change argument type back to Innermost_leading_coefficient

This commit is contained in:
Michael Hemmer 2008-10-31 10:27:50 +00:00
parent 08f58a5115
commit 1334e4d87b
4 changed files with 11 additions and 14 deletions

View File

@ -19,7 +19,7 @@ the polynomial is considered as a univariate polynomial in one specific variable
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}
\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Coefficient_type second_argument_type;}{}
\ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient_type second_argument_type;}{}
\ccOperations
\ccMethod{result_type operator()(first_argument_type p,

View File

@ -7,8 +7,6 @@ that is, it computes $b^{degree(p)}\cdot p(a/b\cdot x)$.
Note that this functor operates on the polynomial in the univariate view, that is,
the polynomial is considered as a univariate homogeneous polynomial in one specific variable.
Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}.
\ccRefines
\ccc{AdaptableFunctor}
@ -21,13 +19,13 @@ Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}.
\ccOperations
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d::Coefficient_type a,
PolynomialTraits_d::Coefficient_type b);}
PolynomialTraits_d::Innermost_coefficient_type a,
PolynomialTraits_d::Innermost_coefficient_type b);}
{ Returns $b^{degree}\cdot p(a/b\cdot x)$,
with respect to the outermost variable. }
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d::Coefficient_type a,
PolynomialTraits_d::Coefficient_type b,
PolynomialTraits_d::Innermost_coefficient_type a,
PolynomialTraits_d::Innermost_coefficient_type b,
int i);}
{ Same as first operator but for variable $x_i$.
\ccPrecond $0 \leq i < d$

View File

@ -19,7 +19,7 @@ the polynomial is considered as a univariate polynomial in one specific variable
\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}
\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Coefficient_type second_argument_type;}{}
\ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient_type second_argument_type;}{}
\ccOperations
\ccMethod{result_type operator()(first_argument_type p,

View File

@ -7,7 +7,6 @@ that is, it computes $b^{degree(p)}\cdot p(x+a/b)$.
Note that this functor operates on the polynomial in the univariate view, that is,
the polynomial is considered as a univariate homogeneous polynomial in one specific variable.
Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}.
\ccRefines
@ -21,13 +20,13 @@ Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}.
\ccOperations
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d::Coefficient_type a,
PolynomialTraits_d::Coefficient_type b);}
PolynomialTraits_d::Innermost_coefficient_type a,
PolynomialTraits_d::Innermost_coefficient_type b);}
{ Returns $b^{degree(p)}\cdot p(x+a/b)$,
with respect to the outermost variable. }
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d::Coefficient_type a,
PolynomialTraits_d::Coefficient_type b,
PolynomialTraits_d::Innermost_coefficient_type a,
PolynomialTraits_d::Innermost_coefficient_type b,
int i);}
{ Same as first operator but for variable $x_i$.
\ccPrecond $0 \leq i < d$