mirror of https://github.com/CGAL/cgal
change argument type back to Innermost_leading_coefficient
This commit is contained in:
parent
08f58a5115
commit
1334e4d87b
|
|
@ -19,7 +19,7 @@ the polynomial is considered as a univariate polynomial in one specific variable
|
|||
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue
|
||||
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}
|
||||
\ccGlue
|
||||
\ccTypedef{typedef PolynomialTraits_d::Coefficient_type second_argument_type;}{}
|
||||
\ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient_type second_argument_type;}{}
|
||||
|
||||
\ccOperations
|
||||
\ccMethod{result_type operator()(first_argument_type p,
|
||||
|
|
|
|||
|
|
@ -7,8 +7,6 @@ that is, it computes $b^{degree(p)}\cdot p(a/b\cdot x)$.
|
|||
|
||||
Note that this functor operates on the polynomial in the univariate view, that is,
|
||||
the polynomial is considered as a univariate homogeneous polynomial in one specific variable.
|
||||
Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}.
|
||||
|
||||
|
||||
\ccRefines
|
||||
\ccc{AdaptableFunctor}
|
||||
|
|
@ -21,13 +19,13 @@ Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}.
|
|||
|
||||
\ccOperations
|
||||
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
|
||||
PolynomialTraits_d::Coefficient_type a,
|
||||
PolynomialTraits_d::Coefficient_type b);}
|
||||
PolynomialTraits_d::Innermost_coefficient_type a,
|
||||
PolynomialTraits_d::Innermost_coefficient_type b);}
|
||||
{ Returns $b^{degree}\cdot p(a/b\cdot x)$,
|
||||
with respect to the outermost variable. }
|
||||
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
|
||||
PolynomialTraits_d::Coefficient_type a,
|
||||
PolynomialTraits_d::Coefficient_type b,
|
||||
PolynomialTraits_d::Innermost_coefficient_type a,
|
||||
PolynomialTraits_d::Innermost_coefficient_type b,
|
||||
int i);}
|
||||
{ Same as first operator but for variable $x_i$.
|
||||
\ccPrecond $0 \leq i < d$
|
||||
|
|
|
|||
|
|
@ -19,7 +19,7 @@ the polynomial is considered as a univariate polynomial in one specific variable
|
|||
\ccGlue
|
||||
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}
|
||||
\ccGlue
|
||||
\ccTypedef{typedef PolynomialTraits_d::Coefficient_type second_argument_type;}{}
|
||||
\ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient_type second_argument_type;}{}
|
||||
|
||||
\ccOperations
|
||||
\ccMethod{result_type operator()(first_argument_type p,
|
||||
|
|
|
|||
|
|
@ -7,7 +7,6 @@ that is, it computes $b^{degree(p)}\cdot p(x+a/b)$.
|
|||
|
||||
Note that this functor operates on the polynomial in the univariate view, that is,
|
||||
the polynomial is considered as a univariate homogeneous polynomial in one specific variable.
|
||||
Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}.
|
||||
|
||||
|
||||
\ccRefines
|
||||
|
|
@ -21,13 +20,13 @@ Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}.
|
|||
|
||||
\ccOperations
|
||||
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
|
||||
PolynomialTraits_d::Coefficient_type a,
|
||||
PolynomialTraits_d::Coefficient_type b);}
|
||||
PolynomialTraits_d::Innermost_coefficient_type a,
|
||||
PolynomialTraits_d::Innermost_coefficient_type b);}
|
||||
{ Returns $b^{degree(p)}\cdot p(x+a/b)$,
|
||||
with respect to the outermost variable. }
|
||||
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
|
||||
PolynomialTraits_d::Coefficient_type a,
|
||||
PolynomialTraits_d::Coefficient_type b,
|
||||
PolynomialTraits_d::Innermost_coefficient_type a,
|
||||
PolynomialTraits_d::Innermost_coefficient_type b,
|
||||
int i);}
|
||||
{ Same as first operator but for variable $x_i$.
|
||||
\ccPrecond $0 \leq i < d$
|
||||
|
|
|
|||
Loading…
Reference in New Issue