From 1334e4d87bd4906daa691afac9ca1918d6a398b5 Mon Sep 17 00:00:00 2001 From: Michael Hemmer Date: Fri, 31 Oct 2008 10:27:50 +0000 Subject: [PATCH] change argument type back to Innermost_leading_coefficient --- .../Polynomial_ref/PolynomialTraits_d_Scale.tex | 2 +- .../PolynomialTraits_d_ScaleHomogeneous.tex | 12 +++++------- .../Polynomial_ref/PolynomialTraits_d_Translate.tex | 2 +- .../PolynomialTraits_d_TranslateHomogeneous.tex | 9 ++++----- 4 files changed, 11 insertions(+), 14 deletions(-) diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Scale.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Scale.tex index c0c2ea91bb3..fe442190a5e 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Scale.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Scale.tex @@ -19,7 +19,7 @@ the polynomial is considered as a univariate polynomial in one specific variable \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{} \ccGlue -\ccTypedef{typedef PolynomialTraits_d::Coefficient_type second_argument_type;}{} +\ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient_type second_argument_type;}{} \ccOperations \ccMethod{result_type operator()(first_argument_type p, diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_ScaleHomogeneous.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_ScaleHomogeneous.tex index 7e0718db9a6..f00a5fca696 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_ScaleHomogeneous.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_ScaleHomogeneous.tex @@ -7,8 +7,6 @@ that is, it computes $b^{degree(p)}\cdot p(a/b\cdot x)$. Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as a univariate homogeneous polynomial in one specific variable. -Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}. - \ccRefines \ccc{AdaptableFunctor} @@ -21,16 +19,16 @@ Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}. \ccOperations \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, - PolynomialTraits_d::Coefficient_type a, - PolynomialTraits_d::Coefficient_type b);} + PolynomialTraits_d::Innermost_coefficient_type a, + PolynomialTraits_d::Innermost_coefficient_type b);} { Returns $b^{degree}\cdot p(a/b\cdot x)$, with respect to the outermost variable. } \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, - PolynomialTraits_d::Coefficient_type a, - PolynomialTraits_d::Coefficient_type b, + PolynomialTraits_d::Innermost_coefficient_type a, + PolynomialTraits_d::Innermost_coefficient_type b, int i);} { Same as first operator but for variable $x_i$. - \ccPrecond $0 \leq i < d$ + \ccPrecond $0 \leq i < d$ } %\ccHasModels diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Translate.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Translate.tex index fbb82672d73..dc61b2bbf5d 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Translate.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Translate.tex @@ -19,7 +19,7 @@ the polynomial is considered as a univariate polynomial in one specific variable \ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{} \ccGlue -\ccTypedef{typedef PolynomialTraits_d::Coefficient_type second_argument_type;}{} +\ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient_type second_argument_type;}{} \ccOperations \ccMethod{result_type operator()(first_argument_type p, diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_TranslateHomogeneous.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_TranslateHomogeneous.tex index b4db2cbc1e2..b49a6e6dc13 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_TranslateHomogeneous.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_TranslateHomogeneous.tex @@ -7,7 +7,6 @@ that is, it computes $b^{degree(p)}\cdot p(x+a/b)$. Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as a univariate homogeneous polynomial in one specific variable. -Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}. \ccRefines @@ -21,13 +20,13 @@ Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}. \ccOperations \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, - PolynomialTraits_d::Coefficient_type a, - PolynomialTraits_d::Coefficient_type b);} + PolynomialTraits_d::Innermost_coefficient_type a, + PolynomialTraits_d::Innermost_coefficient_type b);} { Returns $b^{degree(p)}\cdot p(x+a/b)$, with respect to the outermost variable. } \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, - PolynomialTraits_d::Coefficient_type a, - PolynomialTraits_d::Coefficient_type b, + PolynomialTraits_d::Innermost_coefficient_type a, + PolynomialTraits_d::Innermost_coefficient_type b, int i);} { Same as first operator but for variable $x_i$. \ccPrecond $0 \leq i < d$