Merge remote-tracking branch 'cgal/master' into CGAL-rename_ctest_test_names-GF

# Conflicts:
#	Polyhedron/demo/Polyhedron/Plugins/PMP/CMakeLists.txt
This commit is contained in:
Laurent Rineau 2023-04-21 10:47:17 +02:00
commit 205236832e
626 changed files with 63107 additions and 1687 deletions

View File

@ -9,7 +9,7 @@ and compute intersections between query objects and the primitives stored in the
In addition, it contains predicates and constructors to compute distances between a point query In addition, it contains predicates and constructors to compute distances between a point query
and the primitives stored in the AABB tree. and the primitives stored in the AABB tree.
\cgalRefines `SearchGeomTraits_3` \cgalRefines{SearchGeomTraits_3}
\cgalHasModel All models of the concept `Kernel` \cgalHasModel All models of the concept `Kernel`
@ -76,7 +76,7 @@ A functor object to compare the distance of two points wrt a third one. Provides
`CGAL::Comparison_result operator()(const Point_3& p1, const Point_3& p2, const Point_3& p3)`, `CGAL::Comparison_result operator()(const Point_3& p1, const Point_3& p2, const Point_3& p3)`,
which compares the distance between `p1 and `p2`, and between `p2` and `p3`. which compares the distance between `p1` and `p2`, and between `p2` and `p3`.
*/ */
typedef unspecified_type Compare_distance_3; typedef unspecified_type Compare_distance_3;

View File

@ -7,7 +7,7 @@ concept `AABBGeomTraits`. In addition to the types required by
`AABBGeomTraits` it also requires types and functors necessary to `AABBGeomTraits` it also requires types and functors necessary to
define the Intersection_distance functor. define the Intersection_distance functor.
\cgalRefines `AABBGeomTraits` \cgalRefines{AABBGeomTraits}
\cgalHasModel All models of the concept `Kernel` \cgalHasModel All models of the concept `Kernel`

View File

@ -7,7 +7,7 @@ The concept `AABBTraits` provides the geometric primitive types and methods for
\cgalHasModel `CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>` \cgalHasModel `CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>`
\cgalRefines `SearchGeomTraits_3` \cgalRefines{SearchGeomTraits_3}
\sa `CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>` \sa `CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>`
\sa `CGAL::AABB_tree<AABBTraits>` \sa `CGAL::AABB_tree<AABBTraits>`

View File

@ -9,7 +9,7 @@ used in the class `CGAL::Advancing_front_surface_reconstruction`.
It defines the geometric objects (points, segments...) forming the triangulation It defines the geometric objects (points, segments...) forming the triangulation
together with a few geometric predicates and constructions on these objects. together with a few geometric predicates and constructions on these objects.
\cgalRefines `DelaunayTriangulationTraits_3` \cgalRefines{DelaunayTriangulationTraits_3}
\cgalHasModel All models of `Kernel`. \cgalHasModel All models of `Kernel`.
*/ */

View File

@ -186,7 +186,7 @@ namespace CGAL {
CGAL::Advancing_front_surface_reconstruction_vertex_base_3< CGAL::Advancing_front_surface_reconstruction_vertex_base_3<
CGAL::Exact_predicates_inexact_constructions_kernel>, CGAL::Exact_predicates_inexact_constructions_kernel>,
CGAL::Advancing_front_surface_reconstruction_cell_base_3< CGAL::Advancing_front_surface_reconstruction_cell_base_3<
CGAL::Exact_predicates_inexact_constructions_kernel> > >` CGAL::Exact_predicates_inexact_constructions_kernel> > >
\endcode \endcode
\tparam P must be a functor offering \tparam P must be a functor offering

View File

@ -8,7 +8,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableBinaryFunction` computes the integral quotient of division `AdaptableBinaryFunction` computes the integral quotient of division
with remainder. with remainder.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicStructureTraits` \sa `AlgebraicStructureTraits`
\sa `AlgebraicStructureTraits_::Mod` \sa `AlgebraicStructureTraits_::Mod`
@ -58,4 +58,4 @@ template <class NT1, class NT2> result_type operator()(NT1 x, NT2 y);
}; /* end Div */ }; /* end Div */
} }

View File

@ -189,7 +189,7 @@ r
</TABLE> </TABLE>
\cgalRefines `AdaptableFunctor` \cgalRefines{AdaptableFunctor}
\sa `AlgebraicStructureTraits` \sa `AlgebraicStructureTraits`
\sa `AlgebraicStructureTraits_::Mod` \sa `AlgebraicStructureTraits_::Mod`

View File

@ -16,7 +16,7 @@ This functor is required to provide two operators. The first operator takes two
arguments and returns true if the first argument divides the second argument. arguments and returns true if the first argument divides the second argument.
The second operator returns \f$ c\f$ via the additional third argument. The second operator returns \f$ c\f$ via the additional third argument.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicStructureTraits` \sa `AlgebraicStructureTraits`
\sa `AlgebraicStructureTraits_::IntegralDivision` \sa `AlgebraicStructureTraits_::IntegralDivision`

View File

@ -17,7 +17,7 @@ unit-normal (i.e.\ have unit part 1).
to the partial order of divisibility. This is because an element \f$ a \in R\f$ is said to divide \f$ b \in R\f$, iff \f$ \exists r \in R\f$ such that \f$ a \cdot r = b\f$. to the partial order of divisibility. This is because an element \f$ a \in R\f$ is said to divide \f$ b \in R\f$, iff \f$ \exists r \in R\f$ such that \f$ a \cdot r = b\f$.
Thus, \f$ 0\f$ is divided by every element of the Ring, in particular by itself. Thus, \f$ 0\f$ is divided by every element of the Ring, in particular by itself.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicStructureTraits` \sa `AlgebraicStructureTraits`

View File

@ -13,7 +13,7 @@ exists (i.e.\ if \f$ x\f$ is divisible by \f$ y\f$). Otherwise the effect of inv
this operation is undefined. Since the ring represented is an integral domain, this operation is undefined. Since the ring represented is an integral domain,
\f$ z\f$ is uniquely defined if it exists. \f$ z\f$ is uniquely defined if it exists.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicStructureTraits` \sa `AlgebraicStructureTraits`
\sa `AlgebraicStructureTraits_::Divides` \sa `AlgebraicStructureTraits_::Divides`

View File

@ -8,7 +8,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableUnaryFunction` providing the inverse element with `AdaptableUnaryFunction` providing the inverse element with
respect to multiplication of a `Field`. respect to multiplication of a `Field`.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicStructureTraits` \sa `AlgebraicStructureTraits`

View File

@ -8,7 +8,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableUnaryFunction`, `AdaptableUnaryFunction`,
returns true in case the argument is the one of the ring. returns true in case the argument is the one of the ring.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicStructureTraits` \sa `AlgebraicStructureTraits`

View File

@ -13,7 +13,7 @@ A ring element \f$ x\f$ is said to be a square iff there exists a ring element \
that \f$ x= y*y\f$. In case the ring is a `UniqueFactorizationDomain`, that \f$ x= y*y\f$. In case the ring is a `UniqueFactorizationDomain`,
\f$ y\f$ is uniquely defined up to multiplication by units. \f$ y\f$ is uniquely defined up to multiplication by units.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicStructureTraits` \sa `AlgebraicStructureTraits`

View File

@ -7,7 +7,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableUnaryFunction`, returns true in case the argument is the zero element of the ring. `AdaptableUnaryFunction`, returns true in case the argument is the zero element of the ring.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicStructureTraits` \sa `AlgebraicStructureTraits`
\sa `RealEmbeddableTraits_::IsZero` \sa `RealEmbeddableTraits_::IsZero`

View File

@ -7,7 +7,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableBinaryFunction` providing the k-th root. `AdaptableBinaryFunction` providing the k-th root.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `FieldWithRootOf` \sa `FieldWithRootOf`
\sa `AlgebraicStructureTraits` \sa `AlgebraicStructureTraits`

View File

@ -7,7 +7,7 @@ namespace AlgebraicStructureTraits_ {
`AdaptableBinaryFunction` computes the remainder of division with remainder. `AdaptableBinaryFunction` computes the remainder of division with remainder.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicStructureTraits` \sa `AlgebraicStructureTraits`
\sa `AlgebraicStructureTraits_::Div` \sa `AlgebraicStructureTraits_::Div`

View File

@ -8,7 +8,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableFunctor` computes a real root of a square-free univariate `AdaptableFunctor` computes a real root of a square-free univariate
polynomial. polynomial.
\cgalRefines `AdaptableFunctor` \cgalRefines{AdaptableFunctor}
\sa `FieldWithRootOf` \sa `FieldWithRootOf`
\sa `AlgebraicStructureTraits` \sa `AlgebraicStructureTraits`

View File

@ -7,7 +7,7 @@ namespace AlgebraicStructureTraits_{
This `AdaptableUnaryFunction` may simplify a given object. This `AdaptableUnaryFunction` may simplify a given object.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicStructureTraits` \sa `AlgebraicStructureTraits`

View File

@ -7,7 +7,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableUnaryFunction` providing the square root. `AdaptableUnaryFunction` providing the square root.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicStructureTraits` \sa `AlgebraicStructureTraits`

View File

@ -7,7 +7,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableUnaryFunction`, computing the square of the argument. `AdaptableUnaryFunction`, computing the square of the argument.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicStructureTraits` \sa `AlgebraicStructureTraits`

View File

@ -21,7 +21,7 @@ hence the unit-part of a non-zero integer is its sign. For a `Field`, every
non-zero element is a unit and is its own unit part, its unit normal non-zero element is a unit and is its own unit part, its unit normal
associate being one. The unit part of zero is, by convention, one. associate being one. The unit part of zero is, by convention, one.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicStructureTraits` \sa `AlgebraicStructureTraits`

View File

@ -25,7 +25,7 @@ The most prominent example of a Euclidean ring are the integers.
Whenever both \f$ x\f$ and \f$ y\f$ are positive, then it is conventional to choose Whenever both \f$ x\f$ and \f$ y\f$ are positive, then it is conventional to choose
the smallest positive remainder \f$ r\f$. the smallest positive remainder \f$ r\f$.
\cgalRefines `UniqueFactorizationDomain` \cgalRefines{UniqueFactorizationDomain}
\sa `IntegralDomainWithoutDivision` \sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain` \sa `IntegralDomain`

View File

@ -16,7 +16,7 @@ Moreover, `CGAL::Algebraic_structure_traits< Field >` is a model of
- \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< Field >::Algebraic_category` \endlink derived from `CGAL::Field_tag` - \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< Field >::Algebraic_category` \endlink derived from `CGAL::Field_tag`
- \link AlgebraicStructureTraits::Inverse `CGAL::Algebraic_structure_traits< FieldWithSqrt >::Inverse` \endlink which is a model of `AlgebraicStructureTraits_::Inverse` - \link AlgebraicStructureTraits::Inverse `CGAL::Algebraic_structure_traits< FieldWithSqrt >::Inverse` \endlink which is a model of `AlgebraicStructureTraits_::Inverse`
\cgalRefines `IntegralDomain` \cgalRefines{IntegralDomain}
\sa `IntegralDomainWithoutDivision` \sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain` \sa `IntegralDomain`

View File

@ -7,8 +7,7 @@ The concept `FieldNumberType` combines the requirements of the concepts
A model of `FieldNumberType` can be used as a template parameter A model of `FieldNumberType` can be used as a template parameter
for Cartesian kernels. for Cartesian kernels.
\cgalRefines `Field` \cgalRefines{Field,RealEmbeddable}
\cgalRefines `RealEmbeddable`
\cgalHasModel float \cgalHasModel float
\cgalHasModel double \cgalHasModel double

View File

@ -10,7 +10,7 @@ Moreover, `CGAL::Algebraic_structure_traits< FieldWithKthRoot >` is a model of `
- \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< FieldWithKthRoot >::Algebraic_category` \endlink derived from `CGAL::Field_with_kth_root_tag` - \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< FieldWithKthRoot >::Algebraic_category` \endlink derived from `CGAL::Field_with_kth_root_tag`
- \link AlgebraicStructureTraits::Kth_root `CGAL::Algebraic_structure_traits< FieldWithKthRoot >::Kth_root` \endlink which is a model of `AlgebraicStructureTraits_::KthRoot` - \link AlgebraicStructureTraits::Kth_root `CGAL::Algebraic_structure_traits< FieldWithKthRoot >::Kth_root` \endlink which is a model of `AlgebraicStructureTraits_::KthRoot`
\cgalRefines `FieldWithSqrt` \cgalRefines{FieldWithSqrt}
\sa `IntegralDomainWithoutDivision` \sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain` \sa `IntegralDomain`

View File

@ -11,7 +11,7 @@ Moreover, `CGAL::Algebraic_structure_traits< FieldWithRootOf >` is a model of `A
- \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< FieldWithRootOf >::Algebraic_category` \endlink derived from `CGAL::Field_with_kth_root_tag` - \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< FieldWithRootOf >::Algebraic_category` \endlink derived from `CGAL::Field_with_kth_root_tag`
- \link AlgebraicStructureTraits::Root_of `CGAL::Algebraic_structure_traits< FieldWithRootOf >::Root_of` \endlink which is a model of `AlgebraicStructureTraits_::RootOf` - \link AlgebraicStructureTraits::Root_of `CGAL::Algebraic_structure_traits< FieldWithRootOf >::Root_of` \endlink which is a model of `AlgebraicStructureTraits_::RootOf`
\cgalRefines `FieldWithKthRoot` \cgalRefines{FieldWithKthRoot}
\sa `IntegralDomainWithoutDivision` \sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain` \sa `IntegralDomain`

View File

@ -10,7 +10,7 @@ Moreover, `CGAL::Algebraic_structure_traits< FieldWithSqrt >` is a model of `Alg
- \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< FieldWithSqrt >::Algebraic_category` \endlink derived from `CGAL::Field_with_sqrt_tag` - \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< FieldWithSqrt >::Algebraic_category` \endlink derived from `CGAL::Field_with_sqrt_tag`
- \link AlgebraicStructureTraits::Sqrt `CGAL::Algebraic_structure_traits< FieldWithSqrt >::Sqrt` \endlink which is a model of `AlgebraicStructureTraits_::Sqrt` - \link AlgebraicStructureTraits::Sqrt `CGAL::Algebraic_structure_traits< FieldWithSqrt >::Sqrt` \endlink which is a model of `AlgebraicStructureTraits_::Sqrt`
\cgalRefines `Field` \cgalRefines{Field}
\sa `IntegralDomainWithoutDivision` \sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain` \sa `IntegralDomain`

View File

@ -113,7 +113,7 @@ FractionTraits::Denominator_type & d);
`AdaptableBinaryFunction`, returns the fraction of its arguments. `AdaptableBinaryFunction`, returns the fraction of its arguments.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `Fraction` \sa `Fraction`
\sa `FractionTraits` \sa `FractionTraits`
@ -168,7 +168,7 @@ This can be considered as a relaxed version of `AlgebraicStructureTraits_::Gcd`,
this is needed because it is not guaranteed that `FractionTraits::Denominator_type` is a model of this is needed because it is not guaranteed that `FractionTraits::Denominator_type` is a model of
`UniqueFactorizationDomain`. `UniqueFactorizationDomain`.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `Fraction` \sa `Fraction`
\sa `FractionTraits` \sa `FractionTraits`

View File

@ -16,7 +16,7 @@ In this case
\link CGAL::Coercion_traits::Are_implicit_interoperable `CGAL::Coercion_traits<A,B>::Are_implicit_interoperable`\endlink \link CGAL::Coercion_traits::Are_implicit_interoperable `CGAL::Coercion_traits<A,B>::Are_implicit_interoperable`\endlink
is `CGAL::Tag_true`. is `CGAL::Tag_true`.
\cgalRefines `ExplicitInteroperable` \cgalRefines{ExplicitInteroperable}
\sa `CGAL::Coercion_traits<A,B>` \sa `CGAL::Coercion_traits<A,B>`
\sa `ExplicitInteroperable` \sa `ExplicitInteroperable`

View File

@ -16,7 +16,7 @@ Moreover, `CGAL::Algebraic_structure_traits< IntegralDomain >` is a model of
- \link AlgebraicStructureTraits::Integral_division `CGAL::Algebraic_structure_traits< IntegralDomain >::Integral_division` \endlink which is a model of `AlgebraicStructureTraits_::IntegralDivision` - \link AlgebraicStructureTraits::Integral_division `CGAL::Algebraic_structure_traits< IntegralDomain >::Integral_division` \endlink which is a model of `AlgebraicStructureTraits_::IntegralDivision`
- \link AlgebraicStructureTraits::Divides `CGAL::Algebraic_structure_traits< IntegralDomain >::Divides` \endlink which is a model of `AlgebraicStructureTraits_::Divides` - \link AlgebraicStructureTraits::Divides `CGAL::Algebraic_structure_traits< IntegralDomain >::Divides` \endlink which is a model of `AlgebraicStructureTraits_::Divides`
\cgalRefines `IntegralDomainWithoutDivision` \cgalRefines{IntegralDomainWithoutDivision}
\sa `IntegralDomainWithoutDivision` \sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain` \sa `IntegralDomain`

View File

@ -29,11 +29,7 @@ Moreover, `CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >` is
- \link AlgebraicStructureTraits::Simplify `CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Simplify` \endlink which is a model of `AlgebraicStructureTraits_::Simplify` - \link AlgebraicStructureTraits::Simplify `CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Simplify` \endlink which is a model of `AlgebraicStructureTraits_::Simplify`
- \link AlgebraicStructureTraits::Unit_part `CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Unit_part` \endlink which is a model of `AlgebraicStructureTraits_::UnitPart` - \link AlgebraicStructureTraits::Unit_part `CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Unit_part` \endlink which is a model of `AlgebraicStructureTraits_::UnitPart`
\cgalRefines `Assignable` \cgalRefines{Assignable,CopyConstructible,DefaultConstructible,EqualityComparable,FromIntConstructible}
\cgalRefines `CopyConstructible`
\cgalRefines `DefaultConstructible`
\cgalRefines `EqualityComparable`
\cgalRefines `FromIntConstructible`
\sa `IntegralDomainWithoutDivision` \sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain` \sa `IntegralDomain`

View File

@ -38,8 +38,7 @@ If a number type is a model of both `IntegralDomainWithoutDivision` and
`RealEmbeddable`, it follows that the ring represented by such a number type `RealEmbeddable`, it follows that the ring represented by such a number type
is a sub-ring of the real numbers and hence has characteristic zero. is a sub-ring of the real numbers and hence has characteristic zero.
\cgalRefines `EqualityComparable` \cgalRefines{EqualityComparable,LessThanComparable}
\cgalRefines `LessThanComparable`
\sa `RealEmbeddableTraits` \sa `RealEmbeddableTraits`

View File

@ -7,7 +7,7 @@ namespace RealEmbeddableTraits_ {
`AdaptableUnaryFunction` computes the absolute value of a number. `AdaptableUnaryFunction` computes the absolute value of a number.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `RealEmbeddableTraits` \sa `RealEmbeddableTraits`

View File

@ -7,7 +7,7 @@ namespace RealEmbeddableTraits_ {
`AdaptableBinaryFunction` compares two real embeddable numbers. `AdaptableBinaryFunction` compares two real embeddable numbers.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `RealEmbeddableTraits` \sa `RealEmbeddableTraits`

View File

@ -7,7 +7,7 @@ namespace RealEmbeddableTraits_ {
`AdaptableUnaryFunction`, returns true in case the argument is negative. `AdaptableUnaryFunction`, returns true in case the argument is negative.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `RealEmbeddableTraits` \sa `RealEmbeddableTraits`

View File

@ -7,7 +7,7 @@ namespace RealEmbeddableTraits_ {
`AdaptableUnaryFunction`, returns true in case the argument is positive. `AdaptableUnaryFunction`, returns true in case the argument is positive.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `RealEmbeddableTraits` \sa `RealEmbeddableTraits`

View File

@ -7,7 +7,7 @@ namespace RealEmbeddableTraits_ {
`AdaptableUnaryFunction`, returns true in case the argument is 0. `AdaptableUnaryFunction`, returns true in case the argument is 0.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `RealEmbeddableTraits` \sa `RealEmbeddableTraits`
\sa `AlgebraicStructureTraits_::IsZero` \sa `AlgebraicStructureTraits_::IsZero`

View File

@ -7,7 +7,7 @@ namespace RealEmbeddableTraits_ {
This `AdaptableUnaryFunction` computes the sign of a real embeddable number. This `AdaptableUnaryFunction` computes the sign of a real embeddable number.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `RealEmbeddableTraits` \sa `RealEmbeddableTraits`

View File

@ -11,7 +11,7 @@ embeddable number.
Remark: In order to control the quality of approximation one has to resort Remark: In order to control the quality of approximation one has to resort
to methods that are specific to NT. There are no general guarantees whatsoever. to methods that are specific to NT. There are no general guarantees whatsoever.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `RealEmbeddableTraits` \sa `RealEmbeddableTraits`

View File

@ -9,7 +9,7 @@ namespace RealEmbeddableTraits_ {
number \f$ x\f$ a double interval containing \f$ x\f$. number \f$ x\f$ a double interval containing \f$ x\f$.
This interval is represented by `std::pair<double,double>`. This interval is represented by `std::pair<double,double>`.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `RealEmbeddableTraits` \sa `RealEmbeddableTraits`

View File

@ -8,8 +8,7 @@ The concept `RingNumberType` combines the requirements of the concepts
A model of `RingNumberType` can be used as a template parameter A model of `RingNumberType` can be used as a template parameter
for Homogeneous kernels. for Homogeneous kernels.
\cgalRefines `IntegralDomainWithoutDivision` \cgalRefines{IntegralDomainWithoutDivision,RealEmbeddable}
\cgalRefines `RealEmbeddable`
\cgalHasModel \cpp built-in number types \cgalHasModel \cpp built-in number types
\cgalHasModel `CGAL::Gmpq` \cgalHasModel `CGAL::Gmpq`

View File

@ -23,7 +23,7 @@ is a model of `AlgebraicStructureTraits` providing:
derived from `CGAL::Unique_factorization_domain_tag` derived from `CGAL::Unique_factorization_domain_tag`
- \link AlgebraicStructureTraits::Gcd `CGAL::Algebraic_structure_traits< UniqueFactorizationDomain >::Gcd` \endlink which is a model of `AlgebraicStructureTraits_::Gcd` - \link AlgebraicStructureTraits::Gcd `CGAL::Algebraic_structure_traits< UniqueFactorizationDomain >::Gcd` \endlink which is a model of `AlgebraicStructureTraits_::Gcd`
\cgalRefines `IntegralDomain` \cgalRefines{IntegralDomain}
\sa `IntegralDomainWithoutDivision` \sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain` \sa `IntegralDomain`

View File

@ -7,7 +7,7 @@ A model of `AlgebraicKernel_d_1::ApproximateAbsolute_1` is an `AdaptableBinaryFu
approximation of an `AlgebraicKernel_d_1::Algebraic_real_1` value with approximation of an `AlgebraicKernel_d_1::Algebraic_real_1` value with
respect to a given absolute precision. respect to a given absolute precision.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_1::ApproximateRelative_1` \sa `AlgebraicKernel_d_1::ApproximateRelative_1`

View File

@ -7,7 +7,7 @@ A model of `AlgebraicKernel_d_1::ApproximateRelative_1` is an `AdaptableBinaryFu
approximation of an `AlgebraicKernel_d_1::Algebraic_real_1` value with approximation of an `AlgebraicKernel_d_1::Algebraic_real_1` value with
respect to a given relative precision. respect to a given relative precision.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_1::ApproximateAbsolute_1` \sa `AlgebraicKernel_d_1::ApproximateAbsolute_1`

View File

@ -7,7 +7,7 @@ Computes a number of type
`AlgebraicKernel_d_1::Bound` in-between two `AlgebraicKernel_d_1::Bound` in-between two
`AlgebraicKernel_d_1::Algebraic_real_1` values. `AlgebraicKernel_d_1::Algebraic_real_1` values.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
*/ */

View File

@ -5,7 +5,7 @@
Compares `AlgebraicKernel_d_1::Algebraic_real_1` values. Compares `AlgebraicKernel_d_1::Algebraic_real_1` values.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
*/ */
class AlgebraicKernel_d_1::Compare_1 { class AlgebraicKernel_d_1::Compare_1 {

View File

@ -6,7 +6,7 @@
Computes a square free univariate polynomial \f$ p\f$, such that the given Computes a square free univariate polynomial \f$ p\f$, such that the given
`AlgebraicKernel_d_1::Algebraic_real_1` is a root of \f$ p\f$. `AlgebraicKernel_d_1::Algebraic_real_1` is a root of \f$ p\f$.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_1::Isolate_1` \sa `AlgebraicKernel_d_1::Isolate_1`

View File

@ -5,7 +5,7 @@
Constructs `AlgebraicKernel_d_1::Algebraic_real_1`. Constructs `AlgebraicKernel_d_1::Algebraic_real_1`.
\cgalRefines `AdaptableFunctor` \cgalRefines{AdaptableFunctor}
\sa `AlgebraicKernel_d_2::ConstructAlgebraicReal_2` \sa `AlgebraicKernel_d_2::ConstructAlgebraicReal_2`

View File

@ -6,7 +6,7 @@
Determines whether a given pair of univariate polynomials \f$ p_1, p_2\f$ is coprime, Determines whether a given pair of univariate polynomials \f$ p_1, p_2\f$ is coprime,
namely if \f$ \deg({\rm gcd}(p_1 ,p_2)) = 0\f$. namely if \f$ \deg({\rm gcd}(p_1 ,p_2)) = 0\f$.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_1::MakeCoprime_1` \sa `AlgebraicKernel_d_1::MakeCoprime_1`

View File

@ -5,7 +5,7 @@
Computes whether the given univariate polynomial is square free. Computes whether the given univariate polynomial is square free.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_1::MakeSquareFree_1` \sa `AlgebraicKernel_d_1::MakeSquareFree_1`
\sa `AlgebraicKernel_d_1::SquareFreeFactorize_1` \sa `AlgebraicKernel_d_1::SquareFreeFactorize_1`

View File

@ -6,7 +6,7 @@
Computes whether an `AlgebraicKernel_d_1::Polynomial_1` Computes whether an `AlgebraicKernel_d_1::Polynomial_1`
is zero at a given `AlgebraicKernel_d_1::Algebraic_real_1`. is zero at a given `AlgebraicKernel_d_1::Algebraic_real_1`.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_1::SignAt_1` \sa `AlgebraicKernel_d_1::SignAt_1`

View File

@ -6,7 +6,7 @@
Computes an open isolating interval for an `AlgebraicKernel_d_1::Algebraic_real_1` Computes an open isolating interval for an `AlgebraicKernel_d_1::Algebraic_real_1`
with respect to the real roots of a given univariate polynomial. with respect to the real roots of a given univariate polynomial.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_1::ComputePolynomial_1` \sa `AlgebraicKernel_d_1::ComputePolynomial_1`

View File

@ -16,7 +16,7 @@ such that \f$ q_1\f$ and \f$ q_2\f$ are coprime.
It returns true if \f$ p_1\f$ and \f$ p_2\f$ are already coprime. It returns true if \f$ p_1\f$ and \f$ p_2\f$ are already coprime.
\cgalRefines `AdaptableFunctor` with five arguments \cgalRefines{AdaptableQuinaryFunction}
\sa `AlgebraicKernel_d_1::IsCoprime_1` \sa `AlgebraicKernel_d_1::IsCoprime_1`

View File

@ -5,7 +5,7 @@
Returns a square free part of a univariate polynomial. Returns a square free part of a univariate polynomial.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_1::IsSquareFree_1` \sa `AlgebraicKernel_d_1::IsSquareFree_1`
\sa `AlgebraicKernel_d_1::SquareFreeFactorize_1` \sa `AlgebraicKernel_d_1::SquareFreeFactorize_1`

View File

@ -5,7 +5,7 @@
Computes the number of real solutions of the given univariate polynomial. Computes the number of real solutions of the given univariate polynomial.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_1::ConstructAlgebraicReal_1` \sa `AlgebraicKernel_d_1::ConstructAlgebraicReal_1`

View File

@ -7,7 +7,7 @@ Computes the sign of a univariate polynomial
`AlgebraicKernel_d_1::Polynomial_1` at a real value of type `AlgebraicKernel_d_1::Polynomial_1` at a real value of type
`AlgebraicKernel_d_1::Algebraic_real_1`. `AlgebraicKernel_d_1::Algebraic_real_1`.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_1::IsZeroAt_1` \sa `AlgebraicKernel_d_1::IsZeroAt_1`

View File

@ -5,8 +5,7 @@
Computes the real roots of a univariate polynomial. Computes the real roots of a univariate polynomial.
\cgalRefines `Assignable` \cgalRefines{Assignable,CopyConstructible}
\cgalRefines `CopyConstructible`
*/ */

View File

@ -14,8 +14,7 @@ and a constant factor \f$ c\f$, such that
The factor multiplicity pairs \f$ <q_i,m_i>\f$ are written to the The factor multiplicity pairs \f$ <q_i,m_i>\f$ are written to the
given output iterator. The constant factor \f$ c\f$ is not computed. given output iterator. The constant factor \f$ c\f$ is not computed.
\cgalRefines `Assignable` \cgalRefines{Assignable,CopyConstructible}
\cgalRefines `CopyConstructible`
\sa `AlgebraicKernel_d_1::IsSquareFree_1` \sa `AlgebraicKernel_d_1::IsSquareFree_1`
\sa `AlgebraicKernel_d_1::MakeSquareFree_1` \sa `AlgebraicKernel_d_1::MakeSquareFree_1`

View File

@ -6,8 +6,7 @@
A model of the `AlgebraicKernel_d_1` concept is meant to provide the A model of the `AlgebraicKernel_d_1` concept is meant to provide the
algebraic functionalities on univariate polynomials of general degree \f$ d\f$. algebraic functionalities on univariate polynomials of general degree \f$ d\f$.
\cgalRefines `CopyConstructible` \cgalRefines{CopyConstructible,Assignable}
\cgalRefines `Assignable`
\cgalHasModel `CGAL::Algebraic_kernel_rs_gmpz_d_1` \cgalHasModel `CGAL::Algebraic_kernel_rs_gmpz_d_1`
\cgalHasModel `CGAL::Algebraic_kernel_rs_gmpq_d_1` \cgalHasModel `CGAL::Algebraic_kernel_rs_gmpq_d_1`

View File

@ -7,7 +7,7 @@ A model of `AlgebraicKernel_d_2::ApproximateAbsoluteX_2` is an `AdaptableBinaryF
approximation of the \f$ x\f$-coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2` value approximation of the \f$ x\f$-coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2` value
with respect to a given absolute precision. with respect to a given absolute precision.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::ApproximateRelativeX_2` \sa `AlgebraicKernel_d_2::ApproximateRelativeX_2`
\sa `AlgebraicKernel_d_1::ApproximateAbsolute_1` \sa `AlgebraicKernel_d_1::ApproximateAbsolute_1`

View File

@ -7,7 +7,7 @@ A model of `AlgebraicKernel_d_2::ApproximateAbsoluteY_2` is an `AdaptableBinaryF
approximation of the \f$ y\f$-coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2` value approximation of the \f$ y\f$-coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2` value
with respect to a given absolute precision. with respect to a given absolute precision.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::ApproximateRelativeY_2` \sa `AlgebraicKernel_d_2::ApproximateRelativeY_2`
\sa `AlgebraicKernel_d_1::ApproximateAbsolute_1` \sa `AlgebraicKernel_d_1::ApproximateAbsolute_1`

View File

@ -7,7 +7,7 @@ A model of `AlgebraicKernel_d_2::ApproximateRelativeX_2` is an `AdaptableBinaryF
approximation of the \f$ x\f$-coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2` value approximation of the \f$ x\f$-coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2` value
with respect to a given relative precision. with respect to a given relative precision.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::ApproximateAbsoluteY_2` \sa `AlgebraicKernel_d_2::ApproximateAbsoluteY_2`
\sa `AlgebraicKernel_d_1::ApproximateAbsolute_1` \sa `AlgebraicKernel_d_1::ApproximateAbsolute_1`

View File

@ -7,7 +7,7 @@ A model of `AlgebraicKernel_d_2::ApproximateRelativeY_2` is an `AdaptableBinaryF
approximation of the \f$ y\f$-coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2` value approximation of the \f$ y\f$-coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2` value
with respect to a given relative precision. with respect to a given relative precision.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::ApproximateAbsoluteY_2` \sa `AlgebraicKernel_d_2::ApproximateAbsoluteY_2`
\sa `AlgebraicKernel_d_1::ApproximateAbsolute_1` \sa `AlgebraicKernel_d_1::ApproximateAbsolute_1`

View File

@ -7,7 +7,7 @@ Computes a number of type
`AlgebraicKernel_d_1::Bound` in-between the first coordinates of two `AlgebraicKernel_d_1::Bound` in-between the first coordinates of two
`AlgebraicKernel_d_2::AlgebraicReal_2`. `AlgebraicKernel_d_2::AlgebraicReal_2`.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::BoundBetweenY_2` \sa `AlgebraicKernel_d_2::BoundBetweenY_2`

View File

@ -7,7 +7,7 @@ Computes a number of type
`AlgebraicKernel_d_1::Bound` in-between the second coordinates of two `AlgebraicKernel_d_1::Bound` in-between the second coordinates of two
`AlgebraicKernel_d_2::AlgebraicReal_2`. `AlgebraicKernel_d_2::AlgebraicReal_2`.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::BoundBetweenX_2` \sa `AlgebraicKernel_d_2::BoundBetweenX_2`

View File

@ -5,7 +5,7 @@
Compares `AlgebraicKernel_d_2::Algebraic_real_2`s lexicographically. Compares `AlgebraicKernel_d_2::Algebraic_real_2`s lexicographically.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::CompareX_2` \sa `AlgebraicKernel_d_2::CompareX_2`
\sa `AlgebraicKernel_d_2::CompareY_2` \sa `AlgebraicKernel_d_2::CompareY_2`

View File

@ -5,7 +5,7 @@
Compares the first coordinates of `AlgebraicKernel_d_2::Algebraic_real_2`s. Compares the first coordinates of `AlgebraicKernel_d_2::Algebraic_real_2`s.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::CompareY_2` \sa `AlgebraicKernel_d_2::CompareY_2`
\sa `AlgebraicKernel_d_2::CompareXY_2` \sa `AlgebraicKernel_d_2::CompareXY_2`

View File

@ -5,7 +5,7 @@
Compares the second coordinated of `AlgebraicKernel_d_2::Algebraic_real_2`s. Compares the second coordinated of `AlgebraicKernel_d_2::Algebraic_real_2`s.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::CompareX_2` \sa `AlgebraicKernel_d_2::CompareX_2`
\sa `AlgebraicKernel_d_2::CompareXY_2` \sa `AlgebraicKernel_d_2::CompareXY_2`

View File

@ -6,7 +6,7 @@
Computes a univariate square free polynomial \f$ p\f$, such that the first coordinate of Computes a univariate square free polynomial \f$ p\f$, such that the first coordinate of
a given `AlgebraicKernel_d_2::Algebraic_real_2` is a real root of \f$ p\f$. a given `AlgebraicKernel_d_2::Algebraic_real_2` is a real root of \f$ p\f$.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_2::ComputePolynomialY_2` \sa `AlgebraicKernel_d_2::ComputePolynomialY_2`

View File

@ -6,7 +6,7 @@
Computes a univariate square free polynomial \f$ p\f$, such that the second coordinate of Computes a univariate square free polynomial \f$ p\f$, such that the second coordinate of
a given `AlgebraicKernel_d_2::Algebraic_real_2` is a real root of \f$ p\f$. a given `AlgebraicKernel_d_2::Algebraic_real_2` is a real root of \f$ p\f$.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_2::ComputePolynomialX_2` \sa `AlgebraicKernel_d_2::ComputePolynomialX_2`

View File

@ -6,7 +6,7 @@
Computes the first coordinate of an Computes the first coordinate of an
`AlgebraicKernel_d_2::AlgebraicReal_2`. `AlgebraicKernel_d_2::AlgebraicReal_2`.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_2::ComputeY_2` \sa `AlgebraicKernel_d_2::ComputeY_2`

View File

@ -6,7 +6,7 @@
Computes the second coordinate of an Computes the second coordinate of an
`AlgebraicKernel_d_2::AlgebraicReal_2`. `AlgebraicKernel_d_2::AlgebraicReal_2`.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_2::ComputeY_2` \sa `AlgebraicKernel_d_2::ComputeY_2`

View File

@ -5,7 +5,7 @@
Constructs an `AlgebraicKernel_d_2::Algebraic_real_2`. Constructs an `AlgebraicKernel_d_2::Algebraic_real_2`.
\cgalRefines `AdaptableFunctor` \cgalRefines{AdaptableFunctor}
\sa `AlgebraicKernel_d_1::ConstructAlgebraicReal_1` \sa `AlgebraicKernel_d_1::ConstructAlgebraicReal_1`

View File

@ -5,7 +5,7 @@
Computes whether a given pair of bivariate polynomials is coprime. Computes whether a given pair of bivariate polynomials is coprime.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::MakeCoprime_2` \sa `AlgebraicKernel_d_2::MakeCoprime_2`

View File

@ -5,7 +5,7 @@
Computes whether the given bivariate polynomial is square free. Computes whether the given bivariate polynomial is square free.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_2::MakeSquareFree_2` \sa `AlgebraicKernel_d_2::MakeSquareFree_2`
\sa `AlgebraicKernel_d_2::SquareFreeFactorize_2` \sa `AlgebraicKernel_d_2::SquareFreeFactorize_2`

View File

@ -6,7 +6,7 @@
Computes whether an `AlgebraicKernel_d_2::Polynomial_2` Computes whether an `AlgebraicKernel_d_2::Polynomial_2`
is zero at a given `AlgebraicKernel_d_2::Algebraic_real_2`. is zero at a given `AlgebraicKernel_d_2::Algebraic_real_2`.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::SignAt_2` \sa `AlgebraicKernel_d_2::SignAt_2`
\sa `AlgebraicKernel_d_1::IsZeroAt_1` \sa `AlgebraicKernel_d_1::IsZeroAt_1`

View File

@ -6,7 +6,7 @@
Computes an isolating interval for the first coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2` Computes an isolating interval for the first coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2`
with respect to the real roots of a univariate polynomial. with respect to the real roots of a univariate polynomial.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::IsolateY_2` \sa `AlgebraicKernel_d_2::IsolateY_2`
\sa `AlgebraicKernel_d_2::ComputePolynomialX_2` \sa `AlgebraicKernel_d_2::ComputePolynomialX_2`

View File

@ -6,7 +6,7 @@
Computes an isolating interval for the second coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2` Computes an isolating interval for the second coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2`
with respect to the real roots of a univariate polynomial. with respect to the real roots of a univariate polynomial.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::IsolateX_2` \sa `AlgebraicKernel_d_2::IsolateX_2`
\sa `AlgebraicKernel_d_2::ComputePolynomialX_2` \sa `AlgebraicKernel_d_2::ComputePolynomialX_2`

View File

@ -5,7 +5,7 @@
Computes an isolating box for a given `AlgebraicKernel_d_2::Algebraic_real_2`. Computes an isolating box for a given `AlgebraicKernel_d_2::Algebraic_real_2`.
\cgalRefines `AdaptableFunctor` \cgalRefines{AdaptableFunctor}
\sa `AlgebraicKernel_d_2::IsolateX_2` \sa `AlgebraicKernel_d_2::IsolateX_2`
\sa `AlgebraicKernel_d_2::IsolateY_2` \sa `AlgebraicKernel_d_2::IsolateY_2`

View File

@ -13,7 +13,7 @@ That is, it computes \f$ g, q_1, q_2\f$ such that:
\f$ c_2 \cdot p_2 = g \cdot q_2\f$ for some constant \f$ c_2\f$, \f$ c_2 \cdot p_2 = g \cdot q_2\f$ for some constant \f$ c_2\f$,
such that \f$ q_1\f$ and \f$ q_2\f$ are coprime. such that \f$ q_1\f$ and \f$ q_2\f$ are coprime.
\cgalRefines `AdaptableFunctor` with five arguments \cgalRefines{AdaptableQuinaryFunction}
\sa `AlgebraicKernel_d_2::IsCoprime_2` \sa `AlgebraicKernel_d_2::IsCoprime_2`

View File

@ -5,7 +5,7 @@
Returns a square free part of a bivariate polynomial. Returns a square free part of a bivariate polynomial.
\cgalRefines `AdaptableUnaryFunction` \cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_2::IsSquareFree_2` \sa `AlgebraicKernel_d_2::IsSquareFree_2`
\sa `AlgebraicKernel_d_2::SquareFreeFactorize_2` \sa `AlgebraicKernel_d_2::SquareFreeFactorize_2`

View File

@ -5,7 +5,7 @@
Computes the number of real solutions of the given bivariate polynomial system. Computes the number of real solutions of the given bivariate polynomial system.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::ConstructAlgebraicReal_2` \sa `AlgebraicKernel_d_2::ConstructAlgebraicReal_2`

View File

@ -7,7 +7,7 @@ Computes the sign of a bivariate polynomial
`AlgebraicKernel_d_2::Polynomial_2` at a value of type `AlgebraicKernel_d_2::Polynomial_2` at a value of type
`AlgebraicKernel_d_2::Algebraic_real_2`. `AlgebraicKernel_d_2::Algebraic_real_2`.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::IsZeroAt_2` \sa `AlgebraicKernel_d_2::IsZeroAt_2`
\sa `AlgebraicKernel_d_1::SignAt_1` \sa `AlgebraicKernel_d_1::SignAt_1`

View File

@ -6,8 +6,7 @@
Computes the real zero-dimensional solutions of a bivariate polynomial system. Computes the real zero-dimensional solutions of a bivariate polynomial system.
The multiplicity stored in the output iterator is the multiplicity in the system. The multiplicity stored in the output iterator is the multiplicity in the system.
\cgalRefines `Assignable` \cgalRefines{Assignable,CopyConstructible}
\cgalRefines `CopyConstructible`
*/ */
class AlgebraicKernel_d_2::Solve_2 { class AlgebraicKernel_d_2::Solve_2 {
public: public:

View File

@ -14,8 +14,7 @@ and a constant factor \f$ c\f$, such that
The factor multiplicity pairs \f$ <q_i,m_i>\f$ are written to the The factor multiplicity pairs \f$ <q_i,m_i>\f$ are written to the
given output iterator. The constant factor \f$ c\f$ is not computed. given output iterator. The constant factor \f$ c\f$ is not computed.
\cgalRefines `Assignable` \cgalRefines{Assignable,CopyConstructible}
\cgalRefines `CopyConstructible`
\sa `AlgebraicKernel_d_2::IsSquareFree_2` \sa `AlgebraicKernel_d_2::IsSquareFree_2`
\sa `AlgebraicKernel_d_2::MakeSquareFree_2` \sa `AlgebraicKernel_d_2::MakeSquareFree_2`

View File

@ -6,9 +6,7 @@
A model of the `AlgebraicKernel_d_2` concept gathers necessary tools A model of the `AlgebraicKernel_d_2` concept gathers necessary tools
for solving and handling bivariate polynomial systems of general degree \f$ d\f$. for solving and handling bivariate polynomial systems of general degree \f$ d\f$.
\cgalRefines `AlgebraicKernel_d_1` \cgalRefines{AlgebraicKernel_d_1,CopyConstructible,Assignable}
\cgalRefines `CopyConstructible`
\cgalRefines `Assignable`
\sa `AlgebraicKernel_d_1` \sa `AlgebraicKernel_d_1`

View File

@ -5,9 +5,9 @@
The concept `AlphaShapeFace_2` describes the requirements for the base face of an alpha shape. The concept `AlphaShapeFace_2` describes the requirements for the base face of an alpha shape.
\cgalRefines `TriangulationFaceBase_2`, if the underlying triangulation of the alpha shape is a Delaunay triangulation. \cgalRefines{TriangulationFaceBase_2 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
\cgalRefines `RegularTriangulationFaceBase_2`, if the underlying triangulation of the alpha shape is a regular triangulation. RegularTriangulationFaceBase_2 if the underlying triangulation of the alpha shape is a regular triangulation,
\cgalRefines `Periodic_2TriangulationFaceBase_2`, if the underlying triangulation of the alpha shape is a periodic triangulation. Periodic_2TriangulationFaceBase_2 if the underlying triangulation of the alpha shape is a periodic triangulation}
\cgalHasModel `CGAL::Alpha_shape_face_base_2` (templated with the appropriate triangulation face base class). \cgalHasModel `CGAL::Alpha_shape_face_base_2` (templated with the appropriate triangulation face base class).

View File

@ -6,8 +6,8 @@
The concept `AlphaShapeTraits_2` describes the requirements for the geometric traits The concept `AlphaShapeTraits_2` describes the requirements for the geometric traits
class of the underlying Delaunay triangulation of a basic alpha shape. class of the underlying Delaunay triangulation of a basic alpha shape.
\cgalRefines `DelaunayTriangulationTraits_2`, if the underlying triangulation of the alpha shape is a Delaunay triangulation. \cgalRefines{DelaunayTriangulationTraits_2 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
\cgalRefines `Periodic_2DelaunayTriangulationTraits_2`, if the underlying triangulation of the alpha shape is a periodic Delaunay triangulation. Periodic_2DelaunayTriangulationTraits_2 if the underlying triangulation of the alpha shape is a periodic Delaunay triangulation}
\cgalHasModel All models of `Kernel`. \cgalHasModel All models of `Kernel`.
\cgalHasModel Projection traits such as `CGAL::Projection_traits_xy_3<K>`. \cgalHasModel Projection traits such as `CGAL::Projection_traits_xy_3<K>`.

View File

@ -5,9 +5,9 @@
The concept `AlphaShapeVertex_2` describes the requirements for the base vertex of an alpha shape. The concept `AlphaShapeVertex_2` describes the requirements for the base vertex of an alpha shape.
\cgalRefines `TriangulationVertexBase_2`, if the underlying triangulation of the alpha shape is a Delaunay triangulation. \cgalRefines{TriangulationVertexBase_2 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
\cgalRefines `RegularTriangulationVertexBase_2`, if the underlying triangulation of the alpha shape is a regular triangulation. RegularTriangulationVertexBase_2 if the underlying triangulation of the alpha shape is a regular triangulation,
\cgalRefines `Periodic_2TriangulationVertexBase_2`, if the underlying triangulation of the alpha shape is a periodic triangulation. Periodic_2TriangulationVertexBase_2 if the underlying triangulation of the alpha shape is a periodic triangulation}
\cgalHasModel `CGAL::Alpha_shape_vertex_base_2` (templated with the appropriate triangulation vertex base class). \cgalHasModel `CGAL::Alpha_shape_vertex_base_2` (templated with the appropriate triangulation vertex base class).
*/ */

View File

@ -7,7 +7,7 @@ The concept `WeightedAlphaShapeTraits_2` describes the requirements
for the geometric traits class for the geometric traits class
of the underlying regular triangulation of a weighted alpha shape. of the underlying regular triangulation of a weighted alpha shape.
\cgalRefines `RegularTriangulationTraits_2`, if the underlying triangulation of the alpha shape is a regular triangulation. \cgalRefines{RegularTriangulationTraits_2 if the underlying triangulation of the alpha shape is a regular triangulation.}
\cgalHasModel All models of `Kernel`. \cgalHasModel All models of `Kernel`.
\cgalHasModel Projection traits such as `CGAL::Projection_traits_xy_3<K>`. \cgalHasModel Projection traits such as `CGAL::Projection_traits_xy_3<K>`.

View File

@ -5,9 +5,9 @@
The concept `AlphaShapeCell_3` describes the requirements for the base cell of an alpha shape. The concept `AlphaShapeCell_3` describes the requirements for the base cell of an alpha shape.
\cgalRefines `DelaunayTriangulationCellBase_3`, if the underlying triangulation of the alpha shape is a Delaunay triangulation. \cgalRefines{DelaunayTriangulationCellBase_3 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
\cgalRefines `RegularTriangulationCellBase_3`, if the underlying triangulation of the alpha shape is a regular triangulation. RegularTriangulationCellBase_3 if the underlying triangulation of the alpha shape is a regular triangulation,
\cgalRefines `Periodic_3TriangulationDSCellBase_3`, if the underlying triangulation of the alpha shape is a periodic triangulation. Periodic_3TriangulationDSCellBase_3 if the underlying triangulation of the alpha shape is a periodic triangulation}
\cgalHasModel `CGAL::Alpha_shape_cell_base_3` (templated with the appropriate triangulation cell base class). \cgalHasModel `CGAL::Alpha_shape_cell_base_3` (templated with the appropriate triangulation cell base class).

View File

@ -7,8 +7,8 @@ The concept `AlphaShapeTraits_3` describes the requirements
for the geometric traits class for the geometric traits class
of the underlying Delaunay triangulation of a basic alpha shape. of the underlying Delaunay triangulation of a basic alpha shape.
\cgalRefines `DelaunayTriangulationTraits_3`, if the underlying triangulation of the alpha shape is a Delaunay triangulation. \cgalRefines{DelaunayTriangulationTraits_3 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
\cgalRefines `Periodic_3DelaunayTriangulationTraits_3`, if the underlying triangulation of the alpha shape is a periodic Delaunay triangulation. Periodic_3DelaunayTriangulationTraits_3 if the underlying triangulation of the alpha shape is a periodic Delaunay triangulation}
\cgalHasModel All models of `Kernel`. \cgalHasModel All models of `Kernel`.

View File

@ -5,9 +5,9 @@
The concept `AlphaShapeVertex_3` describes the requirements for the base vertex of an alpha shape. The concept `AlphaShapeVertex_3` describes the requirements for the base vertex of an alpha shape.
\cgalRefines `TriangulationVertexBase_3`, if the underlying triangulation of the alpha shape is a Delaunay triangulation. \cgalRefines{TriangulationVertexBase_3 if the underlying triangulation of the alpha shape is a Delaunay triangulation.
\cgalRefines `RegularTriangulationVertexBase_3`, if the underlying triangulation of the alpha shape is a regular triangulation. RegularTriangulationVertexBase_3 if the underlying triangulation of the alpha shape is a regular triangulation.
\cgalRefines `Periodic_3TriangulationDSVertexBase_3`, if the underlying triangulation of the alpha shape is a periodic triangulation. Periodic_3TriangulationDSVertexBase_3 if the underlying triangulation of the alpha shape is a periodic triangulation}
\cgalHasModel `CGAL::Alpha_shape_vertex_base_3` (templated with the appropriate triangulation vertex base class). \cgalHasModel `CGAL::Alpha_shape_vertex_base_3` (templated with the appropriate triangulation vertex base class).

View File

@ -5,9 +5,9 @@
The concept `FixedAlphaShapeCell_3` describes the requirements for the base cell of a alpha shape with a fixed value alpha. The concept `FixedAlphaShapeCell_3` describes the requirements for the base cell of a alpha shape with a fixed value alpha.
\cgalRefines `DelaunayTriangulationCellBase_3`, if the underlying triangulation of the alpha shape is a Delaunay triangulation. \cgalRefines{DelaunayTriangulationCellBase_3 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
\cgalRefines `RegularTriangulationCellBase_3`, if the underlying triangulation of the alpha shape is a regular triangulation. RegularTriangulationCellBase_3 if the underlying triangulation of the alpha shape is a regular triangulation,
\cgalRefines `Periodic_3TriangulationDSCellBase_3`, if the underlying triangulation of the alpha shape is a periodic triangulation. Periodic_3TriangulationDSCellBase_3 if the underlying triangulation of the alpha shape is a periodic triangulation}
\cgalHasModel `CGAL::Fixed_alpha_shape_cell_base_3` (templated with the appropriate triangulation cell base class). \cgalHasModel `CGAL::Fixed_alpha_shape_cell_base_3` (templated with the appropriate triangulation cell base class).
*/ */

View File

@ -7,8 +7,8 @@ The concept `FixedAlphaShapeTraits_3` describes the requirements
for the geometric traits class for the geometric traits class
of the underlying Delaunay triangulation of a basic alpha shape with a fixed value alpha. of the underlying Delaunay triangulation of a basic alpha shape with a fixed value alpha.
\cgalRefines `DelaunayTriangulationTraits_3`, if the underlying triangulation of the alpha shape is a Delaunay triangulation. \cgalRefines{DelaunayTriangulationTraits_3 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
\cgalRefines `Periodic_3DelaunayTriangulationTraits_3`, if the underlying triangulation of the alpha shape is a periodic Delaunay triangulation. Periodic_3DelaunayTriangulationTraits_3 if the underlying triangulation of the alpha shape is a periodic Delaunay triangulation}
\cgalHasModel All models of `Kernel`. \cgalHasModel All models of `Kernel`.

View File

@ -5,9 +5,9 @@
The concept `FixedAlphaShapeVertex_3` describes the requirements for the base vertex of a alpha shape with a fixed value alpha. The concept `FixedAlphaShapeVertex_3` describes the requirements for the base vertex of a alpha shape with a fixed value alpha.
\cgalRefines `TriangulationVertexBase_3`, if the underlying triangulation of the alpha shape is a Delaunay triangulation. \cgalRefines{TriangulationVertexBase_3 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
\cgalRefines `RegularTriangulationVertexBase_3`, if the underlying triangulation of the alpha shape is a regular triangulation. RegularTriangulationVertexBase_3 if the underlying triangulation of the alpha shape is a regular triangulation,
\cgalRefines `Periodic_3TriangulationDSVertexBase_3`, if the underlying triangulation of the alpha shape is a periodic triangulation. Periodic_3TriangulationDSVertexBase_3 if the underlying triangulation of the alpha shape is a periodic triangulation}
\cgalHasModel `CGAL::Fixed_alpha_shape_vertex_base_3` (templated with the appropriate triangulation vertex base class). \cgalHasModel `CGAL::Fixed_alpha_shape_vertex_base_3` (templated with the appropriate triangulation vertex base class).
*/ */

View File

@ -6,8 +6,8 @@
The concept `FixedWeightedAlphaShapeTraits_3` describes the requirements The concept `FixedWeightedAlphaShapeTraits_3` describes the requirements
for the geometric traits class of the underlying regular triangulation of a weighted alpha shape with fixed alpha value. for the geometric traits class of the underlying regular triangulation of a weighted alpha shape with fixed alpha value.
\cgalRefines `RegularTriangulationTraits_3`, if the underlying triangulation of the alpha shape is a regular triangulation. \cgalRefines{RegularTriangulationTraits_3 if the underlying triangulation of the alpha shape is a regular triangulation,
\cgalRefines `Periodic_3RegularTriangulationTraits_3`, if the underlying triangulation of the alpha shape is a periodic regular triangulation. Periodic_3RegularTriangulationTraits_3 if the underlying triangulation of the alpha shape is a periodic regular triangulation}
\cgalHasModel All models of `Kernel`. \cgalHasModel All models of `Kernel`.

View File

@ -7,8 +7,8 @@ The concept `WeightedAlphaShapeTraits_3` describes the requirements
for the geometric traits class for the geometric traits class
of the underlying regular triangulation of a weighted alpha shape. of the underlying regular triangulation of a weighted alpha shape.
\cgalRefines `RegularTriangulationTraits_3`, if the underlying triangulation of the alpha shape is a regular triangulation. \cgalRefines{RegularTriangulationTraits_3 if the underlying triangulation of the alpha shape is a regular triangulation,
\cgalRefines `Periodic_3RegularTriangulationTraits_3`, if the underlying triangulation of the alpha shape is a periodic regular triangulation. Periodic_3RegularTriangulationTraits_3 if the underlying triangulation of the alpha shape is a periodic regular triangulation}
\cgalHasModel All models of `Kernel`. \cgalHasModel All models of `Kernel`.

View File

@ -16,7 +16,7 @@ It defaults to:
\code \code
CGAL::Triangulation_data_structure_2< CGAL::Triangulation_data_structure_2<
CGAL::Apollonius_graph_vertex_base_2<Gt,true>, CGAL::Apollonius_graph_vertex_base_2<Gt,true>,
CGAL::Triangulation_face_base_2<Gt> >` CGAL::Triangulation_face_base_2<Gt> >
\endcode \endcode
\cgalHeading{Traversal of the Apollonius Graph} \cgalHeading{Traversal of the Apollonius Graph}

View File

@ -25,7 +25,7 @@ merged. </b></center>
We only describe the additional requirements with respect to the We only describe the additional requirements with respect to the
`TriangulationDataStructure_2` concept. `TriangulationDataStructure_2` concept.
\cgalRefines `TriangulationDataStructure_2` \cgalRefines{TriangulationDataStructure_2}
\cgalHasModel `CGAL::Triangulation_data_structure_2<Vb,Fb>` \cgalHasModel `CGAL::Triangulation_data_structure_2<Vb,Fb>`

Some files were not shown because too many files have changed in this diff Show More