move from Arrangement_2 to Arrangement_on_surface_2

This commit is contained in:
Efi Fogel 2007-08-23 07:44:23 +00:00
parent 0e47adb15a
commit 20983e6ecb
2 changed files with 817 additions and 0 deletions

View File

@ -0,0 +1,409 @@
// Copyright (c) 2006 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Ron Wein <wein@post.tau.ac.il>
#ifndef CGAL_HYPERBOLIC_ARC_2_H
#define CGAL_HYPERBOLIC_ARC_2_H
/*! \file
* Header file for the _Hyperbolic_arc_2<Kernel, Filter> class.
*/
#include <CGAL/Arr_traits_2/One_root_number.h>
#include <CGAL/Arr_traits_2/Circle_segment_2.h>
#include <CGAL/Bbox_2.h>
#include <CGAL/Handle_for.h>
#include <list>
#include <map>
#include <ostream>
CGAL_BEGIN_NAMESPACE
/*! \class
* Representation of an x-monotone hyprbolic arc, defined by:
* y = a*x^2 + b*x + c, for x <= x_min < = x_max.
* Note that a, b and c are rational numbers, while x_min and x_max
* may be one-root numbers.
*/
template <class Kernel_, bool Filter_>
class _Hyperbolic_arc_2
{
public:
typedef Kernel_ Kernel;
typedef _Hyperbolic_arc_2<Kernel, Filter_> Self;
typedef typename Kernel::FT NT;
typedef _One_root_point_2<NT, Filter_> Point_2;
typedef typename Point_2::CoordNT CoordNT;
protected:
NT _a; // The coefficient of x^2.
NT _b; // The coefficient of x.
NT _c; // The free coefficient.
Point_2 _source; // The source point.
Point_2 _target; // The target point.
public:
/*!
* Default constructor.
*/
_Hyperbolic_arc_2 () :
_a(), _b(), _c(),
_source(), _target()
{}
/*!
* Construct an arc.
* \param a, b, c The coefficients of the supporting hyperbola.
* \param x_min, x_max Define the x-range of the hyperbolic arc.
*/
_Hyperbolic_arc_2 (const NT& a, const NT& b, const NT& c,
const CoordNT& x_min, const CoordNT& x_max) :
_a (a),
_b (b),
_c (c)
{
CGAL_precondition (CGAL::compare (x_min, x_max) == CGAL::SMALLER);
// Compute the endpoints.
_source = Point_2 (x_min, _get_y (x_min));
_target = Point_2 (x_max, _get_y (x_max));
}
/*!
* Construct a segment arc from two kernel points
* \param source the source point.
* \ param target the target point.
* \pre The source is lexicographically smaller than the target.
*/
_Hyperbolic_arc_2 (const typename Kernel::Point_2& source,
const typename Kernel::Point_2& target) :
_source(source.x(), source.y()),
_target(target.x(), target.y())
{
CGAL_precondition (CGAL::compare(source.x(), target.x()) == CGAL::SMALLER);
// Set the coefficients of the supporting curve
typename Kernel::Line_2 line(source, target);
_a = 0;
_b = - line.a() / line.b();
_c = - line.c() / line.b();
}
/*! Check if the arc is linear. */
inline bool is_linear () const
{
return (CGAL::sign(_a) == CGAL::ZERO);
}
/*! Check if the arc is hyperbolic. */
inline bool is_hyperbolic () const
{
return (CGAL::sign(_a) != CGAL::ZERO);
}
/*!
* Get the coefficients of the supporting curve.
*/
const NT& a () const
{
return (_a);
}
const NT& b () const
{
return (_b);
}
const NT& c () const
{
return (_c);
}
/*! Get the source point. */
inline const Point_2& source () const
{
return (_source);
}
/*! Get the target point. */
inline const Point_2& target () const
{
return (_target);
}
/*! Get the left endpoint of the arc. */
inline const Point_2& left () const
{
return (_source);
}
/*! Get the right endpoint of the arc. */
inline const Point_2& right () const
{
return (_target);
}
/*!
* Check whether the given point is in the x-range of the arc.
*/
bool is_in_x_range (const Point_2& p) const
{
Comparison_result res = CGAL::compare (p.x(), left().x());
if (res == SMALLER)
return (false);
else if (res == EQUAL)
return (true);
return (CGAL::compare (p.x(), right().x()) != LARGER);
}
/*!
* Check the position of a given point with respect to the arc.
*/
Comparison_result point_position (const Point_2& p) const
{
return (CGAL::compare (p.y(), _get_y (p.x())));
}
/*!
* Compare the two arcs to the right of their intersection point.
*/
Comparison_result compare_to_right (const Self& cv, const Point_2& p) const
{
// Compute the first-order derivatives of both curves at p.
const CoordNT der1 = p.x() * 2 * _a + _b;
const CoordNT der2 = p.x() * 2 * cv._a + cv._b;
Comparison_result res = CGAL::compare (der1, der2);
// In case of inequality, return the comparison reult.
if (res != CGAL::EQUAL)
return (res);
// In case of equality, compare the second-order derivatives.
return (CGAL::compare (_a, cv._a));
}
/*!
* Compare the two arcs to the left of their intersecton point.
*/
Comparison_result compare_to_left (const Self& cv, const Point_2& p) const
{
// Compute the first-order derivatives of both curves at p.
const CoordNT der1 = p.x() * 2 * _a + _b;
const CoordNT der2 = p.x() * 2 * cv._a + cv._b;
Comparison_result res = CGAL::compare (der1, der2);
// In case of inequality, negate the comparison reult.
if (res != CGAL::EQUAL)
return (CGAL::opposite (res));
// In case of equality, compare the second-order derivatives.
return (CGAL::compare (_a, cv._a));
}
/*!
* Check whether the two arcs have the same supporting curve.
*/
bool has_same_supporting_curve (const Self& cv) const
{
return (CGAL::compare (_a, cv._a) == CGAL::EQUAL &&
CGAL::compare (_b, cv._b) == CGAL::EQUAL &&
CGAL::compare (_c, cv._c) == CGAL::EQUAL);
}
/*!
* Check if the two curves are equal.
*/
bool equals (const Self& cv) const
{
if (! this->has_same_supporting_curve (cv))
return (false);
return (left().equals (cv.left()) && right().equals (cv.right()));
}
/*!
* Split the curve at a given point into two sub-arcs.
*/
void split (const Point_2& p, Self& c1, Self& c2) const
{
// Copy the properties of this arc to the sub-arcs.
c1 = *this;
c2 = *this;
// Change the endpoints, such that c1 lies to the right of c2:
c1._target = p;
c2._source = p;
return;
}
/*!
* Compute the intersections between the two arcs or segments.
*/
template <class OutputIterator>
OutputIterator intersect (const Self& cv, OutputIterator oi) const
{
// Solve the quadratic equation A*x^2 + B*x + C = 0 in order to find
// the x-coordinates of the intersection points, where:
const NT A = _a - cv._a;
const NT B = _b - cv._b;
const NT C = _c - cv._c;
Point_2 p;
unsigned int mult;
// Check if we have a linear equation.
if (CGAL::sign (A) == CGAL::ZERO)
{
if (CGAL::sign (B) == ZERO)
{
if (CGAL::sign (C) == ZERO)
{
// Here we have to handle overlaps!
//CGAL_assertion (false);
}
return (oi);
}
// We have a single (rational) intersection point.
const NT x = -C / B;
const NT y = (x * _a + _b) * x + _c;
p = Point_2 (CoordNT(x), CoordNT(y));
mult = 1;
*oi = CGAL::make_object (std::make_pair (p, mult));
++oi;
return (oi);
}
// In this case we have to solve a quadratic equation.
const NT disc = B*B - 4*A*C;
CGAL::Sign sign_disc = CGAL::sign (disc);
if (sign_disc == CGAL::NEGATIVE)
// No intersection:
return (oi);
const NT _1_over_2A = 1 / (2*A);
if (sign_disc == CGAL::ZERO)
{
// We have a single tangency point with rational coordinates.
const NT x = -B * _1_over_2A;
const NT y = (x * _a + _b) * x + _c;
p = Point_2 (CoordNT(x), CoordNT(y));
mult = 2;
*oi = CGAL::make_object (std::make_pair (p, mult));
++oi;
return (oi);
}
// In this case we have two solutions, given by:
CoordNT xs[2];
int k;
if (CGAL::sign (A) == CGAL::POSITIVE)
{
xs[0] = CoordNT (-B * _1_over_2A, - _1_over_2A, disc);
xs[1] = CoordNT (-B * _1_over_2A, _1_over_2A, disc);
}
else
{
xs[0] = CoordNT (-B * _1_over_2A, _1_over_2A, disc);
xs[1] = CoordNT (-B * _1_over_2A, - _1_over_2A, disc);
}
for (k = 0; k < 2; k++)
{
// Check if the x-coordinate is in the x-range of both arcs.
if ((CGAL::compare (xs[k], left().x()) != SMALLER &&
CGAL::compare (xs[k], right().x()) != LARGER) &&
(CGAL::compare (xs[k], cv.left().x()) != SMALLER &&
CGAL::compare (xs[k], cv.right().x()) != LARGER))
{
p = Point_2 (xs[k], _get_y (xs[k]));
mult = 1;
*oi = CGAL::make_object (std::make_pair (p, mult));
++oi;
}
}
return (oi);
}
Bbox_2 bbox() const
{
double x_min = CGAL::to_double (left().x());
double x_max = CGAL::to_double (right().x());
double y_min = CGAL::to_double (left().y());
double y_max = CGAL::to_double (right().y());
if(y_min > y_max)
std::swap(y_min, y_max);
return Bbox_2(x_min, y_min, x_max, y_max);
}
private:
/*!
* Compute the y-coordiate at a given x-coordinate.
*/
CoordNT _get_y (const CoordNT& x) const
{
if (x.is_rational())
return ((_a * x.alpha() + _b) * x.alpha() + _c);
const CoordNT z1 = _a * CGAL::square(x);
const CoordNT z2 = _b * x;
return (CoordNT (z1.alpha() + z2.alpha() + _c,
z1.beta() + z2.beta(),
z1.gamma()));
}
};
/*!
* Exporter for circular arcs (or line segments).
*/
template <class Kernel, bool Filter>
std::ostream&
operator<< (std::ostream& os,
const _Hyperbolic_arc_2<Kernel, Filter> & arc)
{
if (! arc.is_linear())
os << "(" << arc.a() << "*x^2 + " << arc.b() << "*x + " << arc.c() << ") ";
os << "[" << arc.source() << " --> " << arc.target() << "]" << std::endl;
return (os);
}
CGAL_END_NAMESPACE
#endif

View File

@ -0,0 +1,408 @@
// Copyright (c) 2006 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Ron Wein <wein@post.tau.ac.il>
#ifndef CGAL_ARR_HYPERBOLIC_ARC_TRAITS_2_H
#define CGAL_ARR_HYPERBOLIC_ARC_TRAITS_2_H
/*! \file
* The header file for the Arr_hyperbolic_arc_traits_2<Kenrel> class.
*/
#include <CGAL/tags.h>
#include <CGAL/Arr_traits_2/Hyperbolic_arc_2.h>
#include <fstream>
CGAL_BEGIN_NAMESPACE
/*! \class
* A traits class for maintaining an arrangement of circles.
*/
template <class Kernel_, bool Filter_ = true>
class Arr_hyperbolic_arc_traits_2
{
public:
typedef Kernel_ Kernel;
typedef typename Kernel::FT NT;
typedef _One_root_point_2<NT, Filter_> Point_2;
typedef typename Point_2::CoordNT CoordNT;
typedef _Hyperbolic_arc_2<Kernel, Filter_> Curve_2;
typedef Curve_2 X_monotone_curve_2;
typedef Arr_hyperbolic_arc_traits_2<Kernel, Filter_> Self;
// Category tags:
typedef Tag_true Has_left_category;
typedef Tag_false Has_merge_category;
typedef Tag_false Has_boundary_category;
public:
/*! Default constructor. */
Arr_hyperbolic_arc_traits_2 ()
{}
/// \name Basic functor definitions.
//@{
class Compare_x_2
{
public:
/*!
* Compare the x-coordinates of two points.
* \param p1 The first point.
* \param p2 The second point.
* \return LARGER if x(p1) > x(p2);
* SMALLER if x(p1) < x(p2);
* EQUAL if x(p1) = x(p2).
*/
Comparison_result operator() (const Point_2& p1, const Point_2& p2) const
{
if (p1.identical (p2))
return (EQUAL);
return (CGAL::compare (p1.x(), p2.x()));
}
};
/*! Get a Compare_x_2 functor object. */
Compare_x_2 compare_x_2_object () const
{
return Compare_x_2();
}
class Compare_xy_2
{
public:
/*!
* Compares two points lexigoraphically: by x, then by y.
* \param p1 The first point.
* \param p2 The second point.
* \return LARGER if x(p1) > x(p2), or if x(p1) = x(p2) and y(p1) > y(p2);
* SMALLER if x(p1) < x(p2), or if x(p1) = x(p2) and y(p1) < y(p2);
* EQUAL if the two points are equal.
*/
Comparison_result operator() (const Point_2& p1, const Point_2& p2) const
{
if (p1.identical (p2))
return (EQUAL);
Comparison_result res = CGAL::compare (p1.x(), p2.x());
if (res != EQUAL)
return (res);
return (CGAL::compare (p1.y(), p2.y()));
}
};
/*! Get a Compare_xy_2 functor object. */
Compare_xy_2 compare_xy_2_object () const
{
return Compare_xy_2();
}
class Construct_min_vertex_2
{
public:
/*!
* Get the left endpoint of the x-monotone curve (segment).
* \param cv The curve.
* \return The left endpoint.
*/
const Point_2& operator() (const X_monotone_curve_2 & cv) const
{
return (cv.left());
}
};
/*! Get a Construct_min_vertex_2 functor object. */
Construct_min_vertex_2 construct_min_vertex_2_object () const
{
return Construct_min_vertex_2();
}
class Construct_max_vertex_2
{
public:
/*!
* Get the right endpoint of the x-monotone curve (segment).
* \param cv The curve.
* \return The right endpoint.
*/
const Point_2& operator() (const X_monotone_curve_2 & cv) const
{
return (cv.right());
}
};
/*! Get a Construct_max_vertex_2 functor object. */
Construct_max_vertex_2 construct_max_vertex_2_object () const
{
return Construct_max_vertex_2();
}
class Is_vertical_2
{
public:
/*!
* Check whether the given x-monotone curve is a vertical segment.
* \param cv The curve.
* \return (true) if the curve is a vertical segment; (false) otherwise.
*/
bool operator() (const X_monotone_curve_2& cv) const
{
// No vertical segments are supported.
return (false);
}
};
/*! Get an Is_vertical_2 functor object. */
Is_vertical_2 is_vertical_2_object () const
{
return Is_vertical_2();
}
class Compare_y_at_x_2
{
public:
/*!
* Return the location of the given point with respect to the input curve.
* \param cv The curve.
* \param p The point.
* \pre p is in the x-range of cv.
* \return SMALLER if y(p) < cv(x(p)), i.e. the point is below the curve;
* LARGER if y(p) > cv(x(p)), i.e. the point is above the curve;
* EQUAL if p lies on the curve.
*/
Comparison_result operator() (const Point_2& p,
const X_monotone_curve_2& cv) const
{
CGAL_precondition (cv.is_in_x_range (p));
return (cv.point_position (p));
}
};
/*! Get a Compare_y_at_x_2 functor object. */
Compare_y_at_x_2 compare_y_at_x_2_object () const
{
return Compare_y_at_x_2();
}
class Compare_y_at_x_right_2
{
public:
/*!
* Compares the y value of two x-monotone curves immediately to the right
* of their intersection point.
* \param cv1 The first curve.
* \param cv2 The second curve.
* \param p The intersection point.
* \pre The point p lies on both curves, and both of them must be also be
* defined (lexicographically) to its right.
* \return The relative position of cv1 with respect to cv2 immdiately to
* the right of p: SMALLER, LARGER or EQUAL.
*/
Comparison_result operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2,
const Point_2& p) const
{
// Make sure that p lies on both curves, and that both are defined to its
// right (so their right endpoint is lexicographically larger than p).
CGAL_precondition (cv1.point_position (p) == EQUAL &&
cv2.point_position (p) == EQUAL);
CGAL_precondition (CGAL::compare (p.x(), cv1.right().x()) != LARGER &&
CGAL::compare (p.x(), cv2.right().x()) != LARGER);
// Compare the two curves immediately to the right of p:
return (cv1.compare_to_right (cv2, p));
}
};
/*! Get a Compare_y_at_x_right_2 functor object. */
Compare_y_at_x_right_2 compare_y_at_x_right_2_object () const
{
return Compare_y_at_x_right_2();
}
class Compare_y_at_x_left_2
{
public:
/*!
* Compares the y value of two x-monotone curves immediately to the left
* of their intersection point.
* \param cv1 The first curve.
* \param cv2 The second curve.
* \param p The intersection point.
* \pre The point p lies on both curves, and both of them must be also be
* defined (lexicographically) to its left.
* \return The relative position of cv1 with respect to cv2 immdiately to
* the left of p: SMALLER, LARGER or EQUAL.
*/
Comparison_result operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2,
const Point_2& p) const
{
// Make sure that p lies on both curves, and that both are defined to its
// left (so their left endpoint is lexicographically smaller than p).
CGAL_precondition (cv1.point_position (p) == EQUAL &&
cv2.point_position (p) == EQUAL);
CGAL_precondition (CGAL::compare (p.x(), cv1.left().x()) != SMALLER &&
CGAL::compare (p.x(), cv2.left().x()) != SMALLER);
// Compare the two curves immediately to the left of p:
return (cv1.compare_to_left (cv2, p));
}
};
/*! Get a Compare_y_at_x_left_2 functor object. */
Compare_y_at_x_left_2 compare_y_at_x_left_2_object () const
{
return Compare_y_at_x_left_2();
}
class Equal_2
{
public:
/*!
* Check if the two x-monotone curves are the same (have the same graph).
* \param cv1 The first curve.
* \param cv2 The second curve.
* \return (true) if the two curves are the same; (false) otherwise.
*/
bool operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2) const
{
if (&cv1 == &cv2)
return (true);
return (cv1.equals (cv2));
}
/*!
* Check if the two points are the same.
* \param p1 The first point.
* \param p2 The second point.
* \return (true) if the two point are the same; (false) otherwise.
*/
bool operator() (const Point_2& p1, const Point_2& p2) const
{
return (p1.equals (p2));
}
};
/*! Get an Equal_2 functor object. */
Equal_2 equal_2_object () const
{
return Equal_2();
}
//@}
/// \name Functor definitions for supporting intersections.
//@{
struct Make_x_monotone_2
{
/*!
* Cut the given conic curve (or conic arc) into x-monotone subcurves
* and insert them to the given output iterator.
* \param cv The curve.
* \param oi The output iterator, whose value-type is Object. The returned
* objects are all wrappers X_monotone_curve_2 objects.
* \return The past-the-end iterator.
*/
template<class OutputIterator>
OutputIterator operator() (const Curve_2& cv, OutputIterator oi)
{
// In our case every curve is x-monotone:
*oi = CGAL::make_object (cv);
++oi;
return (oi);
}
};
/*! Get a Make_x_monotone_2 functor object. */
Make_x_monotone_2 make_x_monotone_2_object ()
{
return Make_x_monotone_2();
}
class Split_2
{
public:
/*!
* Split a given x-monotone curve at a given point into two sub-curves.
* \param cv The curve to split
* \param p The split point.
* \param c1 Output: The left resulting subcurve (p is its right endpoint).
* \param c2 Output: The right resulting subcurve (p is its left endpoint).
* \pre p lies on cv but is not one of its end-points.
*/
void operator() (const X_monotone_curve_2& cv, const Point_2& p,
X_monotone_curve_2& c1, X_monotone_curve_2& c2) const
{
CGAL_precondition (cv.is_in_x_range (p) &&
! p.equals (cv.source()) && ! p.equals (cv.target()));
cv.split (p, c1, c2);
return;
}
};
/*! Get a Split_2 functor object. */
Split_2 split_2_object ()
{
return Split_2();
}
struct Intersect_2
{
/*!
* Find the intersections of the two given curves and insert them to the
* given output iterator. As two segments may itersect only once, only a
* single will be contained in the iterator.
* \param cv1 The first curve.
* \param cv2 The second curve.
* \param oi The output iterator.
* \return The past-the-end iterator.
*/
template<class OutputIterator>
OutputIterator operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2,
OutputIterator oi)
{
return (cv1.intersect (cv2, oi));
}
};
/*! Get an Intersect_2 functor object. */
Intersect_2 intersect_2_object ()
{
return Intersect_2();
}
};
CGAL_END_NAMESPACE
#endif