mirror of https://github.com/CGAL/cgal
change argument type back to Innermost_leading_coefficient
This commit is contained in:
parent
08f58a5115
commit
1334e4d87b
|
|
@ -19,7 +19,7 @@ the polynomial is considered as a univariate polynomial in one specific variable
|
||||||
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue
|
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue
|
||||||
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}
|
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccTypedef{typedef PolynomialTraits_d::Coefficient_type second_argument_type;}{}
|
\ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient_type second_argument_type;}{}
|
||||||
|
|
||||||
\ccOperations
|
\ccOperations
|
||||||
\ccMethod{result_type operator()(first_argument_type p,
|
\ccMethod{result_type operator()(first_argument_type p,
|
||||||
|
|
|
||||||
|
|
@ -7,8 +7,6 @@ that is, it computes $b^{degree(p)}\cdot p(a/b\cdot x)$.
|
||||||
|
|
||||||
Note that this functor operates on the polynomial in the univariate view, that is,
|
Note that this functor operates on the polynomial in the univariate view, that is,
|
||||||
the polynomial is considered as a univariate homogeneous polynomial in one specific variable.
|
the polynomial is considered as a univariate homogeneous polynomial in one specific variable.
|
||||||
Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}.
|
|
||||||
|
|
||||||
|
|
||||||
\ccRefines
|
\ccRefines
|
||||||
\ccc{AdaptableFunctor}
|
\ccc{AdaptableFunctor}
|
||||||
|
|
@ -21,16 +19,16 @@ Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}.
|
||||||
|
|
||||||
\ccOperations
|
\ccOperations
|
||||||
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
|
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
|
||||||
PolynomialTraits_d::Coefficient_type a,
|
PolynomialTraits_d::Innermost_coefficient_type a,
|
||||||
PolynomialTraits_d::Coefficient_type b);}
|
PolynomialTraits_d::Innermost_coefficient_type b);}
|
||||||
{ Returns $b^{degree}\cdot p(a/b\cdot x)$,
|
{ Returns $b^{degree}\cdot p(a/b\cdot x)$,
|
||||||
with respect to the outermost variable. }
|
with respect to the outermost variable. }
|
||||||
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
|
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
|
||||||
PolynomialTraits_d::Coefficient_type a,
|
PolynomialTraits_d::Innermost_coefficient_type a,
|
||||||
PolynomialTraits_d::Coefficient_type b,
|
PolynomialTraits_d::Innermost_coefficient_type b,
|
||||||
int i);}
|
int i);}
|
||||||
{ Same as first operator but for variable $x_i$.
|
{ Same as first operator but for variable $x_i$.
|
||||||
\ccPrecond $0 \leq i < d$
|
\ccPrecond $0 \leq i < d$
|
||||||
}
|
}
|
||||||
|
|
||||||
%\ccHasModels
|
%\ccHasModels
|
||||||
|
|
|
||||||
|
|
@ -19,7 +19,7 @@ the polynomial is considered as a univariate polynomial in one specific variable
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}
|
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccTypedef{typedef PolynomialTraits_d::Coefficient_type second_argument_type;}{}
|
\ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient_type second_argument_type;}{}
|
||||||
|
|
||||||
\ccOperations
|
\ccOperations
|
||||||
\ccMethod{result_type operator()(first_argument_type p,
|
\ccMethod{result_type operator()(first_argument_type p,
|
||||||
|
|
|
||||||
|
|
@ -7,7 +7,6 @@ that is, it computes $b^{degree(p)}\cdot p(x+a/b)$.
|
||||||
|
|
||||||
Note that this functor operates on the polynomial in the univariate view, that is,
|
Note that this functor operates on the polynomial in the univariate view, that is,
|
||||||
the polynomial is considered as a univariate homogeneous polynomial in one specific variable.
|
the polynomial is considered as a univariate homogeneous polynomial in one specific variable.
|
||||||
Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}.
|
|
||||||
|
|
||||||
|
|
||||||
\ccRefines
|
\ccRefines
|
||||||
|
|
@ -21,13 +20,13 @@ Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}.
|
||||||
|
|
||||||
\ccOperations
|
\ccOperations
|
||||||
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
|
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
|
||||||
PolynomialTraits_d::Coefficient_type a,
|
PolynomialTraits_d::Innermost_coefficient_type a,
|
||||||
PolynomialTraits_d::Coefficient_type b);}
|
PolynomialTraits_d::Innermost_coefficient_type b);}
|
||||||
{ Returns $b^{degree(p)}\cdot p(x+a/b)$,
|
{ Returns $b^{degree(p)}\cdot p(x+a/b)$,
|
||||||
with respect to the outermost variable. }
|
with respect to the outermost variable. }
|
||||||
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
|
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
|
||||||
PolynomialTraits_d::Coefficient_type a,
|
PolynomialTraits_d::Innermost_coefficient_type a,
|
||||||
PolynomialTraits_d::Coefficient_type b,
|
PolynomialTraits_d::Innermost_coefficient_type b,
|
||||||
int i);}
|
int i);}
|
||||||
{ Same as first operator but for variable $x_i$.
|
{ Same as first operator but for variable $x_i$.
|
||||||
\ccPrecond $0 \leq i < d$
|
\ccPrecond $0 \leq i < d$
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue