mirror of https://github.com/CGAL/cgal
- qualify left_turn with CGAL:: to remove ambiguity when LEDA < 4.4 used
- remove obsolete config flag in rational_rotation related to std::swap
This commit is contained in:
parent
9e9c83d035
commit
2279f5ff1a
|
|
@ -1,3 +1,7 @@
|
|||
3.97 (5 November 2002)
|
||||
- qualify left_turn with CGAL:: to remove ambiguity when LEDA < 4.4 used
|
||||
- remove obsolete config flag in rational_rotation related to std::swap
|
||||
|
||||
3.96 (25 October 2002)
|
||||
- Rewrite iterator traits pointer specs.
|
||||
|
||||
|
|
|
|||
|
|
@ -2624,6 +2624,12 @@ public:
|
|||
{ return r.is_vertical(); }
|
||||
};
|
||||
|
||||
// We qualify the call to the global function with the CGAL namespace because
|
||||
// otherwise ambigiuties arise when Point_2 is a leda_point (or leda_rat_point)
|
||||
// and using LEDA versions earlier than 4.4 (where the leda namespace was
|
||||
// introduced). Compilers cannot decide between the left_turn from LEDA in
|
||||
// global namespace and the left_turn in CGAL namespace defined in
|
||||
// (rat_)leda_for_CGAL_2.h.
|
||||
template <typename K>
|
||||
class Left_turn_2
|
||||
{
|
||||
|
|
@ -2634,7 +2640,7 @@ public:
|
|||
|
||||
bool
|
||||
operator()(const Point_2& p, const Point_2& q, const Point_2& r) const
|
||||
{ return left_turn(p, q, r); }
|
||||
{ return CGAL::left_turn(p, q, r); }
|
||||
};
|
||||
|
||||
template <typename K>
|
||||
|
|
@ -3009,7 +3015,7 @@ public:
|
|||
|
||||
bool
|
||||
operator()(const Point_2& p, const Point_2& q, const Point_2& r) const
|
||||
{ return left_turn(p, q, r); }
|
||||
{ return CGAL::left_turn(p, q, r); }
|
||||
};
|
||||
|
||||
template <typename K>
|
||||
|
|
|
|||
|
|
@ -39,9 +39,6 @@ rational_rotation_approximation( const NT & dirx, // dir.x()
|
|||
const NT & eps_num, // quality_bound
|
||||
const NT & eps_den )
|
||||
{
|
||||
#ifndef CGAL_CFG_NO_NAMESPACE
|
||||
using std::swap;
|
||||
#endif // CGAL_CFG_NO_NAMESPACE
|
||||
|
||||
const NT& n = eps_num;
|
||||
const NT& d = eps_den;
|
||||
|
|
@ -63,7 +60,7 @@ rational_rotation_approximation( const NT & dirx, // dir.x()
|
|||
|
||||
if (dy > dx)
|
||||
{
|
||||
swap (dx,dy);
|
||||
std::swap (dx,dy);
|
||||
}
|
||||
// approximate sin = dy / sqrt(sq_hypotenuse)
|
||||
// if ( dy / sqrt(sq_hypotenuse) < n/d )
|
||||
|
|
|
|||
|
|
@ -2624,6 +2624,12 @@ public:
|
|||
{ return r.is_vertical(); }
|
||||
};
|
||||
|
||||
// We qualify the call to the global function with the CGAL namespace because
|
||||
// otherwise ambigiuties arise when Point_2 is a leda_point (or leda_rat_point)
|
||||
// and using LEDA versions earlier than 4.4 (where the leda namespace was
|
||||
// introduced). Compilers cannot decide between the left_turn from LEDA in
|
||||
// global namespace and the left_turn in CGAL namespace defined in
|
||||
// (rat_)leda_for_CGAL_2.h.
|
||||
template <typename K>
|
||||
class Left_turn_2
|
||||
{
|
||||
|
|
@ -2634,7 +2640,7 @@ public:
|
|||
|
||||
bool
|
||||
operator()(const Point_2& p, const Point_2& q, const Point_2& r) const
|
||||
{ return left_turn(p, q, r); }
|
||||
{ return CGAL::left_turn(p, q, r); }
|
||||
};
|
||||
|
||||
template <typename K>
|
||||
|
|
@ -3009,7 +3015,7 @@ public:
|
|||
|
||||
bool
|
||||
operator()(const Point_2& p, const Point_2& q, const Point_2& r) const
|
||||
{ return left_turn(p, q, r); }
|
||||
{ return CGAL::left_turn(p, q, r); }
|
||||
};
|
||||
|
||||
template <typename K>
|
||||
|
|
|
|||
|
|
@ -39,9 +39,6 @@ rational_rotation_approximation( const NT & dirx, // dir.x()
|
|||
const NT & eps_num, // quality_bound
|
||||
const NT & eps_den )
|
||||
{
|
||||
#ifndef CGAL_CFG_NO_NAMESPACE
|
||||
using std::swap;
|
||||
#endif // CGAL_CFG_NO_NAMESPACE
|
||||
|
||||
const NT& n = eps_num;
|
||||
const NT& d = eps_den;
|
||||
|
|
@ -63,7 +60,7 @@ rational_rotation_approximation( const NT & dirx, // dir.x()
|
|||
|
||||
if (dy > dx)
|
||||
{
|
||||
swap (dx,dy);
|
||||
std::swap (dx,dy);
|
||||
}
|
||||
// approximate sin = dy / sqrt(sq_hypotenuse)
|
||||
// if ( dy / sqrt(sq_hypotenuse) < n/d )
|
||||
|
|
|
|||
Loading…
Reference in New Issue