From 23f2df44bea67837493c03ab2a8ceccfd84da3d3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Mael=20Rouxel-Labb=C3=A9?= Date: Thu, 13 Apr 2017 12:01:08 +0200 Subject: [PATCH] Cleaned trailing whitespace in Point_23/Weighted_point_23 --- Kernel_23/doc/Kernel_23/CGAL/Point_2.h | 268 +++++++++--------- Kernel_23/doc/Kernel_23/CGAL/Point_3.h | 256 ++++++++--------- .../doc/Kernel_23/CGAL/Weighted_point_2.h | 2 +- .../doc/Kernel_23/CGAL/Weighted_point_3.h | 2 +- 4 files changed, 264 insertions(+), 264 deletions(-) diff --git a/Kernel_23/doc/Kernel_23/CGAL/Point_2.h b/Kernel_23/doc/Kernel_23/CGAL/Point_2.h index 4cb0667f05d..2f6b40c3636 100644 --- a/Kernel_23/doc/Kernel_23/CGAL/Point_2.h +++ b/Kernel_23/doc/Kernel_23/CGAL/Point_2.h @@ -3,35 +3,35 @@ namespace CGAL { /*! \ingroup kernel_classes2 -An object `p` of the class `Point_2` is a point in the two-dimensional -Euclidean plane \f$ \E^2\f$. +An object `p` of the class `Point_2` is a point in the two-dimensional +Euclidean plane \f$ \E^2\f$. -Remember that `Kernel::RT` and `Kernel::FT` denote a -`RingNumberType` and a `FieldNumberType`, respectively. For the kernel +Remember that `Kernel::RT` and `Kernel::FT` denote a +`RingNumberType` and a `FieldNumberType`, respectively. For the kernel model `Cartesian`, the two types are the same. For the kernel model `Homogeneous`, `Kernel::RT` is equal to `NT`, and `Kernel::FT` is equal to `Quotient`. \cgalHeading{Operators} -The following operations can be applied on points: +The following operations can be applied on points: \cgalHeading{Example} -The following declaration creates two points with -%Cartesian double coordinates. +The following declaration creates two points with +%Cartesian double coordinates. \code -Point_2< Cartesian > p, q(1.0, 2.0); +Point_2< Cartesian > p, q(1.0, 2.0); \endcode -The variable `p` is uninitialized and should first be used on -the left hand side of an assignment. +The variable `p` is uninitialized and should first be used on +the left hand side of an assignment. \code -p = q; +p = q; -std::cout << p.x() << " " << p.y() << std::endl; +std::cout << p.x() << " " << p.y() << std::endl; \endcode \cgalModels `Kernel::Point_2` @@ -41,68 +41,68 @@ template< typename Kernel > class Point_2 { public: -/// \name Types +/// \name Types /// @{ /*! -An iterator for enumerating the -%Cartesian coordinates of a point. -*/ -typedef unspecified_type Cartesian_const_iterator; +An iterator for enumerating the +%Cartesian coordinates of a point. +*/ +typedef unspecified_type Cartesian_const_iterator; -/// @} +/// @} -/// \name Creation +/// \name Creation /// @{ /*! -introduces a variable `p` with %Cartesian coordinates -\f$ (0,0)\f$. -*/ -Point_2(const Origin &ORIGIN); +introduces a variable `p` with %Cartesian coordinates +\f$ (0,0)\f$. +*/ +Point_2(const Origin &ORIGIN); /*! -introduces a point `p` initialized to `(x,y)`. -*/ -Point_2(int x, int y); +introduces a point `p` initialized to `(x,y)`. +*/ +Point_2(int x, int y); /*! introduces a point `p` initialized to `(x,y)` -provided `RT` supports construction from `double`. -*/ -Point_2(double x, double y); +provided `RT` supports construction from `double`. +*/ +Point_2(double x, double y); /*! -introduces a point `p` initialized to `(hx/hw,hy/hw)`. -\pre `hw` \f$ \neq\f$ `Kernel::RT(0)`. -*/ -Point_2(const Kernel::RT &hx, const Kernel::RT &hy, const Kernel::RT &hw = RT(1)); +introduces a point `p` initialized to `(hx/hw,hy/hw)`. +\pre `hw` \f$ \neq\f$ `Kernel::RT(0)`. +*/ +Point_2(const Kernel::RT &hx, const Kernel::RT &hy, const Kernel::RT &hw = RT(1)); /*! -introduces a point `p` initialized to `(x,y)`. -*/ -Point_2(const Kernel::FT &x, const Kernel::FT &y); +introduces a point `p` initialized to `(x,y)`. +*/ +Point_2(const Kernel::FT &x, const Kernel::FT &y); /*! introduces a point from a weighted point. */ Point_2(const Kernel::Weighted_point_2 &wp); -/// @} +/// @} -/// \name Operations +/// \name Operations /// @{ /*! -Test for equality. Two points are equal, iff their \f$ x\f$ and \f$ y\f$ -coordinates are equal. The point can be compared with `ORIGIN`. -*/ -bool operator==(const Point_2 &q) const; +Test for equality. Two points are equal, iff their \f$ x\f$ and \f$ y\f$ +coordinates are equal. The point can be compared with `ORIGIN`. +*/ +bool operator==(const Point_2 &q) const; /*! -Test for inequality. The point can be compared with `ORIGIN`. -*/ -bool operator!=(const Point_2 &q) const; +Test for inequality. The point can be compared with `ORIGIN`. +*/ +bool operator!=(const Point_2 &q) const; /*! translates the point by the vector `v`. @@ -120,34 +120,34 @@ Point_2& operator-=(const Vector_2 &v); /// There are two sets of coordinate access functions, namely to the /// homogeneous and to the %Cartesian coordinates. They can be used /// independently from the chosen kernel model. Note that you do not -/// loose information with the homogeneous representation, because the +/// lose information with the homogeneous representation, because the /// `FieldNumberType` is a quotient. /// @{ /*! -returns the homogeneous \f$ x\f$ coordinate. -*/ -Kernel::RT hx() const; +returns the homogeneous \f$ x\f$ coordinate. +*/ +Kernel::RT hx() const; /*! -returns the homogeneous \f$ y\f$ coordinate. -*/ -Kernel::RT hy() const; +returns the homogeneous \f$ y\f$ coordinate. +*/ +Kernel::RT hy() const; /*! -returns the homogenizing coordinate. -*/ -Kernel::RT hw() const; +returns the homogenizing coordinate. +*/ +Kernel::RT hw() const; /*! -returns the %Cartesian \f$ x\f$ coordinate, that is `hx()`/`hw()`. -*/ -Kernel::FT x() const; +returns the %Cartesian \f$ x\f$ coordinate, that is `hx()`/`hw()`. +*/ +Kernel::FT x() const; /*! -returns the %Cartesian \f$ y\f$ coordinate, that is `hy()`/`hw()`. -*/ -Kernel::FT y() const; +returns the %Cartesian \f$ y\f$ coordinate, that is `hy()`/`hw()`. +*/ +Kernel::FT y() const; /// @} @@ -158,50 +158,50 @@ Kernel::FT y() const; /// @{ /*! -returns the i'th homogeneous coordinate of `p`, starting with 0. -\pre \f$ 0\leq i \leq2\f$. -*/ -Kernel::RT homogeneous(int i) const; +returns the i'th homogeneous coordinate of `p`, starting with 0. +\pre \f$ 0\leq i \leq2\f$. +*/ +Kernel::RT homogeneous(int i) const; /*! -returns the i'th %Cartesian coordinate of `p`, starting with 0. -\pre \f$ 0\leq i \leq1\f$. -*/ -Kernel::FT cartesian(int i) const; - -/*! -returns `cartesian(i)`. +returns the i'th %Cartesian coordinate of `p`, starting with 0. \pre \f$ 0\leq i \leq1\f$. */ -Kernel::FT operator[](int i) const; +Kernel::FT cartesian(int i) const; /*! -returns an iterator to the %Cartesian coordinates -of `p`, starting with the 0th coordinate. -*/ -Cartesian_const_iterator cartesian_begin() const; +returns `cartesian(i)`. +\pre \f$ 0\leq i \leq1\f$. +*/ +Kernel::FT operator[](int i) const; /*! -returns an off the end iterator to the Cartesian -coordinates of `p`. -*/ -Cartesian_const_iterator cartesian_end() const; +returns an iterator to the %Cartesian coordinates +of `p`, starting with the 0th coordinate. +*/ +Cartesian_const_iterator cartesian_begin() const; /*! -returns the dimension (the constant 2). -*/ -int dimension() const; +returns an off the end iterator to the Cartesian +coordinates of `p`. +*/ +Cartesian_const_iterator cartesian_end() const; /*! -returns a bounding box containing `p`. Note that bounding boxes -are not parameterized with whatsoever. -*/ -Bbox_2 bbox() const; +returns the dimension (the constant 2). +*/ +int dimension() const; /*! -returns the point obtained by applying `t` on `p`. -*/ -Point_2 transform(const Aff_transformation_2 &t) const; +returns a bounding box containing `p`. Note that bounding boxes +are not parameterized with whatsoever. +*/ +Bbox_2 bbox() const; + +/*! +returns the point obtained by applying `t` on `p`. +*/ +Point_2 transform(const Aff_transformation_2 &t) const; /// @} @@ -209,68 +209,68 @@ Point_2 transform(const Aff_transformation_2 &t) const; /*! -returns true iff `p` is lexicographically smaller than `q`, -i.e.\ either if `p.x() < q.x()` or if `p.x() == q.x()` and -`p.y() < q.y()`. -\relates Point_2 -*/ -bool operator<(const Point_2 &p, -const Point_2 &q); +returns true iff `p` is lexicographically smaller than `q`, +i.e.\ either if `p.x() < q.x()` or if `p.x() == q.x()` and +`p.y() < q.y()`. +\relates Point_2 +*/ +bool operator<(const Point_2 &p, +const Point_2 &q); /*! -returns true iff `p` is lexicographically greater than `q`. -\relates Point_2 -*/ -bool operator>(const Point_2 &p, -const Point_2 &q); +returns true iff `p` is lexicographically greater than `q`. +\relates Point_2 +*/ +bool operator>(const Point_2 &p, +const Point_2 &q); /*! -returns true iff `p` is lexicographically smaller or equal to `q`. -\relates Point_2 -*/ -bool operator<=(const Point_2 &p, -const Point_2 &q); +returns true iff `p` is lexicographically smaller or equal to `q`. +\relates Point_2 +*/ +bool operator<=(const Point_2 &p, +const Point_2 &q); /*! -returns true iff `p` is lexicographically greater or equal to `q`. -\relates Point_2 -*/ -bool operator>=(const Point_2 &p, -const Point_2 &q); +returns true iff `p` is lexicographically greater or equal to `q`. +\relates Point_2 +*/ +bool operator>=(const Point_2 &p, +const Point_2 &q); /*! -returns the difference vector between `q` and `p`. -You can substitute `ORIGIN` for either `p` or `q`, -but not for both. -\relates Point_2 -*/ -Vector_2 operator-(const Point_2 &p, -const Point_2 &q); +returns the difference vector between `q` and `p`. +You can substitute `ORIGIN` for either `p` or `q`, +but not for both. +\relates Point_2 +*/ +Vector_2 operator-(const Point_2 &p, +const Point_2 &q); -/// \ingroup Kernel_operator_plus +/// \ingroup Kernel_operator_plus /// @{ /*! -returns the point obtained by translating `p` by the -vector `v`. -\relates Point_2 -*/ -Point_2 operator+(const Point_2 &p, -const Vector_2 &v); +returns the point obtained by translating `p` by the +vector `v`. +\relates Point_2 +*/ +Point_2 operator+(const Point_2 &p, +const Vector_2 &v); /// @} -/// \ingroup Kernel_operator_minus +/// \ingroup Kernel_operator_minus /// @{ /*! -returns the point obtained by translating `p` by the -vector -`v`. -\relates Point_2 -*/ -Point_2 operator-(const Point_2 &p, -const Vector_2 &v); +returns the point obtained by translating `p` by the +vector -`v`. +\relates Point_2 +*/ +Point_2 operator-(const Point_2 &p, +const Vector_2 &v); /// @} diff --git a/Kernel_23/doc/Kernel_23/CGAL/Point_3.h b/Kernel_23/doc/Kernel_23/CGAL/Point_3.h index 0d17b532bd4..c6a75630b7d 100644 --- a/Kernel_23/doc/Kernel_23/CGAL/Point_3.h +++ b/Kernel_23/doc/Kernel_23/CGAL/Point_3.h @@ -3,7 +3,7 @@ namespace CGAL { /*! \ingroup kernel_classes3 -An object of the class `Point_3` is a point in the three-dimensional +An object of the class `Point_3` is a point in the three-dimensional Euclidean space \f$ \E^3\f$. Remember that `Kernel::RT` and `Kernel::FT` denote a @@ -14,7 +14,7 @@ to `NT`, and `Kernel::FT` is equal to `Quotient`. \cgalHeading{Operators} -The following operations can be applied on points: +The following operations can be applied on points: \cgalModels `Kernel::Point_3` @@ -23,67 +23,67 @@ template< typename Kernel > class Point_3 { public: -/// \name Types +/// \name Types /// @{ /*! -An iterator for enumerating the -%Cartesian coordinates of a point. -*/ -typedef unspecified_type Cartesian_const_iterator; +An iterator for enumerating the +%Cartesian coordinates of a point. +*/ +typedef unspecified_type Cartesian_const_iterator; -/// @} +/// @} -/// \name Creation +/// \name Creation /// @{ /*! -introduces a point with %Cartesian coordinates\f$ (0,0,0)\f$. -*/ -Point_3(const Origin &ORIGIN); +introduces a point with %Cartesian coordinates\f$ (0,0,0)\f$. +*/ +Point_3(const Origin &ORIGIN); /*! -introduces a point `p` initialized to `(x,y,z)`. -*/ -Point_3(int x, int y, int z); +introduces a point `p` initialized to `(x,y,z)`. +*/ +Point_3(int x, int y, int z); /*! introduces a point `p` initialized to `(x,y,z)` -provided `RT` supports it. -*/ -Point_3(double x, double y, double z); +provided `RT` supports it. +*/ +Point_3(double x, double y, double z); /*! -introduces a point `p` initialized to `(hx/hw,hy/hw, hz/hw)`. -\pre `hw` \f$ \neq\f$ 0. -*/ -Point_3(const Kernel::RT &hx, const Kernel::RT &hy, const Kernel::RT &hz, const Kernel::RT &hw = RT(1)); +introduces a point `p` initialized to `(hx/hw,hy/hw, hz/hw)`. +\pre `hw` \f$ \neq\f$ 0. +*/ +Point_3(const Kernel::RT &hx, const Kernel::RT &hy, const Kernel::RT &hz, const Kernel::RT &hw = RT(1)); /*! -introduces a point `p` initialized to `(x,y,z)`. -*/ -Point_3(const Kernel::FT &x, const Kernel::FT &y, const Kernel::FT &z); +introduces a point `p` initialized to `(x,y,z)`. +*/ +Point_3(const Kernel::FT &x, const Kernel::FT &y, const Kernel::FT &z); /*! introduces a point from a weighted point. */ Point_3(const Kernel::Weighted_point_3 &wp); -/// @} +/// @} -/// \name Operations +/// \name Operations /// @{ /*! -Test for equality: Two points are equal, iff their \f$ x\f$, \f$ y\f$ and \f$ z\f$ -coordinates are equal. -*/ -bool operator==(const Point_3 &q) const; +Test for equality: Two points are equal, iff their \f$ x\f$, \f$ y\f$ and \f$ z\f$ +coordinates are equal. +*/ +bool operator==(const Point_3 &q) const; /*! -Test for inequality. -*/ -bool operator!=(const Point_3 &q) const; +Test for inequality. +*/ +bool operator!=(const Point_3 &q) const; /*! translates the point by the vector `v`. @@ -101,44 +101,44 @@ Point_3& operator-=(const Vector_3 &v); /// There are two sets of coordinate access functions, namely to the /// homogeneous and to the %Cartesian coordinates. They can be used /// independently from the chosen kernel model. Note that you do not -/// loose information with the homogeneous representation, because the +/// lose information with the homogeneous representation, because the /// FieldNumberType is a quotient. /// @{ /*! -returns the homogeneous \f$ x\f$ coordinate. -*/ -Kernel::RT hx() const; +returns the homogeneous \f$ x\f$ coordinate. +*/ +Kernel::RT hx() const; /*! -returns the homogeneous \f$ y\f$ coordinate. -*/ -Kernel::RT hy() const; +returns the homogeneous \f$ y\f$ coordinate. +*/ +Kernel::RT hy() const; /*! -returns the homogeneous \f$ z\f$ coordinate. -*/ -Kernel::RT hz() const; +returns the homogeneous \f$ z\f$ coordinate. +*/ +Kernel::RT hz() const; /*! -returns the homogenizing coordinate. -*/ -Kernel::RT hw() const; +returns the homogenizing coordinate. +*/ +Kernel::RT hw() const; /*! -returns the %Cartesian \f$ x\f$ coordinate, that is `hx()`/`hw()`. -*/ -Kernel::FT x() const; +returns the %Cartesian \f$ x\f$ coordinate, that is `hx()`/`hw()`. +*/ +Kernel::FT x() const; /*! -returns the %Cartesian \f$ y\f$ coordinate, that is `hy()`/`hw()`. -*/ -Kernel::FT y() const; +returns the %Cartesian \f$ y\f$ coordinate, that is `hy()`/`hw()`. +*/ +Kernel::FT y() const; /*! -returns the %Cartesian \f$ z\f$ coordinate, that is `hz()`/`hw()`. -*/ -Kernel::FT z() const; +returns the %Cartesian \f$ z\f$ coordinate, that is `hz()`/`hw()`. +*/ +Kernel::FT z() const; /// @} @@ -149,106 +149,106 @@ Kernel::FT z() const; /// @{ /*! -returns the i'th homogeneous coordinate of `p`, starting with 0. -\pre \f$ 0\leq i \leq3\f$. -*/ -Kernel::RT homogeneous(int i) const; +returns the i'th homogeneous coordinate of `p`, starting with 0. +\pre \f$ 0\leq i \leq3\f$. +*/ +Kernel::RT homogeneous(int i) const; /*! -returns the i'th %Cartesian coordinate of `p`, starting with 0. -\pre \f$ 0\leq i \leq2\f$. -*/ -Kernel::FT cartesian(int i) const; +returns the i'th %Cartesian coordinate of `p`, starting with 0. +\pre \f$ 0\leq i \leq2\f$. +*/ +Kernel::FT cartesian(int i) const; /*! -returns `cartesian(i)`. -\pre \f$ 0\leq i \leq2\f$. -*/ -Kernel::FT operator[](int i) const; +returns `cartesian(i)`. +\pre \f$ 0\leq i \leq2\f$. +*/ +Kernel::FT operator[](int i) const; /*! -returns an iterator to the %Cartesian coordinates -of `p`, starting with the 0th coordinate. -*/ -Cartesian_const_iterator cartesian_begin() const; +returns an iterator to the %Cartesian coordinates +of `p`, starting with the 0th coordinate. +*/ +Cartesian_const_iterator cartesian_begin() const; /*! -returns an off the end iterator to the %Cartesian -coordinates of `p`. -*/ -Cartesian_const_iterator cartesian_end() const; +returns an off the end iterator to the %Cartesian +coordinates of `p`. +*/ +Cartesian_const_iterator cartesian_end() const; /*! -returns the dimension (the constant 3). -*/ -int dimension() const; +returns the dimension (the constant 3). +*/ +int dimension() const; /*! -returns a bounding box containing `p`. -*/ -Bbox_3 bbox() const; +returns a bounding box containing `p`. +*/ +Bbox_3 bbox() const; /*! -returns the point obtained by applying `t` on `p`. -*/ -Point_3 transform(const Aff_transformation_3 &t) const; +returns the point obtained by applying `t` on `p`. +*/ +Point_3 transform(const Aff_transformation_3 &t) const; /// @} }; /* end Point_3 */ /*! -returns true iff `p` is lexicographically smaller than `q` -(the lexicographical order being defined on the %Cartesian -coordinates). -\relates Point_3 -*/ -bool operator<(const Point_3 &p, -const Point_3 &q); +returns true iff `p` is lexicographically smaller than `q` +(the lexicographical order being defined on the %Cartesian +coordinates). +\relates Point_3 +*/ +bool operator<(const Point_3 &p, +const Point_3 &q); /*! -returns true iff `p` is lexicographically greater than `q`. -\relates Point_3 -*/ -bool operator>(const Point_3 &p, -const Point_3 &q); +returns true iff `p` is lexicographically greater than `q`. +\relates Point_3 +*/ +bool operator>(const Point_3 &p, +const Point_3 &q); /*! -returns true iff `p` is lexicographically smaller or equal to -`q`. -\relates Point_3 -*/ -bool operator<=(const Point_3 &p, -const Point_3 &q); +returns true iff `p` is lexicographically smaller or equal to +`q`. +\relates Point_3 +*/ +bool operator<=(const Point_3 &p, +const Point_3 &q); /*! -returns true iff `p` is lexicographically greater or equal to -`q`. -\relates Point_3 -*/ -bool operator>=(const Point_3 &p, -const Point_3 &q); +returns true iff `p` is lexicographically greater or equal to +`q`. +\relates Point_3 +*/ +bool operator>=(const Point_3 &p, +const Point_3 &q); /*! -returns the difference vector between `q` and `p`. -You can substitute `ORIGIN` for either `p` or `q`, -but not for both. -\relates Point_3 -*/ -Vector_3 operator-(const Point_3 &p, -const Point_3 &q); +returns the difference vector between `q` and `p`. +You can substitute `ORIGIN` for either `p` or `q`, +but not for both. +\relates Point_3 +*/ +Vector_3 operator-(const Point_3 &p, +const Point_3 &q); /// \ingroup Kernel_operator_plus ///@{ /*! -returns the point obtained by translating `p` by the -vector `v`. -\relates Point_3 -*/ -Point_3 operator+(const Point_3 &p, -const Vector_3 &v); +returns the point obtained by translating `p` by the +vector `v`. +\relates Point_3 +*/ +Point_3 operator+(const Point_3 &p, +const Vector_3 &v); /// @} @@ -257,12 +257,12 @@ const Vector_3 &v); ///@{ /*! -returns the point obtained by translating `p` by the -vector -`v`. -\relates Point_3 -*/ -Point_3 operator-(const Point_3 &p, -const Vector_3 &v); +returns the point obtained by translating `p` by the +vector -`v`. +\relates Point_3 +*/ +Point_3 operator-(const Point_3 &p, +const Vector_3 &v); /// @} diff --git a/Kernel_23/doc/Kernel_23/CGAL/Weighted_point_2.h b/Kernel_23/doc/Kernel_23/CGAL/Weighted_point_2.h index 15582120cae..b501854329b 100644 --- a/Kernel_23/doc/Kernel_23/CGAL/Weighted_point_2.h +++ b/Kernel_23/doc/Kernel_23/CGAL/Weighted_point_2.h @@ -114,7 +114,7 @@ public: /// There are two sets of coordinate access functions, namely to the /// homogeneous and to the %Cartesian coordinates. They can be used /// independently from the chosen kernel model. Note that you do not - /// loose information with the homogeneous representation, because the + /// lose information with the homogeneous representation, because the /// `FieldNumberType` is a quotient. /// @{ diff --git a/Kernel_23/doc/Kernel_23/CGAL/Weighted_point_3.h b/Kernel_23/doc/Kernel_23/CGAL/Weighted_point_3.h index dc608ae858e..3670ba14acc 100644 --- a/Kernel_23/doc/Kernel_23/CGAL/Weighted_point_3.h +++ b/Kernel_23/doc/Kernel_23/CGAL/Weighted_point_3.h @@ -114,7 +114,7 @@ public: /// There are two sets of coordinate access functions, namely to the /// homogeneous and to the %Cartesian coordinates. They can be used /// independently from the chosen kernel model. Note that you do not - /// loose information with the homogeneous representation, because the + /// lose information with the homogeneous representation, because the /// `FieldNumberType` is a quotient. /// @{