mirror of https://github.com/CGAL/cgal
Fixed typos in doc and comments
This commit is contained in:
parent
204f9d080a
commit
2038e558b2
|
|
@ -880,7 +880,7 @@ algorithms, each implemented by a separate class. All classes that implement
|
|||
the various algorithms are made interchangeable, letting the algorithm in use
|
||||
vary according to the user choice.} for answering queries:
|
||||
<UL>
|
||||
<LI> `Arr_naive_point_location<Arrangement>` employes the
|
||||
<LI> `Arr_naive_point_location<Arrangement>` employs the
|
||||
<I>naive</I> strategy. It locates the query point naively,
|
||||
exhaustively scanning all arrangement cells.
|
||||
|
||||
|
|
@ -986,7 +986,7 @@ segments that form a pentagonal face, with a single isolated
|
|||
vertex in its interior, as depicted in \cgalFigureRef{arr_figex_5}.
|
||||
Notice that we use the same arrangement structure in the next
|
||||
three example programs. The arrangement construction is performed by
|
||||
the function `construct_segment_arr()` defined in the heade file
|
||||
the function `construct_segment_arr()` defined in the header file
|
||||
`point_location_utils.h`. (Its listing is omitted here.) The
|
||||
program employs the naive and the landmark strategies to issue
|
||||
several point-location queries on this arrangement.
|
||||
|
|
|
|||
|
|
@ -47,7 +47,7 @@ double get(Edge_length_func edge_length, Arrangement_2::Halfedge_handle e)
|
|||
return edge_length(e);
|
||||
}
|
||||
|
||||
/* The folowing is a workaround for a bug in the BGL upto and including version
|
||||
/* The following is a workaround for a bug in the BGL up to and including version
|
||||
* 103400.
|
||||
*
|
||||
* Unfortunately some of the calls to the get() function below from the BGL
|
||||
|
|
|
|||
|
|
@ -71,13 +71,13 @@ int main ()
|
|||
// Insert a full unit circle that is centered at (0, 4).
|
||||
Rat_circle_2 circ5 (Rat_point_2(0,4), 1);
|
||||
Conic_arc_2 c5 (circ5);
|
||||
|
||||
|
||||
insert (arr, c5);
|
||||
|
||||
// Insert a parabolic arc that is supported by a parabola y = -x^2
|
||||
// (or: x^2 + y = 0) and whose endpoints are (-sqrt(3), -3) ~ (-1.73, -3)
|
||||
// and (sqrt(2), -2) ~ (1.41, -2). Notice that since the x-coordinates
|
||||
// of the endpoints cannot be acccurately represented, we specify them
|
||||
// and (sqrt(2), -2) ~ (1.41, -2). Notice that since the x-coordinates
|
||||
// of the endpoints cannot be accurately represented, we specify them
|
||||
// as the intersections of the parabola with the lines y = -3 and y = -2.
|
||||
// Note that the arc is clockwise oriented.
|
||||
Conic_arc_2 c6 =
|
||||
|
|
|
|||
|
|
@ -56,7 +56,7 @@ int main ()
|
|||
bool flag;
|
||||
|
||||
for (eit = arr.edges_begin(); eit != arr.edges_end(); ++eit) {
|
||||
// Check if the halfegde has the same diretion as its associated
|
||||
// Check if the halfedge has the same direction as its associated
|
||||
// segment. Note that its twin always has an opposite direction.
|
||||
flag = (eit->source()->point() == eit->curve().source());
|
||||
eit->set_data (flag);
|
||||
|
|
|
|||
|
|
@ -88,7 +88,7 @@ int main ()
|
|||
|
||||
for (eit = arr.edges_begin(); eit != arr.edges_end(); ++eit)
|
||||
{
|
||||
// Check if the halfegde has the same diretion as its associated
|
||||
// Check if the halfedge has the same direction as its associated
|
||||
// segment. Note that its twin always has an opposite direction.
|
||||
flag = (eit->source()->point() == eit->curve().source());
|
||||
eit->set_data (flag);
|
||||
|
|
|
|||
|
|
@ -29,7 +29,7 @@ int main(int argc, char *argv[])
|
|||
return 1;
|
||||
}
|
||||
|
||||
// Read the points from the file, and consturct their dual lines.
|
||||
// Read the points from the file, and construct their dual lines.
|
||||
// The input file format should be (all coordinate values are integers):
|
||||
// <n> // number of point.
|
||||
// <x_1> <y_1> // point #1.
|
||||
|
|
@ -56,7 +56,7 @@ int main(int argc, char *argv[])
|
|||
}
|
||||
in_file.close();
|
||||
|
||||
// Construct the dual arrangement by aggragately inserting the lines.
|
||||
// Construct the dual arrangement by aggregately inserting the lines.
|
||||
Arrangement_2 arr;
|
||||
|
||||
insert(arr, dual_lines.begin(), dual_lines.end());
|
||||
|
|
|
|||
|
|
@ -31,7 +31,7 @@ int main(int argc, char *argv[])
|
|||
return (1);
|
||||
}
|
||||
|
||||
// Read the points from the file, and consturct their dual lines.
|
||||
// Read the points from the file, and construct their dual lines.
|
||||
std::vector<Point_2> points;
|
||||
std::list<X_monotone_curve_2> dual_lines;
|
||||
|
||||
|
|
@ -55,7 +55,7 @@ int main(int argc, char *argv[])
|
|||
}
|
||||
in_file.close();
|
||||
|
||||
// Construct the dual arrangement by aggragately inserting the lines.
|
||||
// Construct the dual arrangement by aggregately inserting the lines.
|
||||
Arrangement_2 arr;
|
||||
|
||||
insert(arr, dual_lines.begin(), dual_lines.end());
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@
|
|||
#include <CGAL/Arr_overlay_2.h>
|
||||
#include <CGAL/Arr_default_overlay_traits.h>
|
||||
|
||||
// Define a functor for creating a label from a characer and an integer.
|
||||
// Define a functor for creating a label from a character and an integer.
|
||||
struct Overlay_label
|
||||
{
|
||||
std::string operator() (char c, int i) const
|
||||
|
|
@ -48,7 +48,7 @@ int main ()
|
|||
insert (arr1, Line_2 (Point_2(0, 0), Point_2(1, -1)));
|
||||
|
||||
// Label the four (unbounded) face of the arrangement as 'A' to 'D'.
|
||||
// We do so by traversing the incident faces to the halfedges aroung the
|
||||
// We do so by traversing the incident faces to the halfedges around the
|
||||
// single arrangement vertex (0, 0).
|
||||
CGAL_assertion (arr1.number_of_vertices() == 1);
|
||||
|
||||
|
|
|
|||
|
|
@ -55,8 +55,8 @@ int main ()
|
|||
Polynomial_1 Q2 = 1+x*x;
|
||||
|
||||
arcs.push_back(construct_arc(P2, Q2, Alg_real_1(-3), Alg_real_1(3)));
|
||||
|
||||
// Create an arc supported by the parbola y = 8 - x^2,
|
||||
|
||||
// Create an arc supported by the parabola y = 8 - x^2,
|
||||
// defined over the interval [-2, 3]:
|
||||
Polynomial_1 P3 = 8 - x*x;
|
||||
arcs.push_back(construct_arc(P3, Alg_real_1(-2), Alg_real_1(3)));
|
||||
|
|
|
|||
|
|
@ -68,8 +68,8 @@ int main ()
|
|||
|
||||
arcs.push_back(construct_arc(P2.begin(), P2.end(), Q2.begin(), Q2.end(),
|
||||
Alg_real_1(-3), Alg_real_1(3)));
|
||||
|
||||
// Create an arc supported by the parbola y = 0.8 - 0.1x^2 / 0.1,
|
||||
|
||||
// Create an arc supported by the parabola y = 0.8 - 0.1x^2 / 0.1,
|
||||
// defined over the interval [-2, 3]:
|
||||
Rat_vec P3,Q3;
|
||||
P3.push_back(Rational(4,5));
|
||||
|
|
|
|||
|
|
@ -51,7 +51,7 @@ class Arr_default_overlay_traits :
|
|||
* An overlay-traits class for computing the overlay of two arrangement whose
|
||||
* face records are extended with auxiliary data fields, of type Data1 and
|
||||
* Data2, respectively. The resulting arrangement is also assumed to be
|
||||
* templated with the face-extended DCEL, where each face stores an auxiliart
|
||||
* templated with the face-extended DCEL, where each face stores an auxiliary
|
||||
* Res_data field.
|
||||
* The resulting data object that corresponds to the overlay of two data
|
||||
* object of type Data1 and Data2 is computed using the functor
|
||||
|
|
|
|||
|
|
@ -1166,7 +1166,7 @@ private:
|
|||
return;
|
||||
}
|
||||
|
||||
// Consturct bounding boxes for the two curves and check whether they
|
||||
// Construct bounding boxes for the two curves and check whether they
|
||||
// overlap.
|
||||
Bez_point_bbox bbox1;
|
||||
Bez_point_bbox bbox2;
|
||||
|
|
|
|||
|
|
@ -37,12 +37,12 @@ template <class Kernel_ = Exact_predicates_exact_constructions_kernel>
|
|||
class Arr_segment_2;
|
||||
|
||||
/*!
|
||||
* \class A traits class for maintaining an arrangement of segments, aoviding
|
||||
* \class A traits class for maintaining an arrangement of segments, avoiding
|
||||
* cascading of computations as much as possible.
|
||||
*
|
||||
* The class is derived from the parameterized kernel to extend the traits
|
||||
* with all the types and operations supported by the kernel. This makes it
|
||||
* possible to use the traits class for data structures that extends the
|
||||
* possible to use the traits class for data structures that extend the
|
||||
* Arrangement_2 type and require objects and operations supported by the
|
||||
* kernel, but not defined in this derived class.
|
||||
*/
|
||||
|
|
@ -71,7 +71,7 @@ public:
|
|||
typedef CGAL::Segment_assertions<Arr_segment_traits_2<Kernel> >
|
||||
Segment_assertions;
|
||||
|
||||
/*! \class Representation of a segement with cached data.
|
||||
/*! \class Representation of a segment with cached data.
|
||||
*/
|
||||
class _Segment_cached_2 {
|
||||
public:
|
||||
|
|
@ -169,7 +169,7 @@ public:
|
|||
is_pt_max = (res == SMALLER);
|
||||
|
||||
CGAL_precondition_msg(! is_degen,
|
||||
"Cannot contruct a degenerate segment.");
|
||||
"Cannot construct a degenerate segment.");
|
||||
}
|
||||
|
||||
/*!
|
||||
|
|
@ -192,7 +192,7 @@ public:
|
|||
is_pt_max = (res == SMALLER);
|
||||
|
||||
CGAL_precondition_msg(! is_degen,
|
||||
"Cannot contruct a degenerate segment.");
|
||||
"Cannot construct a degenerate segment.");
|
||||
|
||||
l = kernel.construct_line_2_object()(seg);
|
||||
is_vert = kernel.is_vertical_2_object()(seg);
|
||||
|
|
@ -365,7 +365,7 @@ public:
|
|||
|
||||
public:
|
||||
/*!
|
||||
* Compare two points lexigoraphically: by x, then by y.
|
||||
* Compare two points lexicographically: by x, then by y.
|
||||
* \param p1 The first point.
|
||||
* \param p2 The second point.
|
||||
* \return LARGER if x(p1) > x(p2), or if x(p1) = x(p2) and y(p1) > y(p2);
|
||||
|
|
@ -500,7 +500,7 @@ public:
|
|||
* \param p The intersection point.
|
||||
* \pre The point p lies on both curves, and both of them must be also be
|
||||
* defined (lexicographically) to its left.
|
||||
* \return The relative position of cv1 with respect to cv2 immdiately to
|
||||
* \return The relative position of cv1 with respect to cv2 immediately to
|
||||
* the left of p: SMALLER, LARGER or EQUAL.
|
||||
*/
|
||||
Comparison_result operator()(const X_monotone_curve_2& cv1,
|
||||
|
|
@ -523,7 +523,7 @@ public:
|
|||
CGAL_precondition(compare_xy(cv1.left(), p) == SMALLER &&
|
||||
compare_xy(cv2.left(), p) == SMALLER);
|
||||
|
||||
// Compare the slopes of the two segments to determine thir relative
|
||||
// Compare the slopes of the two segments to determine their relative
|
||||
// position immediately to the left of q.
|
||||
// Notice we use the supporting lines in order to compare the slopes,
|
||||
// and that we swap the order of the curves in order to obtain the
|
||||
|
|
@ -559,7 +559,7 @@ public:
|
|||
* \param p The intersection point.
|
||||
* \pre The point p lies on both curves, and both of them must be also be
|
||||
* defined (lexicographically) to its right.
|
||||
* \return The relative position of cv1 with respect to cv2 immdiately to
|
||||
* \return The relative position of cv1 with respect to cv2 immediately to
|
||||
* the right of p: SMALLER, LARGER or EQUAL.
|
||||
*/
|
||||
Comparison_result operator()(const X_monotone_curve_2& cv1,
|
||||
|
|
@ -582,7 +582,7 @@ public:
|
|||
CGAL_precondition(compare_xy(cv1.right(), p) == LARGER &&
|
||||
compare_xy(cv2.right(), p) == LARGER);
|
||||
|
||||
// Compare the slopes of the two segments to determine thir relative
|
||||
// Compare the slopes of the two segments to determine their relative
|
||||
// position immediately to the left of q.
|
||||
// Notice we use the supporting lines in order to compare the slopes.
|
||||
return (kernel.compare_slope_2_object()(cv1.line(), cv2.line()));
|
||||
|
|
@ -624,7 +624,7 @@ public:
|
|||
equal(cv1.right(), cv2.right()));
|
||||
}
|
||||
|
||||
/*! Detemine whether the two points are the same.
|
||||
/*! Determine whether the two points are the same.
|
||||
* \param p1 The first point.
|
||||
* \param p2 The second point.
|
||||
* \return (true) if the two point are the same; (false) otherwise.
|
||||
|
|
@ -734,7 +734,7 @@ public:
|
|||
public:
|
||||
/*!
|
||||
* Find the intersections of the two given curves and insert them into the
|
||||
* given output iterator. As two segments may itersect only once, only a
|
||||
* given output iterator. As two segments may intersect only once, only a
|
||||
* single intersection will be contained in the iterator.
|
||||
* \param cv1 The first curve.
|
||||
* \param cv2 The second curve.
|
||||
|
|
@ -986,7 +986,7 @@ public:
|
|||
friend class Arr_segment_traits_2<Kernel>;
|
||||
|
||||
/*! Obtain a trimmed version of a line.
|
||||
* \param xseg The x-mnotone segmet.
|
||||
* \param xseg The x-monotone segment.
|
||||
* \param src the new start endpoint.
|
||||
* \param tgt the new end endpoint.
|
||||
* \return The trimmed x-monotone segment.
|
||||
|
|
|
|||
|
|
@ -1325,7 +1325,7 @@ bool is_valid (const Arrangement_on_surface_2<GeomTraits, TopTraits>& arr)
|
|||
}
|
||||
else
|
||||
{
|
||||
// Get the first halfedge aroung v_below that is directed from left to
|
||||
// Get the first halfedge around v_below that is directed from left to
|
||||
// right and the first halfedge that is directed from right to left.
|
||||
first = circ = v_below->incident_halfedges();
|
||||
Halfedge_const_handle he_left; // A halfedge to the left of v_below.
|
||||
|
|
|
|||
|
|
@ -54,9 +54,9 @@ namespace CGAL {
|
|||
|
||||
/*! \class Arrangement_on_surface_2
|
||||
* The arrangement class, representing 2-dimensional subdivisions induced on
|
||||
* an arbitrary surface by a set of arbitrary planar.
|
||||
* an arbitrary surface by a set of arbitrary planar curves.
|
||||
* The GeomTraits parameter corresponds to a geometry-traits class that
|
||||
* is defines the Point_2 and X_monotone_curve_2 types and implements the
|
||||
* defines the Point_2 and X_monotone_curve_2 types and implements the
|
||||
* geometric predicates and constructions for the family of curves it defines.
|
||||
* The TopTraits parameter corresponds to a topology-traits class that defines
|
||||
* the topological structure of the surface. Note that the geometry traits
|
||||
|
|
@ -1713,23 +1713,23 @@ protected:
|
|||
Comparison_result _compare_induced_path_length(const DHalfedge* e1,
|
||||
const DHalfedge* e2) const;
|
||||
|
||||
/*
|
||||
* Updates the indices according to boundary locations
|
||||
/*!
|
||||
* Update the indices according to boundary locations
|
||||
*/
|
||||
void
|
||||
_compute_indices(Arr_parameter_space ps_x_curr, Arr_parameter_space ps_y_curr,
|
||||
Arr_parameter_space ps_x_next, Arr_parameter_space ps_y_next,
|
||||
int& x_index, int& y_index, boost::mpl::bool_<true>) const;
|
||||
|
||||
/*
|
||||
* Updates the indices according to boundary locations (i.e. does nothing)
|
||||
/*!
|
||||
* Update the indices according to boundary locations (i.e. does nothing)
|
||||
*/
|
||||
void
|
||||
_compute_indices(Arr_parameter_space ps_x_curr, Arr_parameter_space ps_y_curr,
|
||||
Arr_parameter_space ps_x_next, Arr_parameter_space ps_y_next,
|
||||
int& x_index, int& y_index, boost::mpl::bool_<false>) const;
|
||||
|
||||
/*
|
||||
/*!
|
||||
* Is the first given x-monotone curve above the second given?
|
||||
* \param xcv1 the first given curve
|
||||
* \param ps_y1 the parameter space in y of xcv1
|
||||
|
|
@ -1744,7 +1744,7 @@ protected:
|
|||
Arr_parameter_space ps_y1,
|
||||
Arr_has_identified_side_tag) const;
|
||||
|
||||
/*
|
||||
/*!
|
||||
* Is the first given x-monotone curve above the second given?
|
||||
* \param xcv1 the first given curve
|
||||
* \param ps_y1 the parameter space in y of xcv1
|
||||
|
|
@ -1759,7 +1759,7 @@ protected:
|
|||
Arr_parameter_space ps_y1,
|
||||
Arr_has_contracted_side_tag) const;
|
||||
|
||||
/*
|
||||
/*!
|
||||
* Is the first given x-monotone curve above the second given?
|
||||
* \param xcv1 the first given curve
|
||||
* \param ps_y1 the parameter space in y of xcv1
|
||||
|
|
@ -1775,7 +1775,7 @@ protected:
|
|||
Arr_boundary_cond_tag) const;
|
||||
|
||||
/*!
|
||||
* Computes the signs (in left/right and bottom/top) of a path
|
||||
* Compute the signs (in left/right and bottom/top) of a path
|
||||
* induced by the sequence he_to=>cv,cv_dir=>he_away, and reports
|
||||
* as side-effect the halfedges pointing to local minima copied
|
||||
* to an outputiterator.
|
||||
|
|
@ -2035,7 +2035,7 @@ protected:
|
|||
void _relocate_inner_ccbs_in_new_face(DHalfedge* new_he);
|
||||
|
||||
/*!
|
||||
* Relocate all vertices to their proper position,
|
||||
* Relocate all vertices to their proper position,
|
||||
* immediately after a face has split due to the insertion of a new halfedge.
|
||||
* \param new_he The new halfedge that caused the split, such that the new
|
||||
* face lies to its left and the old face to its right.
|
||||
|
|
@ -2113,7 +2113,7 @@ protected:
|
|||
DFace* _remove_edge(DHalfedge* e, bool remove_source, bool remove_target);
|
||||
|
||||
/*!
|
||||
* Decides whether a hole is created when an edge is removed.
|
||||
* Decide whether a hole is created when an edge is removed.
|
||||
*
|
||||
* \param signs1 signs of future ccb1
|
||||
* \param signs2 signs of future ccb2
|
||||
|
|
|
|||
|
|
@ -141,7 +141,7 @@ void check_compare_end_points_xy_2()
|
|||
// Insert a parabolic arc that is supported by a parabola y = -x^2
|
||||
// (or: x^2 + y = 0) and whose endpoints are (-sqrt(3), -3) ~ (-1.73, -3)
|
||||
// and (sqrt(2), -2) ~ (1.41, -2). Notice that since the x-coordinates
|
||||
// of the endpoints cannot be acccurately represented, we specify them
|
||||
// of the endpoints cannot be accurately represented, we specify them
|
||||
// as the intersections of the parabola with the lines y = -3 and y = -2.
|
||||
// Note that the arc is clockwise oriented.
|
||||
Conic_curve_2
|
||||
|
|
|
|||
|
|
@ -47,7 +47,7 @@ double get(Edge_length_func edge_length, Arrangement_2::Halfedge_handle e)
|
|||
return edge_length(e);
|
||||
}
|
||||
|
||||
/* The folowing is a workaround for a bug in the BGL upto and including version
|
||||
/* The following is a workaround for a bug in the BGL up to and including version
|
||||
* 103400.
|
||||
*
|
||||
* Unfortunately some of the calls to the get() function below from the BGL
|
||||
|
|
|
|||
|
|
@ -508,9 +508,9 @@ The package provides the overloaded free function
|
|||
range defined by the two input iterators `[begin, end)` intersect.
|
||||
|
||||
The class `General_polygon_set_2` also provides equivalent member
|
||||
functions that aggragately operate on a range of input polygons or
|
||||
polygons with holes. When such a member function is called, the general
|
||||
polygons represented by the current object are considered operands as
|
||||
functions that aggregately operate on a range of input polygons or
|
||||
polygons with holes. When such a member function is called, the general
|
||||
polygons represented by the current object are considered operands as
|
||||
well. Thus, you can easily compute the union of our polygon range as
|
||||
follows:
|
||||
\code{.cpp}
|
||||
|
|
|
|||
|
|
@ -69,7 +69,7 @@ int main (int argc, char* argv[])
|
|||
circles.push_back (construct_polygon (circle));
|
||||
}
|
||||
|
||||
// Compute the union aggragately.
|
||||
// Compute the union aggregately.
|
||||
std::list<Polygon_with_holes_2> res;
|
||||
CGAL::join (circles.begin(), circles.end(), std::back_inserter (res));
|
||||
|
||||
|
|
|
|||
|
|
@ -51,12 +51,12 @@ public:
|
|||
typedef typename Base::Arrangement_2 Arrangement_2;
|
||||
typedef typename Base::Size Size;
|
||||
|
||||
/*! Default consturctor. */
|
||||
/*! Default constructor. */
|
||||
Polygon_set_2 () :
|
||||
Base()
|
||||
{}
|
||||
|
||||
/*! Consturctor from the base class. */
|
||||
/*! Constructor from the base class. */
|
||||
Polygon_set_2 (const Base& base) :
|
||||
Base (base)
|
||||
{}
|
||||
|
|
|
|||
Loading…
Reference in New Issue