adding Poisson_mesh_domain_3

This commit is contained in:
Sven Oesau 2025-03-04 20:57:35 +01:00
parent 4f9bf703e3
commit 161934a392
1 changed files with 398 additions and 0 deletions

View File

@ -0,0 +1,398 @@
// Copyright (c) 2025 GeometryFactory (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Sven Oesau
//
//******************************************************************************
// File Description :
// class Poisson_mesh_domain_3. See class description.
//******************************************************************************
#ifndef CGAL_POISSON_MESH_DOMAIN_3_H
#define CGAL_POISSON_MESH_DOMAIN_3_H
#include <CGAL/license/Mesh_3.h>
#include <CGAL/Labeled_mesh_domain_3.h>
#include <CGAL/Poisson_reconstruction_function.h>
namespace CGAL {
///!
//\ingroup PkgMesh3Domains
//
//\brief The class `Poisson_mesh_domain_3` derives from `Labeled_mesh_domain_3` for the handling of `Poisson_reconstruction_function`.
//
// This class has a constructor taking a labeling function. It has also a static template member
// function that acts as named constructor:
// <ul><li>`create_poisson_mesh_domain()`, to create a domain from a `Poisson_reconstruction_function`</ ul>
//
//\tparam BGT is a geometric traits class that provides
// the basic operations to implement intersection tests and intersection computations through a bisection
// method.This parameter must be instantiated with a model of the concept `BisectionGeometricTraits_3`.
//
// This class is a model of concept `MeshDomain_3`.
//\cgalModels{MeshDomain_3}
//
//\sa `CGAL::Labeled_mesh_domain_3`
//\sa `CGAL::make_mesh_3()`
//
///
template<class BGT,
class Subdomain_index_ = int,
class Surface_patch_index_ = std::pair<Subdomain_index_,
Subdomain_index_> >
class Poisson_mesh_domain_3
: public Labeled_mesh_domain_3<BGT,
Subdomain_index_,
Surface_patch_index_>
{
public:
using Base = Labeled_mesh_domain_3<BGT, Subdomain_index_, Surface_patch_index_>;
typedef typename Base::Subdomain Subdomain;
// Type of indexes for cells of the input complex
typedef Surface_patch_index_ Surface_patch_index;
typedef std::optional<Surface_patch_index> Surface_patch;
typedef Subdomain_index_ Subdomain_index;
typedef typename Base::Index Index;
typedef typename Base::Intersection Intersection;
// Type of indexes to characterize the lowest dimensional face of the input
// complex on which a vertex lie
typedef typename CGAL::Mesh_3::internal::Index_generator<Subdomain_index, Surface_patch_index>::Index Index;
// Geometric object types
// /// \name Types imported from the geometric traits class
///@{
/// The point type of the geometric traits class
typedef typename Geom_traits::Point_3 Point_3;
/// The sphere type of the geometric traits class
typedef typename Geom_traits::Sphere_3 Sphere_3;
/// The iso-cuboid type of the geometric traits class
typedef typename Geom_traits::Iso_cuboid_3 Iso_cuboid_3;
/// The bounding box type
typedef CGAL::Bbox_3 Bbox_3;
/// The number type (a field type) of the geometric traits class
typedef typename Geom_traits::FT FT;
/// The ray type of the geometric traits class
typedef typename BGT::Ray_3 Ray_3;
/// The line type of the geometric traits class
typedef typename BGT::Line_3 Line_3;
/// The segment type of the geometric traits class
typedef typename BGT::Segment_3 Segment_3;
///@}
typedef CGAL::Poisson_reconstruction_function<BGT> Function;
Function poisson_function;
/// \name Creation
/// @{
///! \brief Construction from a function, a bounding object and a relative error bound.
//
// \tparam Function a type compatible with `Labeling_function`
// \tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
// \tparam Bounding_object either a bounding sphere (of type `Sphere_3`), a bounding box (type `Bbox_3`),
// or a bounding `Iso_cuboid_3`
//
// \param function the labeling function
// \param bounding_object the bounding object bounding the meshable space.
// \param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below:
//
// \cgalNamedParamsBegin
// \cgalParamNBegin{relative_error_bound}
// \cgalParamDescription{the relative error bound used to compute intersection points between the implicit surface and query segments.
// The bisection is stopped when the length of the intersected segment is less than the product
// of `relative_error_bound` by the diameter of the bounding object.}
// \cgalParamDefault{FT(1e-3)}
// \cgalParamNEnd
// \cgalNamedParamsEnd
//
// \cgalHeading{Example}
// From the example (\ref Mesh_3/mesh_implicit_domains_2.cpp):
// \snippet Mesh_3/mesh_implicit_domains_2.cpp Domain creation
///
template<typename Bounding_object, typename CGAL_NP_TEMPLATE_PARAMETERS>
Poisson_mesh_domain_3(const Function& function,
const Bounding_object& bounding_object,
const CGAL_NP_CLASS& np = parameters::default_values()
#ifndef DOXYGEN_RUNNING
, typename std::enable_if<!is_named_function_parameter<Function>>::type* = nullptr
#endif // DOXYGEN_RUNNING
)
: Base(make_implicit_to_labeling_function_wrapper<BGT>(function), bounding_object, np),
poisson_function(function)
{}
///@}
#ifndef DOXYGEN_RUNNING
template<typename CGAL_NP_TEMPLATE_PARAMETERS_NO_DEFAULT>
Poisson_mesh_domain_3(const CGAL_NP_CLASS& np)
: Base(np)
{}
// Overload handling parameters passed with operator=
template<typename CGAL_NP_TEMPLATE_PARAMETERS_NO_DEFAULT_1,
typename CGAL_NP_TEMPLATE_PARAMETERS_NO_DEFAULT_2,
typename ... NP>
Poisson_mesh_domain_3(const Function& function,
const CGAL_NP_CLASS_1& np1,
const CGAL_NP_CLASS_2& np2,
const NP& ... nps)
: Base(internal_np::combine_named_parameters(
CGAL::parameters::function(make_implicit_to_labeling_function_wrapper<BGT>(function)), np1, np2, nps...)),
poisson_function(function)
{}
#endif
/// \name Creation of domains from Poisson implicit functions
/// @{
///!
// \brief Construction from a Poisson implicit function
//
// This static method is a <em>named constructor</em>. It constructs a domain
// whose bounding surface is described implicitly as the zero level set of a
// function. The domain to be discretized is assumed to be the domain where
// the function has negative values.
//
// The method takes as argument a bounding sphere which is required to
// circumscribe the surface and to have its center inside the domain.
//
// \tparam Function a type compatible with the signature `FT(Point_3)`: it takes a point as argument,
// and returns a scalar value. That object must be model of `CopyConstructible`
// \tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
// \tparam Bounding_object either a bounding sphere (of type `Sphere_3`), a bounding box (type `Bbox_3`),
// or a bounding `Iso_cuboid_3`
//
// \param function the implicit function
// \param bounding_object object boundint the meshable domain and its center is inside the domain.
// \param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below:
//
// \cgalNamedParamsBegin
// \cgalParamNBegin{relative_error_bound}
// \cgalParamDescription{ is the relative error
// bound, relative to the diameter of the box of the image.}
// \cgalParamDefault{FT(1e-3)}
// \cgalParamNEnd
// \cgalNamedParamsEnd
//
// \cgalHeading{Examples}
//
// From the example (\ref Mesh_3/mesh_implicit_sphere.cpp):
//
// \snippet Mesh_3/mesh_implicit_sphere.cpp Domain creation
//
// From the example (\ref Mesh_3/mesh_implicit_sphere_variable_size.cpp):
//
// \snippet Mesh_3/mesh_implicit_sphere_variable_size.cpp Domain creation
//
///
template<typename Bounding_object, typename CGAL_NP_TEMPLATE_PARAMETERS>
static Poisson_mesh_domain_3 create_poisson_mesh_domain(const Function& function,
const Bounding_object& bounding_object,
const CGAL_NP_CLASS& np = parameters::default_values()
#ifndef DOXYGEN_RUNNING
,typename std::enable_if<!is_named_function_parameter<Function>>::type* = nullptr
#endif
)
{
using parameters::get_parameter;
using parameters::choose_parameter;
FT relative_error_bound_ = choose_parameter(get_parameter(np, internal_np::error_bound), FT(1e-3));
CGAL::Random* p_rng_ = choose_parameter(get_parameter(np, internal_np::rng), nullptr);
auto null_subdomain_index_ = choose_parameter(get_parameter(np, internal_np::null_subdomain_index_param),
Null_functor()); auto construct_surface_patch_index_ = choose_parameter(get_parameter(np,
internal_np::surface_patch_index), Null_functor());
namespace p = CGAL::parameters;
return Poisson_mesh_domain_3
(function,
bounding_object,
CGAL::parameters::relative_error_bound(relative_error_bound_)
.function(make_implicit_to_labeling_function_wrapper<BGT>(function))
.p_rng(p_rng_)
.null_subdomain_index(Base::create_null_subdomain_index(null_subdomain_index_))
.construct_surface_patch_index(Base::create_construct_surface_patch_index(construct_surface_patch_index_)));
}
/// @}
#ifndef DOXYGEN_RUNNING
template<typename CGAL_NP_TEMPLATE_PARAMETERS>
static Poisson_mesh_domain_3 create_poisson_mesh_domain(const CGAL_NP_CLASS& np = parameters::default_values())
{
static_assert(!parameters::is_default_parameter<CGAL_NP_CLASS, internal_np::function_param_t>::value,
"Value for required parameter not found"); static_assert(!parameters::is_default_parameter<CGAL_NP_CLASS,
internal_np::bounding_object_param_t>::value, "Value for required parameter not found");
using parameters::get_parameter;
return create_poisson_mesh_domain(parameters::get_parameter(np, internal_np::function_param),
parameters::get_parameter(np, internal_np::bounding_object_param),
np);
}
// Overload handling parameters passed with operator=
template<typename CGAL_NP_TEMPLATE_PARAMETERS_NO_DEFAULT_1,
typename CGAL_NP_TEMPLATE_PARAMETERS_NO_DEFAULT_2,
typename ... NP>
static Poisson_mesh_domain_3 create_poisson_mesh_domain(const CGAL_NP_CLASS_1& np1,
const CGAL_NP_CLASS_2& np2,
const NP& ... nps)
{
return create_poisson_mesh_domain(internal_np::combine_named_parameters(np1, np2, nps...));
}
#endif
/*
* Returns a point in the intersection of the primitive `type`
* with some boundary surface.
* `Type1` is either `Segment_3`, `Ray_3` or `Line_3`.
* The integer `dimension` is set to the dimension of the lowest
* dimensional face in the input complex containing the returned point, and
* `index` is set to the index to be stored at a mesh vertex lying
* on this face.
*/
struct Construct_intersection
{
Construct_intersection(const Poisson_mesh_domain_3& domain)
: r_domain_(domain) {}
Intersection operator()(const Segment_3& s) const
{
#ifndef CGAL_MESH_3_NO_LONGER_CALLS_DO_INTERSECT_3
CGAL_precondition(r_domain_.do_intersect_surface_object()(s) != std::nullopt);
#endif // NOT CGAL_MESH_3_NO_LONGER_CALLS_DO_INTERSECT_3
return this->operator()(s.source(),s.target());
}
Intersection operator()(const Ray_3& r) const
{
return clip_to_segment(r);
}
Intersection operator()(const Line_3& l) const
{
return clip_to_segment(l);
}
private:
/*
* Returns a point in the intersection of [a,b] with the surface
* `a` must be the source point, and `b` the out point. It's important
* because it drives bisection cuts.
* Indeed, the returned point is the first intersection from `[a,b]`
* with a subdomain surface.
*/
Intersection operator()(const Point_3& a, const Point_3& b) const
{
// Functors
typename BGT::Compute_squared_distance_3 squared_distance =
BGT().compute_squared_distance_3_object();
typename BGT::Construct_midpoint_3 midpoint =
BGT().construct_midpoint_3_object();
// Non const points
Point_3 p1 = a;
Point_3 p2 = b;
Point_3 mid = midpoint(p1, p2);
FT value_at_p1, value_at_p2;
typename Function::Cell_handle c1, c2;
bool c1_is_inf, c2_is_inf;
std::tie(value_at_p1, c1, c1_is_inf) = r_domain_.poisson_function.special_func(p1);
std::tie(value_at_p2, c2, c2_is_inf) = r_domain_.poisson_function.special_func(p2);
Subdomain_index label_at_p1 = (value_at_p1 < 0) ? 1 : 0;
Subdomain_index label_at_p2 = (value_at_p2 < 0) ? 1 : 0;
// If both extremities are in the same subdomain,
// there is no intersection.
// This should not happen...
if(label_at_p1 == label_at_p2)
return Intersection();
// Else lets find a point (by bisection)
// Bisection ends when the point is near than error bound from surface
while(true) {
if(c1 == c2) {
if(c1_is_inf) {
std::cout << "Intersection(): c1 == c2 and inf!" << std::endl;
return Intersection();
} else {
const Surface_patch_index sp_index = r_domain_.make_surface_index(label_at_p1, label_at_p2);
const Index index = r_domain_.index_from_surface_patch_index(sp_index);
return Intersection(Point(ORIGIN + ((value_at_p2 * (p1 - ORIGIN)) - (value_at_p1 * (p2 - ORIGIN))) /
(value_at_p2 - value_at_p1)), index, 2);
}
}
mid = midpoint(p1, p2);
// If the two points are enough close, then we return midpoint
if ( squared_distance(p1, p2) < r_domain_.squared_error_bound_ )
{
CGAL_assertion(value_at_p1 * value_at_p2 <= 0);
const Surface_patch_index sp_index = r_domain_.make_surface_index(label_at_p1, label_at_p2);
const Index index = r_domain_.index_from_surface_patch_index(sp_index);
return Intersection(mid, index, 2);
}
// Cannot be const: those values are modified below.
FT value_at_mid;
typename Function::Cell_handle c_at_mid;
bool c_is_inf;
std::tie(value_at_mid, c_at_mid, c_is_inf) = r_domain_.poisson_function.special_func(mid);
Subdomain_index label_at_mid = (value_at_mid < 0) ? 1 : 0;
// Else we must go on
// Here we consider that p1(a) is the source point. Thus, we keep p1 and
// change p2 if f(p1)!=f(p2).
// That allows us to find the first intersection from a of [a,b] with
// a surface.
if(label_at_p1 != label_at_mid && !(r_domain_.null(label_at_p1) && r_domain_.null(label_at_mid)))
{
p2 = mid;
value_at_p2 = value_at_mid;
label_at_p2 = label_at_mid;
}
else
{
p1 = mid;
value_at_p1 = value_at_mid;
label_at_p1 = label_at_mid;
}
}
}
// Clips `query` to a segment `s`, and call `operator()(s)`
template<typename Query>
Intersection clip_to_segment(const Query& query) const
{
const auto clipped = CGAL::intersection(query, r_domain_.bbox_);
if(clipped)
if(const Segment_3* s = std::get_if<Segment_3>(&*clipped))
return this->operator()(*s);
return Intersection();
}
private:
const Poisson_mesh_domain_3& r_domain_;
};
// Returns Construct_intersection object
Construct_intersection construct_intersection_object() const
{
return Construct_intersection(*this);
}
}; // end class Poisson_mesh_domain_3
} // end namespace CGAL
#endif // CGAL_LABELED_MESH_DOMAIN_3_H