From 23e5126bb2b022f47742f0db5df2619f9b8dca2d Mon Sep 17 00:00:00 2001 From: Manuel Caroli Date: Wed, 7 Oct 2009 13:30:58 +0000 Subject: [PATCH] minor updates in the doc: set_domain, dual, etc. --- .../Periodic_3_Delaunay_triangulation_3.tex | 22 +++++++++++++ .../Periodic_3_triangulation_3.tex | 32 +++++++++++-------- 2 files changed, 40 insertions(+), 14 deletions(-) diff --git a/Periodic_3_triangulation_3/doc_tex/Periodic_3_triangulation_3_ref/Periodic_3_Delaunay_triangulation_3.tex b/Periodic_3_triangulation_3/doc_tex/Periodic_3_triangulation_3_ref/Periodic_3_Delaunay_triangulation_3.tex index 1b70d0b4cda..b391e60ed62 100644 --- a/Periodic_3_triangulation_3/doc_tex/Periodic_3_triangulation_3_ref/Periodic_3_Delaunay_triangulation_3.tex +++ b/Periodic_3_triangulation_3/doc_tex/Periodic_3_triangulation_3_ref/Periodic_3_Delaunay_triangulation_3.tex @@ -258,6 +258,28 @@ predicates). {same as the previous method for facet \ccc{(c,i)}. \ccPrecond{$i\in\{0,1,2,3\}$}} +\ccMethod{template +OutputIterator +dual(Edge e, OutputIterator pts) const;} +{Returns in the output iterator the points of the dual polygon of + edge \ccc{e} in consecutive order. The points form the dual polygon + in $\mathbb R^3$, so they do not necessarily lie all inside the + original domain. TODO: specify clockwiseness.} + +\ccMethod{template +OutputIterator +dual(Cell_handle c, int i, int j, OutputIterator pts) const;} +{same as the previous method for edge \ccc{(c,i,j)}. +\ccPrecond{$i,j\in\{0,1,2,3\}, i\neq j$}} + +\ccMethod{template +OutputIterator +dual(Vertex_handle v, OutputIterator pts) const;} +{Returns in the output iterator the points of the dual polyhedron of + vertex \ccc{v} in no particular order. The points form the dual + polyhedron in $\mathbb R^3$, so they do not necessarily lie all + inside the original domain.} + \ccMethod{template Stream & draw_dual(Stream & os);} {Sends the set of duals to all the facets of \ccVar\ into \ccc{os}.} diff --git a/Periodic_3_triangulation_3/doc_tex/Periodic_3_triangulation_3_ref/Periodic_3_triangulation_3.tex b/Periodic_3_triangulation_3/doc_tex/Periodic_3_triangulation_3_ref/Periodic_3_triangulation_3.tex index 382ce2a5e02..663c1bf4cdf 100644 --- a/Periodic_3_triangulation_3/doc_tex/Periodic_3_triangulation_3_ref/Periodic_3_triangulation_3.tex +++ b/Periodic_3_triangulation_3/doc_tex/Periodic_3_triangulation_3_ref/Periodic_3_triangulation_3.tex @@ -58,7 +58,8 @@ The class \ccc{Triangulation_3} defines the following types: \ccTypedef{typedef Geometric_traits::Tetrahedron_3 Tetrahedron;}{} \ccTypedef{typedef std::pair< Point, Offset > - Periodic_point;}{} + Periodic_point;}{Represents a point-offset pair. The point has to + lie in the original domain.} \ccGlue \ccTypedef{typedef array< Periodic_point, 2> Periodic_segment;}{} @@ -214,17 +215,6 @@ a permutation of their vertices).} \ccMethod{const Triangulation_data_structure & tds() const;} {Returns a const reference to the triangulation data structure.} -\begin{ccAdvanced} -\ccHeading{Non const access} -The responsibility of keeping a valid triangulation belongs to the user -when using advanced operations allowing a direct manipulation of the \ccc{tds}. -This method is mainly a help for users implementing their own triangulation -algorithms. - -\ccMethod{Triangulation_data_structure & tds();} -{Returns a reference to the triangulation data structure.} -\end{ccAdvanced} - \ccMethod{Iso_cuboid domain() const;} {Returns the original domain.} @@ -233,6 +223,19 @@ algorithms. {Returns the number of sheets of the covering the triangulation is currently computed in.} +\ccHeading{Non const access} +\ccMethod{void set_domain(const Iso_cuboid dom);} +{Permits to change the domain. Note that this function calls \ccc{clear()}, + i.e., it erases the existing triangulation. } + +The responsibility of keeping a valid triangulation belongs to the user +when using advanced operations allowing a direct manipulation of the \ccc{tds}. +This method is mainly a help for users implementing their own triangulation +algorithms. + +\ccMethod{Triangulation_data_structure & tds();} +{Returns a reference to the triangulation data structure.} + \ccThree{bool}{t.is_extensible_triangulation_in_1_sheet_h2()x}{} \ccHeading{Non-constant-time queries and conversions} \ccMethod{bool is_extensible_triangulation_in_1_sheet_h1() const;} @@ -346,10 +349,11 @@ inside of cell \ccc{c}. {Returns the periodic tetrahedron formed by the four point-offset pairs corresponding to the four vertices of \ccc{c}.} -Note: the following functions require exact constructions in the traits to +Note: the following functions require constructions in the traits to be exact. \ccMethod{Point point(const Periodic_point & p ) const;} -{Converts the \ccc{Periodic_point} \ccc{s} to a \ccc{Point}.} +{Converts the \ccc{Periodic_point} \ccc{s} (point-offset pair) to the + corresponding \ccc{Point} in $\mathbb R^3$.} \ccGlue \ccMethod{Segment segment(const Periodic_segment & s) const;} {Converts the \ccc{Periodic_segment} \ccc{s} to a \ccc{Segment}.}