change argument type back to Innermost_leading_coefficient

This commit is contained in:
Michael Hemmer 2008-10-31 10:27:50 +00:00
parent 08f58a5115
commit 1334e4d87b
4 changed files with 11 additions and 14 deletions

View File

@ -19,7 +19,7 @@ the polynomial is considered as a univariate polynomial in one specific variable
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}
\ccGlue \ccGlue
\ccTypedef{typedef PolynomialTraits_d::Coefficient_type second_argument_type;}{} \ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient_type second_argument_type;}{}
\ccOperations \ccOperations
\ccMethod{result_type operator()(first_argument_type p, \ccMethod{result_type operator()(first_argument_type p,

View File

@ -7,8 +7,6 @@ that is, it computes $b^{degree(p)}\cdot p(a/b\cdot x)$.
Note that this functor operates on the polynomial in the univariate view, that is, Note that this functor operates on the polynomial in the univariate view, that is,
the polynomial is considered as a univariate homogeneous polynomial in one specific variable. the polynomial is considered as a univariate homogeneous polynomial in one specific variable.
Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}.
\ccRefines \ccRefines
\ccc{AdaptableFunctor} \ccc{AdaptableFunctor}
@ -21,16 +19,16 @@ Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}.
\ccOperations \ccOperations
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d::Coefficient_type a, PolynomialTraits_d::Innermost_coefficient_type a,
PolynomialTraits_d::Coefficient_type b);} PolynomialTraits_d::Innermost_coefficient_type b);}
{ Returns $b^{degree}\cdot p(a/b\cdot x)$, { Returns $b^{degree}\cdot p(a/b\cdot x)$,
with respect to the outermost variable. } with respect to the outermost variable. }
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d::Coefficient_type a, PolynomialTraits_d::Innermost_coefficient_type a,
PolynomialTraits_d::Coefficient_type b, PolynomialTraits_d::Innermost_coefficient_type b,
int i);} int i);}
{ Same as first operator but for variable $x_i$. { Same as first operator but for variable $x_i$.
\ccPrecond $0 \leq i < d$ \ccPrecond $0 \leq i < d$
} }
%\ccHasModels %\ccHasModels

View File

@ -19,7 +19,7 @@ the polynomial is considered as a univariate polynomial in one specific variable
\ccGlue \ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}
\ccGlue \ccGlue
\ccTypedef{typedef PolynomialTraits_d::Coefficient_type second_argument_type;}{} \ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient_type second_argument_type;}{}
\ccOperations \ccOperations
\ccMethod{result_type operator()(first_argument_type p, \ccMethod{result_type operator()(first_argument_type p,

View File

@ -7,7 +7,6 @@ that is, it computes $b^{degree(p)}\cdot p(x+a/b)$.
Note that this functor operates on the polynomial in the univariate view, that is, Note that this functor operates on the polynomial in the univariate view, that is,
the polynomial is considered as a univariate homogeneous polynomial in one specific variable. the polynomial is considered as a univariate homogeneous polynomial in one specific variable.
Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}.
\ccRefines \ccRefines
@ -21,13 +20,13 @@ Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}.
\ccOperations \ccOperations
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d::Coefficient_type a, PolynomialTraits_d::Innermost_coefficient_type a,
PolynomialTraits_d::Coefficient_type b);} PolynomialTraits_d::Innermost_coefficient_type b);}
{ Returns $b^{degree(p)}\cdot p(x+a/b)$, { Returns $b^{degree(p)}\cdot p(x+a/b)$,
with respect to the outermost variable. } with respect to the outermost variable. }
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d::Coefficient_type a, PolynomialTraits_d::Innermost_coefficient_type a,
PolynomialTraits_d::Coefficient_type b, PolynomialTraits_d::Innermost_coefficient_type b,
int i);} int i);}
{ Same as first operator but for variable $x_i$. { Same as first operator but for variable $x_i$.
\ccPrecond $0 \leq i < d$ \ccPrecond $0 \leq i < d$