of the triangulation */ + enum Locate_type { VERTEX=0, /*!< when the point coincides with a vertex of the triangulation */ EDGE, /*!< when the point is in the relative interior of an edge */ FACE, /*!< when the point is in the interior of a face */ OUTSIDE_CONVEX_HULL, /*!< when the point is outside the convex hull but in the affine hull of the current triangulation */ diff --git a/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/Concepts/DelaunayTriangulationOnSphereTraits_2.h b/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/Concepts/DelaunayTriangulationOnSphereTraits_2.h index bc74a153364..1421779d76f 100644 --- a/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/Concepts/DelaunayTriangulationOnSphereTraits_2.h +++ b/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/Concepts/DelaunayTriangulationOnSphereTraits_2.h @@ -30,7 +30,7 @@ public: /// /// `Point_3 operator()(Point_3 p, Point_3 q, Point_3 r)` /// - /// which returns the center of the circle circumscribed to face with vertices `p`, `q`, and `r`. + /// which returns the center of the circle circumscribed to the face with vertices `p`, `q`, and `r`. /// /// \note This type is only required for the computation of dual objects (Voronoi vertex) /// and a dummy type can be used otherwise. diff --git a/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/Concepts/TriangulationOnSphereFaceBase_2.h b/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/Concepts/TriangulationOnSphereFaceBase_2.h index b89ed9a68b2..9203b5df644 100644 --- a/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/Concepts/TriangulationOnSphereFaceBase_2.h +++ b/Triangulation_on_sphere_2/doc/Triangulation_on_sphere_2/Concepts/TriangulationOnSphereFaceBase_2.h @@ -11,7 +11,7 @@ on the sphere. The data structure concept `TriangulationDataStructure_2` was primarily designed to serve as a data structure for the 2D triangulation classes of \cgal, which are triangulations embedded in the 2D Euclidean plane. -However its genericy makes it usable for any orientable triangulated surface without boundary, +However its genericity makes it usable for any orientable triangulated surface without boundary, regardless of the dimensionality of the space the triangulation is embedded in, and thus it is a valid data structure for the triangulations on the sphere of this package.