Removed files with outdated algorithms/data structures, as pre-decided with Michael Hemmer.

This commit is contained in:
Sebastian Limbach 2007-08-02 14:38:41 +00:00
parent a907ead17b
commit 1793da5074
12 changed files with 1 additions and 1217 deletions

View File

@ -1,125 +0,0 @@
// Author(s) : Michael Hemmer <mhemmer@uni-mainz.de>
#ifndef CGAL_CHINESE_REMAINDER_TRAITS_H
#define CGAL_CHINESE_REMAINDER_TRAITS_H 1
#include <CGAL/basic.h>
#include <CGAL/chinese_remainder.h>
#include <CGAL/Algebraic_structure_traits.h>
#include <CGAL/Sqrt_extension.h>
#include <CGAL/Polynomial.h>
#include <vector>
namespace CGAL{
//TODO: 'm' is recomputed again and again in the current scheme.
template <class T> class Chinese_remainder_traits;
template <class T, class TAG> class Chinese_remainder_traits_base;
template <class T> class Chinese_remainder_traits
:public Chinese_remainder_traits_base<T,
typename Algebraic_structure_traits<T>::Algebraic_category>{};
template <class T_>
struct Chinese_remainder_traits_base<T_,Euclidean_ring_tag>{
typedef T_ T;
typedef T_ Scalar_type;
struct Chinese_remainder{
void operator() (
Scalar_type m1, T u1,
Scalar_type m2, T u2,
Scalar_type& m, T& u){
CGAL::chinese_remainder(m1,u1,m2,u2,m,u);
}
};
};
template <class T_, class TAG>
class Chinese_remainder_traits_base{
typedef T_ T;
typedef void Scalar_type;
typedef Null_functor Chinese_remainder;
};
// Spec for Sqrt_extension
// TODO mv to Sqrt_extension.h
template <class NT, class ROOT> class Sqrt_extension;
template <class NT, class ROOT>
struct Chinese_remainder_traits<Sqrt_extension<NT,ROOT> >{
typedef Sqrt_extension<NT,ROOT> T;
typedef Chinese_remainder_traits<NT> CRT_NT;
typedef Chinese_remainder_traits<ROOT> CRT_ROOT;
// SAME AS CRT_ROOT::Scalar_type
typedef typename CRT_NT::Scalar_type Scalar_type;
struct Chinese_remainder{
void operator() (
Scalar_type m1, T u1,
Scalar_type m2, T u2,
Scalar_type& m, T& u){
NT a0,a1;
ROOT root;
typename CRT_NT::Chinese_remainder chinese_remainder_nt;
chinese_remainder_nt(m1,u1.a0(),m2,u2.a0(),m,a0);
if(u1.is_extended() || u2.is_extended()){
chinese_remainder_nt(m1,u1.a1(),m2,u2.a1(),m,a1);
typename CRT_ROOT::Chinese_remainder chinese_remainder_root;
chinese_remainder_root(m1,u1.root(),m2,u2.root(),m,root);
u=T(a0,a1,root);
}else{
u=T(a0);
}
}
};
};
// Spec for Polynomial
// TODO mv to Polynomial.h
template <class NT> class Polynomial;
template <class NT>
struct Chinese_remainder_traits<Polynomial<NT> >{
typedef Polynomial<NT> T;
typedef Chinese_remainder_traits<NT> CRT_NT;
typedef typename CRT_NT::Scalar_type Scalar_type;
struct Chinese_remainder{
void operator() (
Scalar_type m1, T u1,
Scalar_type m2, T u2,
Scalar_type& m, T& u){
typename CRT_NT::Chinese_remainder chinese_remainder_nt;
CGAL_precondition(u1.degree() == u2.degree());
std::vector<NT> coeffs;
coeffs.reserve(u1.degree()+1);
for(int i = 0; i <= u1.degree(); i++){
NT c;
chinese_remainder_nt(m1,u1[i],m2,u2[i],m,c);
coeffs.push_back(c);
}
u = Polynomial<NT>(coeffs.begin(),coeffs.end());
}
};
};
} // namespace CGAL
#endif // CGAL_CHINESE_REMAINDER_TRAITS_H //

View File

@ -1,56 +0,0 @@
//Author(s) : Michael Hemmer <mhemmer@uni-mainz.de>
#ifndef CGAL_CHINESE_REMAINDER_H
#define CGAL_CHINESE_REMAINDER_H 1
#include <CGAL/basic.h>
#include <CGAL/extended_euclidean_algorithm.h>
namespace CGAL {
// this is just the version for 'integers'
// NT must be model of RealEmbeddable
// NT must be model of EuclideanRing
template <class NT>
void chinese_remainder(
NT m1, NT u1,
NT m2, NT u2,
NT& m , NT& u ){
typedef Algebraic_structure_traits<NT> AST;
typename AST::Mod mod;
//typename AST::Unit_part unit_part;
typename AST::Integral_division idiv;
if(u1 < NT(0) ) u1 += m1;
if(u2 < NT(0) ) u2 += m2;
CGAL_precondition(0 < m1);
CGAL_precondition(u1 < m1);
CGAL_precondition(u1 >= NT(0));
CGAL_precondition(0 < m2);
CGAL_precondition(u2 < m2);
CGAL_precondition(u2 >= NT(0));
NT tmp,c,dummy;
tmp = CGAL::extended_euclidean_algorithm(m1,m2,c,dummy);
CGAL_postcondition(tmp == NT(1));
CGAL_postcondition(m1*c + m2*dummy == NT(1));
m = m1*m2;
NT v = mod(c*(u2-u1),m2);
u = m1*v + u1;
// u is not unique yet!
NT m_half = idiv(m-mod(m,NT(2)),NT(2));
if (u > m_half) u -= m ;
if (u <= -m_half) u += m ;
}
}///namespace CGAL
#endif //#ifnedef CGAL_CHINESE_REMAINDER_H 1

View File

@ -1,104 +0,0 @@
// Author(s) : Lutz Kettner <kettner@mpi-inf.mpg.de>
// Author(s) : Michael Hemmer <mhemmer@uni-mainz.de>
/*! \file CGAL/euclidean_algorithm.h
\brief Defines funciton related to euclids algorithm.
*/
#ifndef CGAL_EUCLIDEAN_ALGORITHM_H
#define CGAL_EUCLIDEAN_ALGORITHM_H 1
// This forward declaration is required to resolve the circular dependency
// between euclidean_algorithm and the partial specializations of NT_Traits
// for the built-in number types.
namespace CGAL {
template <class NT>
NT euclidean_algorithm( const NT& a, const NT& b);
}
#include <CGAL/basic.h>
#include <CGAL/Algebraic_structure_traits.h>
namespace CGAL {
// We have a circular header file inclusion dependency with
// CGAL/Algebraic_structure_traits.h.
// As a consequence, we might not get the declaration for
// CGAL::Algebraic_structure_traits
// although we include the header file above. We repeat the declaration
// here. We still include the header file to hide this dependency from users
// such that they get the full Algebraic_structure_traits declaration after
// including euclid_algorithm.h.
template <class NT> class Algebraic_structure_traits;
/*! \brief generic Euclids algorithm, returns the unit
normal greatest common devisor (gcd) of \a a and \a b.
Requires the number type \c NT to be a model of the concepts
\c EuclideanRing, however, it uses only
the functors \c Mod and \c Unit_part from the \c
Algebraic_structure_traits<NT>, and the equality comparison operator.
The implementation uses loop unrolling to avoid swapping the local
variables all the time.
*/
template <class NT>
NT euclidean_algorithm( const NT& a, const NT& b) {
typedef Algebraic_structure_traits<NT> AST;
typename AST::Mod mod;
typename AST::Unit_part unit_part;
typename AST::Integral_division idiv;
// First: the extreme cases and negative sign corrections.
if (a == NT(0)) {
if (b == NT(0))
return NT(0);
return idiv(b,unit_part(b));
}
if (b == NT(0))
return idiv(a,unit_part(a));
NT u = idiv(a,unit_part(a));
NT v = idiv(b,unit_part(b));
// Second: assuming mod is the most expensive op here, we don't compute it
// unnecessarily if u < v
if (u < v) {
v = mod(v,u);
// maintain invariant of v > 0 for the loop below
if ( v == 0)
return idiv(u,unit_part(u));
}
// Third: generic case of two positive integer values and u >= v.
// The standard loop would be:
// while ( v != 0) {
// int tmp = mod(u,v);
// u = v;
// v = tmp;
// }
// return u;
//
// But we want to save us all the variable assignments and unroll
// the loop. Before that, we transform it into a do {...} while()
// loop to reduce branching statements.
NT w;
do {
w = mod(u,v);
if ( w == 0)
return idiv(v,unit_part(v));
u = mod(v,w);
if ( u == 0)
return idiv(w,unit_part(w));
v = mod(w,u);
} while (v != 0);
return idiv(u,unit_part(u));;
}
// TODO: do we need a variant for unit normal inputs?
} // namespace CGAL
#endif // CGAL_EUCLIDEAN_ALGORITHM_H //
// EOF

View File

@ -1,59 +0,0 @@
//Author(s) : Michael Hemmer <mhemmer@uni-mainz.de>
#ifndef CGAL_EXTENDED_EUCLIDEAN_ALGORITHM_H
#define CGAL_EXTENDED_EUCLIDEAN_ALGORITHM_H 1
#include <CGAL/basic.h>
namespace CGAL {
template< class NT >
NT extended_euclidean_algorithm(const NT& a_, const NT& b_, NT& u, NT& v){
typedef Algebraic_structure_traits<NT> AST;
typename AST::Div_mod div_mod;
typename AST::Unit_part unit_part;
typename AST::Integral_division idiv;
NT unit_part_a(unit_part(a_));
NT unit_part_b(unit_part(b_));
NT a(idiv(a_,unit_part_a));
NT b(idiv(b_,unit_part_b));
NT x(0),y(1),last_x(1),last_y(0);
NT temp, quotient;
// typename AST::Div div;
// typename AST::Mod mod;
//TODO: unroll to avoid swapping
while (b != 0){
temp = b;
div_mod(a,b,quotient,b);
a = temp;
temp = x;
x = last_x-quotient*x;
last_x = temp;
temp = y;
y = last_y-quotient*y;
last_y = temp;
}
u = last_x * unit_part_a;
v = last_y * unit_part_b;
// std::cout <<"a_: "<<a_ <<std::endl;
// std::cout <<"b_: "<<b_ <<std::endl;
// std::cout <<"gcd: "<<a <<std::endl;
// std::cout <<"u: "<<u <<std::endl;
// std::cout <<"v: "<<v <<std::endl;
// std::cout <<std::endl;
CGAL_precondition(unit_part(a) == NT(1));
CGAL_precondition(a == a_*u + b_*v);
return a;
}
} // namespace CGAL
#endif // CGAL_EXTENDED_EUCLIDEAN_ALGORITHM_H //

View File

@ -1,427 +0,0 @@
//Author(s) : Michael Hemmer <mhemmer@uni-mainz.de>
/*! \file CGAL/modular_gcd.h
provides gcd for Polynomials, based on Modular arithmetic.
*/
#ifndef CGAL_MODULAR_GCD_H
#define CGAL_MODULAR_GCD_H 1
#include <CGAL/basic.h>
#include <CGAL/Modular_traits.h>
#include <CGAL/Polynomial.h>
#include <CGAL/Polynomial_traits_d.h>
#include <CGAL/Scalar_factor_traits.h>
#include <CGAL/Chinese_remainder_traits.h>
//#include <CGAL/Polynomial_traits_d_d.h>
namespace CGAL {
template <class NT>
typename Scalar_factor_traits<NT>::Scalar
scalar_factor(const NT& x){
typename Scalar_factor_traits<NT>::Scalar_factor scalar_factor;
return scalar_factor(x);
}
template <class NT>
typename Scalar_factor_traits<NT>::Scalar
scalar_factor(const NT& x,const typename Scalar_factor_traits<NT>::Scalar& d){
typename Scalar_factor_traits<NT>::Scalar_factor scalar_factor;
return scalar_factor(x,d);
}
template <class NT>
typename Modular_traits<NT>::Modular_NT
modular_image(const NT& x){
typename Modular_traits<NT>::Modular_image modular_image;
return modular_image(x);
}
template <int> class MY_INT_TAG{};
template <class T>
bool operator < (const std::vector<T>& a, const std::vector<T>& b){
for(unsigned int i = 0; i < a.size(); i++){
if (a[i] < b[i]) return true;
}
return false;
}
template <class T>
std::vector<T> min(const std::vector<T>& a, const std::vector<T>& b){
return (a < b)?a:b;
}
//ALGORITHM P (TODO)
template <class Coeff, class TAG >
Polynomial<Coeff> algorithm_x(
const Polynomial <Coeff>& p1, const Polynomial <Coeff>& p2, TAG){
CGAL_precondition(Polynomial_traits_d< Polynomial<Coeff> >::d > 1);
typedef Polynomial<Coeff> Poly;
typedef Polynomial_traits_d<Poly> PT;
typedef typename PT::Innermost_coefficient IC;
const int num_of_vars = PT::d;
typename PT::Innermost_leading_coefficient ilcoeff;
typename PT::Degree_vector degree_vector;
// will play the role of content
typedef typename Scalar_factor_traits<Poly>::Scalar Scalar;
typedef typename Modular_traits<Poly>::Modular_NT MPoly;
typename Polynomial_traits_d<MPoly>::Degree_vector mdegree_vector;
typedef typename Modular_traits<Scalar>::Modular_NT MScalar;
typedef Chinese_remainder_traits<Poly> CRT;
typename CRT::Chinese_remainder chinese_remainder;
typename Polynomial_traits_d<Poly>::Canonicalize canonicalize;
Poly F1 = canonicalize(p1);
Poly F2 = canonicalize(p2);
//std::cout <<" F1 : " << F1 <<std::endl;
//std::cout <<" F2 : " << F2 <<std::endl;
{
// this part is needed for algebraic extensions e.g. Sqrt_extesnion
// We have to ensure that G,H1,H2 can be expressed in terms of algebraic integers
// Therefore we multiply F1 and F2 by denominatior for algebraic integer.
//typename PT::Innermost_coefficient_to_polynomial ictp;
typename PT::Innermost_coefficient_begin begin;
typename PT::Innermost_coefficient_end end;
typename Algebraic_extension_traits<IC>::Denominator_for_algebraic_integers dfai;
typename Algebraic_extension_traits<IC>::Normalization_factor nfac;
// in case IC is an algebriac extension it may happen, that
// Fx=G*Hx is not possible if the coefficients are algebraic integers
Poly tmp = F1+F2;
IC denom = dfai(begin(tmp),end(tmp)); // TODO use this
//IC denom = dfai(tmp.begin(),tmp.end());
denom *= nfac(denom);
tmp = Poly(denom);
F1 *=tmp;
F2 *=tmp;
}
//std::cout <<" F1*denom*nafc: " << F1 <<std::endl;
//std::cout <<" F2*denom*nfac: " << F2 <<std::endl;
Scalar f1 = CGAL::scalar_factor(ilcoeff(F1)); // ilcoeff(F1)
Scalar f2 = CGAL::scalar_factor(ilcoeff(F2)); // ilcoeff(F2)
Scalar g_ = CGAL::scalar_factor(f1,f2);
Poly F1_ = F1*Poly(g_);
Poly F2_ = F2*Poly(g_);
//std::cout <<" g_ : "<< g_ << std::endl;
//std::cout <<" F1*denom*nafc*g_: " << F1_ <<std::endl;
//std::cout <<" F2*denom*nfac*g_: " << F2_ <<std::endl;
bool solved = false;
int prime_index = -1;
int n = 0; // number of lucky primes
std::vector<int> dv_F1 = degree_vector(F1);
std::vector<int> dv_F2 = degree_vector(F2);
std::vector<int> dv_e = min(dv_F1,dv_F2);;
MScalar mg_;
MPoly mF1,mF2,mG_,mH1,mH2;
typename CRT::Scalar_type p,q,pq;
Poly Gs,H1s,H2s; // s =^ star
while(!solved){
do{
//---------------------------------------
//choose prime not deviding f1 or f2
do{
prime_index++;
CGAL_precondition(0<= prime_index && prime_index < 64);
int current_prime = primes[prime_index];
Modular::set_current_prime(current_prime);
}
while(!(( modular_image(f1) != 0 ) && ( modular_image(f2) != 0 )));
// --------------------------------------
// invoke gcd for current prime
mg_ = CGAL::modular_image(g_);
mF1 = CGAL::modular_image(F1_);
mF2 = CGAL::modular_image(F2_);
// replace mG_ = gcd (mF1,mF2)*MPoly(mg_); for multivariat
mG_ = algorithm_x(mF1,mF2,MY_INT_TAG<num_of_vars>())*MPoly(mg_);
mH1 = CGAL::integral_division(mF1,mG_);
mH2 = CGAL::integral_division(mF2,mG_);
//---------------------------------------
// return if G is constant
if (mG_ == MPoly(1)) return Poly(1);
// --------------------------------------
}// repeat until mG_ degree is less equal the known bound
// check prime
while( mdegree_vector(mG_) > dv_e);
if(mdegree_vector(mG_) < dv_e ){
// restart chinese remainder
// ignore previous unlucky primes
n=1;
dv_e= mdegree_vector(mG_);
}else{
CGAL_postcondition( mdegree_vector(mG_)== dv_e);
n++; // increase number of lucky primes
}
// --------------------------------------
// try chinese remainder
//std::cout <<" chinese remainder round :" << n << std::endl;
typename Modular_traits<Poly>::Modular_image_inv inv_map;
if(n == 1){
// init chinese remainder
q = Modular::get_current_prime(); // implicit !
Gs = inv_map(mG_);
H1s = inv_map(mH1);
H2s = inv_map(mH2);
}else{
// continue chinese remainder
int p = Modular::get_current_prime(); // implicit!
//std::cout <<" p: "<< p<<std::endl;
//std::cout <<" q: "<< q<<std::endl;
//std::cout <<" gcd(p,q): "<< gcd(p,q)<<std::endl;
chinese_remainder(q,Gs ,p,inv_map(mG_),pq,Gs);
chinese_remainder(q,H1s,p,inv_map(mH1),pq,H1s);
chinese_remainder(q,H2s,p,inv_map(mH2),pq,H2s);
q=pq;
}
// std::cout << "Gs: "<< Gs << std::endl;
// std::cout << "H1s: "<< H1s << std::endl;
// std::cout << "H2s: "<< H2s << std::endl;
// std::cout <<std::endl;
// std::cout << "F1s: "<<Gs*H1s<< std::endl;
// std::cout << "F1 : "<<F1_<< std::endl;
// std::cout << "diff : "<<F1_-Gs*H1s<< std::endl;
// std::cout <<std::endl;
// std::cout << "F2s: "<<Gs*H2s<< std::endl;
// std::cout << "F2 : "<<F2_<< std::endl;
// std::cout << "diff : "<<F2_-Gs*H2s<< std::endl;
try{// This is a HACK!!!!
// TODO: in case of Sqrt_extension it may happen that the disr (root)
// is not correct, in this case the behavior of the code is unclear
// if CGAL is in debug mode it throws an error
if( Gs*H1s == F1_ && Gs*H2s == F2_ ){
solved = true;
}
}catch(...){}
//std::cout << "Gs: " << CGAL::canonicalize_polynomial(Gs)<<std::endl;
// std::cout << "canonical(Gs): " << CGAL::canonicalize_polynomial(Gs)<<std::endl;
//std::cout << std::endl;
}
//std::cout << "G: " << CGAL::canonicalize_polynomial(gcd_utcf(F1,F2)) << std::endl;
return canonicalize(Gs);
}
// ALGORITHM U (done)
template <class Field>
Polynomial<Field> algorithm_x(
const Polynomial <Field>& p1, const Polynomial <Field>& p2, MY_INT_TAG<1> ){
typedef Polynomial<Field> Poly;
BOOST_STATIC_ASSERT(Polynomial_traits_d<Poly>::d == 1);
typedef Algebraic_structure_traits<Field> AST;
typedef typename AST::Algebraic_category TAG;
BOOST_STATIC_ASSERT((boost::is_same<TAG, Field_tag>::value));
return gcd(p1,p2);
}
// TODO: ALGORITHM M
template <class NT>
Polynomial<NT> modular_gcd_utcf(
const Polynomial<NT>& FF1 ,
const Polynomial<NT>& FF2 ){
CGAL_precondition(Polynomial_traits_d<Polynomial<NT> >::d == 1);
typedef Polynomial<NT> Poly;
typedef Polynomial_traits_d<Poly> PT;
const int num_of_vars = PT::d;
typedef typename PT::Innermost_coefficient IC;
typename PT::Innermost_leading_coefficient ilcoeff;
typename PT::Degree_vector degree_vector;
// will paly the role of content
typedef typename Scalar_factor_traits<Poly>::Scalar Scalar;
typedef typename Modular_traits<Poly>::Modular_NT MPoly;
typename Polynomial_traits_d<MPoly>::Degree_vector mdegree_vector;
typedef typename Modular_traits<Scalar>::Modular_NT MScalar;
typedef Chinese_remainder_traits<Poly> CRT;
typename CRT::Chinese_remainder chinese_remainder;
typename Polynomial_traits_d<Poly>::Canonicalize canonicalize;
Poly F1 = canonicalize(FF1);
Poly F2 = canonicalize(FF2);
//std::cout <<" F1 : " << F1 <<std::endl;
//std::cout <<" F2 : " << F2 <<std::endl;
{
// this part is needed for algebraic extensions e.g. Sqrt_extesnion
// We have to ensure that G,H1,H2 can be expressed in terms of algebraic integers
// Therefore we multiply F1 and F2 by denominatior for algebraic integer.
//typedef Polynomial<NT> POLY;
//typename Polynomial_traits_d<POLY>::Innermost_coefficient_to_polynomial ictp;
//typename Polynomial_traits_d<POLY>::Innermost_coefficient_begin begin;
//typename Polynomial_traits_d<POLY>::Innermost_coefficient_end end;
typename Algebraic_extension_traits<IC>::Denominator_for_algebraic_integers dfai;
typename Algebraic_extension_traits<IC>::Normalization_factor nfac;
// in case IC is an algebriac extension it may happen, that
// Fx=G*Hx is not possible if the coefficients are algebraic integers
Poly tmp = F1+F2;
//IC denom = dfai(begin(tmp),end(tmp)); // TODO use this
IC denom = dfai(tmp.begin(),tmp.end());
denom *= nfac(denom);
tmp = Poly(denom);
F1 *=tmp;
F2 *=tmp;
}
//std::cout <<" F1*denom*nafc: " << F1 <<std::endl;
//std::cout <<" F2*denom*nfac: " << F2 <<std::endl;
Scalar f1 = CGAL::scalar_factor(ilcoeff(F1)); // ilcoeff(F1)
Scalar f2 = CGAL::scalar_factor(ilcoeff(F2)); // ilcoeff(F2)
Scalar g_ = CGAL::scalar_factor(f1,f2);
Poly F1_ = F1*Poly(g_);
Poly F2_ = F2*Poly(g_);
//std::cout <<" g_ : "<< g_ << std::endl;
//std::cout <<" F1*denom*nafc*g_: " << F1_ <<std::endl;
//std::cout <<" F2*denom*nfac*g_: " << F2_ <<std::endl;
bool solved = false;
int prime_index = -1;
int n = 0; // number of lucky primes
std::vector<int> dv_F1 = degree_vector(F1);
std::vector<int> dv_F2 = degree_vector(F1);
std::vector<int> dv_e = min(dv_F1,dv_F2);;
MScalar mg_;
MPoly mF1,mF2,mG_,mH1,mH2;
typename CRT::Scalar_type p,q,pq;
Poly Gs,H1s,H2s; // s =^ star
while(!solved){
do{
//---------------------------------------
//choose prime not deviding f1 or f2
do{
prime_index++;
CGAL_precondition(0<= prime_index && prime_index < 64);
int current_prime = primes[prime_index];
Modular::set_current_prime(current_prime);
}
while(!(( modular_image(f1) != 0 ) && ( modular_image(f2) != 0 )));
// --------------------------------------
// invoke gcd for current prime
mg_ = CGAL::modular_image(g_);
mF1 = CGAL::modular_image(F1_);
mF2 = CGAL::modular_image(F2_);
// replace mG_ = gcd (mF1,mF2)*MPoly(mg_); for multivariat
mG_ = algorithm_x(mF1,mF2,MY_INT_TAG<num_of_vars>())*MPoly(mg_);
mH1 = CGAL::integral_division(mF1,mG_);
mH2 = CGAL::integral_division(mF2,mG_);
//---------------------------------------
// return if G is constant
if (mG_ == MPoly(1)) return Poly(1);
// --------------------------------------
}// repeat until mG_ degree is less equal the known bound
// check prime
while( mdegree_vector(mG_) > dv_e);
if(mdegree_vector(mG_) < dv_e ){
// restart chinese remainder
// ignore previous unlucky primes
n=1;
dv_e= mdegree_vector(mG_);
}else{
CGAL_postcondition( mdegree_vector(mG_)== dv_e);
n++; // increase number of lucky primes
}
// --------------------------------------
// try chinese remainder
//std::cout <<" chinese remainder round :" << n << std::endl;
typename Modular_traits<Poly>::Modular_image_inv inv_map;
if(n == 1){
// init chinese remainder
q = Modular::get_current_prime(); // implicit !
Gs = inv_map(mG_);
H1s = inv_map(mH1);
H2s = inv_map(mH2);
}else{
// continue chinese remainder
int p = Modular::get_current_prime(); // implicit!
//std::cout <<" p: "<< p<<std::endl;
//std::cout <<" q: "<< q<<std::endl;
//std::cout <<" gcd(p,q): "<< gcd(p,q)<<std::endl;
chinese_remainder(q,Gs ,p,inv_map(mG_),pq,Gs);
chinese_remainder(q,H1s,p,inv_map(mH1),pq,H1s);
chinese_remainder(q,H2s,p,inv_map(mH2),pq,H2s);
q=pq;
}
// std::cout << "Gs: "<< Gs << std::endl;
// std::cout << "H1s: "<< H1s << std::endl;
// std::cout << "H2s: "<< H2s << std::endl;
// std::cout <<std::endl;
// std::cout << "F1s: "<<Gs*H1s<< std::endl;
// std::cout << "F1 : "<<F1_<< std::endl;
// std::cout << "diff : "<<F1_-Gs*H1s<< std::endl;
// std::cout <<std::endl;
// std::cout << "F2s: "<<Gs*H2s<< std::endl;
// std::cout << "F2 : "<<F2_<< std::endl;
// std::cout << "diff : "<<F2_-Gs*H2s<< std::endl;
try{// This is a HACK!!!!
// TODO: in case of Sqrt_extension it may happen that the disr (root)
// is not correct, in this case the behavior of the code is unclear
// if CGAL is in debug mode it throws an error
if( Gs*H1s == F1_ && Gs*H2s == F2_ ){
solved = true;
}
}catch(...){}
//std::cout << "Gs: " << CGAL::canonicalize_polynomial(Gs)<<std::endl;
// std::cout << "canonical(Gs): " << CGAL::canonicalize_polynomial(Gs)<<std::endl;
//std::cout << std::endl;
}
//std::cout << "G: " << CGAL::canonicalize_polynomial(gcd_utcf(F1,F2)) << std::endl;
return canonicalize(Gs);
}
}///namespace CGAL
#endif //#ifnedef CGAL_MODULAR_GCD_H 1

View File

@ -1,69 +0,0 @@
// Author(s) : Michael Hemmer <mhemmer@uni-mainz.de>
#include <CGAL/basic.h>
#include <CGAL/Testsuite/assert.h>
#include <CGAL/Chinese_remainder_traits.h>
#ifdef CGAL_USE_LEDA
#include <CGAL/leda_integer.h>
#endif
#ifdef CGAL_USE_CORE
#include <CGAL/CORE_BigInt.h>
#endif
template <class CRT>
void test_chinese_remainder_traits(){
typedef typename CRT::T T;
typedef typename CRT::Scalar_type Scalar_type;
typedef typename CRT::Chinese_remainder Chinese_remainder;
Chinese_remainder chinese_remainder;
T x(-574);
Scalar_type m1 = Scalar_type(23);
Scalar_type m2 = Scalar_type(17);
Scalar_type m3 = Scalar_type(29);
T u1 = -T(22);
T u2 = -T(13);
T u3 = -T(23);
Scalar_type m;
T u;
chinese_remainder(m1,u1,m2,u2,m,u);
chinese_remainder(m ,u ,m3,u3,m,u);
CGAL_test_assert( m == m1*m2*m3 );
CGAL_test_assert( x == u );
}
int main(){
test_chinese_remainder_traits<CGAL::Chinese_remainder_traits<int> >();
typedef CGAL::Sqrt_extension<int,int> Extn_1;
typedef CGAL::Sqrt_extension<Extn_1,int> Extn_2;
typedef CGAL::Sqrt_extension<Extn_1,Extn_1> Extn_n2;
test_chinese_remainder_traits<CGAL::Chinese_remainder_traits<Extn_1 > >();
test_chinese_remainder_traits<CGAL::Chinese_remainder_traits<Extn_2 > >();
test_chinese_remainder_traits<CGAL::Chinese_remainder_traits<Extn_n2 > >();
typedef CGAL::Polynomial<int> Poly_1;
typedef CGAL::Polynomial<Poly_1> Poly_2;
test_chinese_remainder_traits<CGAL::Chinese_remainder_traits<Poly_1 > >();
test_chinese_remainder_traits<CGAL::Chinese_remainder_traits<Poly_2 > >();
#ifdef CGAL_USE_CORE
test_chinese_remainder_traits<
CGAL::Chinese_remainder_traits<CORE::BigInt> >();
#endif
#ifdef CGAL_USE_LEDA
test_chinese_remainder_traits<
CGAL::Chinese_remainder_traits<leda::integer> >();
#endif
}

View File

@ -1,62 +0,0 @@
// Author(s) : Michael Hemmer <mhemmer@uni-mainz.de>
#include <CGAL/basic.h>
#include <CGAL/Testsuite/assert.h>
#include <CGAL/chinese_remainder.h>
#include <cstdlib>
#ifdef CGAL_USE_LEDA
#include <CGAL/leda_integer.h>
#endif
#ifdef CGAL_USE_CORE
#include <CGAL/CORE_BigInt.h>
#endif
template <class NT>
void test_chinese_remainder(NT x){
typedef CGAL::Algebraic_structure_traits<NT> AST;
typename AST::Mod mod;
NT m1 = 23;
NT m2 = 17;
NT m3 = 29;
NT u1 = mod(x,m1);
NT u2 = mod(x,m2);
NT u3 = mod(x,m3);
NT m,u;
CGAL::chinese_remainder(m1,u1,m2,u2,m,u);
CGAL::chinese_remainder(m ,u ,m3,u3,m,u);
CGAL_test_assert( m == m1*m2*m3 );
CGAL_test_assert( x == u );
}
template <class NT>
void test_chinese_remainder(){
test_chinese_remainder(NT(0));
test_chinese_remainder(NT(1));
test_chinese_remainder(NT(-1));
test_chinese_remainder(NT(23));
test_chinese_remainder(NT(17));
test_chinese_remainder(NT(-29));
test_chinese_remainder(NT(2456));
test_chinese_remainder(NT(-2456));
}
int main(){
test_chinese_remainder<int>();
#ifdef CGAL_USE_LEDA
test_chinese_remainder<leda_integer>();
#endif
#ifdef CGAL_USE_CORE
test_chinese_remainder<CORE::BigInt>();
#endif
return 0;
}

View File

@ -1,77 +0,0 @@
// Author(s) : Michael Hemmer <mhemmer@uni-mainz.de>
#include <CGAL/basic.h>
#include <CGAL/Testsuite/assert.h>
#include <CGAL/euclidean_algorithm.h>
#ifdef CGAL_USE_LEDA
#include <CGAL/leda_integer.h>
#endif
#ifdef CGAL_USE_CORE
#include <CGAL/CORE_BigInt.h>
#endif
#include <cstdlib>
template <class NT>
void test_euclidean_algorithm(){
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 0),NT(0)) == NT( 0));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 7),NT(0)) == NT( 7));
CGAL_test_assert( CGAL::euclidean_algorithm(NT(-7),NT(0)) == NT( 7));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 0),NT(7)) == NT( 7));
CGAL_test_assert( CGAL::euclidean_algorithm(NT(0),NT(-7)) == NT( 7));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 1),NT(1)) == NT( 1));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 7),NT(1)) == NT( 1));
CGAL_test_assert( CGAL::euclidean_algorithm(NT(-7),NT(1)) == NT( 1));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 1),NT(7)) == NT( 1));
CGAL_test_assert( CGAL::euclidean_algorithm(NT(1),NT(-7)) == NT( 1));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 7),NT(7)) == NT( 7));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 3),NT(1)) == NT( 1));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 3),NT(6)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 6),NT(9)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 9),NT(15)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 15),NT(24)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 24),NT(39)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 39),NT(63)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 6),NT(3)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 9),NT(6)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 15),NT(9)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 24),NT(15)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 39),NT(24)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 63),NT(39)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( -3),NT(6)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( -6),NT(9)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( -9),NT(15)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( -15),NT(24)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( -6),NT(3)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( -9),NT(6)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( -15),NT(9)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( -24),NT(15)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 3),NT(-1)) == NT( 1));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 3),NT(-6)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 6),NT(-9)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 6),NT(-3)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( 9),NT(-6)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( -3),NT(-6)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( -6),NT(-9)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( -6),NT(-3)) == NT( 3));
CGAL_test_assert( CGAL::euclidean_algorithm(NT( -9),NT(-6)) == NT( 3));
}
int main(){
test_euclidean_algorithm<int>();
test_euclidean_algorithm<leda_integer>();
test_euclidean_algorithm<CORE::BigInt>();
return 0;
}

View File

@ -1,77 +0,0 @@
// Author(s) : Michael Hemmer <mhemmer@uni-mainz.de>
#include <CGAL/basic.h>
#include <CGAL/Testsuite/assert.h>
#include <CGAL/extended_euclidean_algorithm.h>
#include <cstdlib>
template <class NT>
void test_extended_euclidean_algorithm
(const NT& a, const NT& b, const NT& g_){
NT u,v;
NT g = CGAL::extended_euclidean_algorithm(a,b,u,v);
CGAL_test_assert(g_ == g) ;
CGAL_test_assert(g_ == u*a+v*b);
}
template <class NT>
void test_extended_euclidean_algorithm(){
test_extended_euclidean_algorithm(NT( 0),NT(0) , NT( 0));
test_extended_euclidean_algorithm(NT( 7),NT(0) , NT( 7));
test_extended_euclidean_algorithm(NT(-7),NT(0) , NT( 7));
test_extended_euclidean_algorithm(NT( 0),NT(7) , NT( 7));
test_extended_euclidean_algorithm(NT(0),NT(-7) , NT( 7));
test_extended_euclidean_algorithm(NT( 1),NT(1) , NT( 1));
test_extended_euclidean_algorithm(NT( 7),NT(1) , NT( 1));
test_extended_euclidean_algorithm(NT(-7),NT(1) , NT( 1));
test_extended_euclidean_algorithm(NT( 1),NT(7) , NT( 1));
test_extended_euclidean_algorithm(NT(1),NT(-7) , NT( 1));
test_extended_euclidean_algorithm(NT( 7),NT(7) , NT( 7));
test_extended_euclidean_algorithm(NT( 3),NT(1) , NT( 1));
test_extended_euclidean_algorithm(NT( 3),NT(6) , NT( 3));
test_extended_euclidean_algorithm(NT( 6),NT(9) , NT( 3));
test_extended_euclidean_algorithm(NT( 9),NT(15) , NT( 3));
test_extended_euclidean_algorithm(NT( 15),NT(24) , NT( 3));
test_extended_euclidean_algorithm(NT( 24),NT(39) , NT( 3));
test_extended_euclidean_algorithm(NT( 39),NT(63) , NT( 3));
test_extended_euclidean_algorithm(NT( 6),NT(3) , NT( 3));
test_extended_euclidean_algorithm(NT( 9),NT(6) , NT( 3));
test_extended_euclidean_algorithm(NT( 15),NT(9) , NT( 3));
test_extended_euclidean_algorithm(NT( 24),NT(15) , NT( 3));
test_extended_euclidean_algorithm(NT( 39),NT(24) , NT( 3));
test_extended_euclidean_algorithm(NT( 63),NT(39) , NT( 3));
test_extended_euclidean_algorithm(NT( -3),NT(6) , NT( 3));
test_extended_euclidean_algorithm(NT( -6),NT(9) , NT( 3));
test_extended_euclidean_algorithm(NT( -9),NT(15) , NT( 3));
test_extended_euclidean_algorithm(NT( -15),NT(24) , NT( 3));
test_extended_euclidean_algorithm(NT( -6),NT(3) , NT( 3));
test_extended_euclidean_algorithm(NT( -9),NT(6) , NT( 3));
test_extended_euclidean_algorithm(NT( -15),NT(9) , NT( 3));
test_extended_euclidean_algorithm(NT( -24),NT(15) , NT( 3));
test_extended_euclidean_algorithm(NT( 3),NT(-1) , NT( 1));
test_extended_euclidean_algorithm(NT( 3),NT(-6) , NT( 3));
test_extended_euclidean_algorithm(NT( 6),NT(-9) , NT( 3));
test_extended_euclidean_algorithm(NT( 6),NT(-3) , NT( 3));
test_extended_euclidean_algorithm(NT( 9),NT(-6) , NT( 3));
test_extended_euclidean_algorithm(NT( -3),NT(-6) , NT( 3));
test_extended_euclidean_algorithm(NT( -6),NT(-9) , NT( 3));
test_extended_euclidean_algorithm(NT( -6),NT(-3) , NT( 3));
test_extended_euclidean_algorithm(NT( -9),NT(-6), NT( 3));
}
int main(){
test_extended_euclidean_algorithm<int>();
return 0;
}

View File

@ -15,7 +15,6 @@ include $(CGAL_MAKEFILE)
CXXFLAGS = \
-I../../include \
-I../../../Polynomial/include \
-I../../../Number_types/test/Number_types/include \
$(CGAL_CXXFLAGS) \
$(LONG_NAME_PROBLEM_CXXFLAGS)
@ -36,44 +35,18 @@ LDFLAGS = \
#---------------------------------------------------------------------#
all: \
chinese_remainder$(EXE_EXT) \
Chinese_remainder_traits$(EXE_EXT) \
euclidean_algorithm$(EXE_EXT) \
extended_euclidean_algorithm$(EXE_EXT) \
Modular$(EXE_EXT) \
modular_gcd$(EXE_EXT) \
Modular_traits$(EXE_EXT)
chinese_remainder$(EXE_EXT): chinese_remainder$(OBJ_EXT)
$(CGAL_CXX) $(LIBPATH) $(EXE_OPT)chinese_remainder chinese_remainder$(OBJ_EXT) $(LDFLAGS)
Chinese_remainder_traits$(EXE_EXT): Chinese_remainder_traits$(OBJ_EXT)
$(CGAL_CXX) $(LIBPATH) $(EXE_OPT)Chinese_remainder_traits Chinese_remainder_traits$(OBJ_EXT) $(LDFLAGS)
euclidean_algorithm$(EXE_EXT): euclidean_algorithm$(OBJ_EXT)
$(CGAL_CXX) $(LIBPATH) $(EXE_OPT)euclidean_algorithm euclidean_algorithm$(OBJ_EXT) $(LDFLAGS)
extended_euclidean_algorithm$(EXE_EXT): extended_euclidean_algorithm$(OBJ_EXT)
$(CGAL_CXX) $(LIBPATH) $(EXE_OPT)extended_euclidean_algorithm extended_euclidean_algorithm$(OBJ_EXT) $(LDFLAGS)
Modular$(EXE_EXT): Modular$(OBJ_EXT)
$(CGAL_CXX) $(LIBPATH) $(EXE_OPT)Modular Modular$(OBJ_EXT) $(LDFLAGS)
modular_gcd$(EXE_EXT): modular_gcd$(OBJ_EXT)
$(CGAL_CXX) $(LIBPATH) $(EXE_OPT)modular_gcd modular_gcd$(OBJ_EXT) $(LDFLAGS)
Modular_traits$(EXE_EXT): Modular_traits$(OBJ_EXT)
$(CGAL_CXX) $(LIBPATH) $(EXE_OPT)Modular_traits Modular_traits$(OBJ_EXT) $(LDFLAGS)
clean: \
chinese_remainder.clean \
Chinese_remainder_traits.clean \
euclidean_algorithm.clean \
extended_euclidean_algorithm.clean \
Modular.clean \
modular_gcd.clean \
Modular_traits.clean \
src_Modular.clean
Modular_traits.clean
#---------------------------------------------------------------------#
# suffix rules

View File

@ -1,128 +0,0 @@
// Author(s) : Michael Hemmer <mhemmer@uni-mainz.de>
/*! \file CGAL/Modular.C
test for number type modul
*/
#include <CGAL/basic.h>
#include <CGAL/Testsuite/assert.h>
#include <CGAL/Modular.h>
#include <CGAL/modular_gcd.h>
#include <CGAL/Polynomial.h>
#ifdef CGAL_USE_LEDA
#include <CGAL/leda_integer.h>
#endif // CGAL_USE_LEDA
#include <cstdlib>
#include <boost/type_traits.hpp>
int main()
{
{
typedef leda::integer Integer;
typedef CGAL::Polynomial<Integer> Polynomial;
Polynomial p1(123,431,2134);
Polynomial p2(123,421,234);
Polynomial g(1);
Polynomial result = modular_gcd_utcf(p1,p2);
//std::cout <<" result : " << result <<std::endl;
//std::cout <<" true gcd : " << g <<std::endl;
CGAL_test_assert(result == g);
}
{ // unlucky prime test
typedef leda::integer Integer;
typedef CGAL::Polynomial<Integer> Polynomial;
Polynomial f1(5,234,445);
Polynomial f2(12,-234,345);
f1 *= Polynomial(Integer(CGAL::primes[0]+3),Integer(1));
f2 *= Polynomial(Integer(3),Integer(1));
Polynomial g(13,96,2345);
Polynomial p1 = f1*g;
Polynomial p2 = f2*g;
Polynomial result = modular_gcd_utcf(p1,p2);
//std::cout <<" result : " << result <<std::endl;
//std::cout <<" true gcd : " << g <<std::endl;
CGAL_test_assert(result == g);
}
{
typedef leda::integer Integer;
typedef CGAL::Polynomial<Integer> Polynomial;
Polynomial f1(5,234,-26,243,745);
Polynomial f2(12,-234,26,243,-731);
Polynomial g(13,-5676,234,96);
Polynomial p1 = Polynomial(8)*f1*f1*g;
Polynomial p2 = Polynomial(5)*f2*f2*g;
Polynomial result = modular_gcd_utcf(p1,p2);
//std::cout <<" result : " << result <<std::endl;
//std::cout <<" true gcd : " << g <<std::endl;
CGAL_test_assert(result == g);
}
{ // test for sqrt
typedef leda::integer Integer;
typedef CGAL::Sqrt_extension<Integer,Integer> EXT;
typedef CGAL::Polynomial<EXT> Polynomial;
Integer root(Integer(789234));
Polynomial f1(EXT(235143,-2234,root),EXT(232543,-2334,root),EXT(235403,-2394,root),EXT(235483,-2364,root),EXT(223443,-2234,root));
Polynomial f2(EXT(25143,-2134,root),EXT(212543,-2315,root),EXT(255453,-5394,root),EXT(535483,-2354,root),EXT(22333,-2214,root));
Polynomial g(EXT(215143,-2134,root),EXT(2122422543,-2115,root),EXT(255453,-1394,root),EXT(135483,-2354,root),EXT(7));
g=g*g;g=g*g;g=g*g;
Polynomial p1 = Polynomial(8)*f1*f1*g;
Polynomial p2 = Polynomial(5)*f2*f2*g;
Polynomial result = modular_gcd_utcf(p1,p2);
//std::cout <<" result : " << result <<std::endl;
//std::cout <<" true gcd : " << g <<std::endl;
CGAL_test_assert(result == g);
}
{ // test for sqrt / denom for algebraic integer
CGAL::set_pretty_mode(std::cout);
typedef leda::integer Integer;
typedef CGAL::Sqrt_extension<Integer,Integer> EXT;
typedef CGAL::Polynomial<EXT> Polynomial;
Integer root(4*3);
Polynomial f1(EXT(0,1,root),EXT(2));
Polynomial f2(EXT(0,1,root),EXT(4));
Polynomial g(EXT(0,-1,root),EXT(2));
//std::cout <<" f1 : " << f1 <<std::endl;
//std::cout <<" f2 : " << f2 <<std::endl;
//std::cout <<" g : " << g <<std::endl;
Polynomial p1 = f1*g;
Polynomial p2 = f2*g;
//std::cout <<" p1 : " << p1 <<std::endl;
//std::cout <<" p2 : " << p2 <<std::endl;
//std::cout << std::endl;
Polynomial result = modular_gcd_utcf(p1,p2);
//std::cout <<" result : " << result <<std::endl;
//std::cout <<" true gcd : " << g <<std::endl;
CGAL_test_assert(result == g);
}
return 0 ;
}

View File

@ -1,5 +0,0 @@
namespace CGAL{
int Modular::prime_int = 67111067;
double Modular::prime =67111067.0;
double Modular::prime_inv =1/67111067.0;
} // namespace CGAL