Changed prefix of names of concepts Arrangement... => Aos...

This commit is contained in:
Efi Fogel 2024-08-28 21:34:54 +03:00
parent 0d72f17992
commit 24400d8226
23 changed files with 43 additions and 47 deletions

View File

@ -6,7 +6,7 @@ namespace CGAL {
* of concept `CircularKernel`.
* It provides curves of type `CGAL::Circular_arc_2<CircularKernel>`.
*
* \cgalModels{ArrangementTraits_2}
* \cgalModels{AosTraits_2}
*/
template <typename CircularKernel>
class Arr_circular_arc_traits_2 {};

View File

@ -6,7 +6,7 @@ namespace CGAL {
* \f$x\f$-monotone curve. It is used by models geometry traits concept that
* handle boundary conditions.
*
* \sa `ArrangementOpenBoundaryTraits_2`
* \sa `AosOpenBoundaryTraits_2`
*/
enum Arr_curve_end { ARR_MIN_END, ARR_MAX_END };

View File

@ -6,7 +6,7 @@ namespace CGAL {
* model of concept `CircularKernel`. It provides curves of type
* `CGAL::Line_arc_2<CircularKernel>`.
*
* \cgalModels{ArrangementTraits_2}
* \cgalModels{AosTraits_2}
*/
template <typename CircularKernel>
class Arr_line_arc_traits_2 {};

View File

@ -3,11 +3,11 @@ namespace CGAL {
/*! \ingroup PkgArrangementOnSurface2TraitsClasses
*
* The traits class `Arr_rational_function_traits_2` is a model of the
* `ArrangementTraits_2` concept. It handles bounded and unbounded arcs of
* `AosTraits_2` concept. It handles bounded and unbounded arcs of
* rational functions, referred to as <i>rational arcs</i> (in particular, such
* an arc may correspond to the entire graph of a rational function). It
* supports bounded and unbounded arcs. Thus, it is also a model of the concept
* `ArrangementOpenBoundaryTraits_2`. The traits class enables the construction
* `AosOpenBoundaryTraits_2`. The traits class enables the construction
* and maintenance of arrangements of such arcs.
*
* A rational function \f$y = \frac{P(x)}{Q(x)}\f$ is defined by two polynomials
@ -19,7 +19,7 @@ namespace CGAL {
* functions are represented by the nested type `Curve_2`. Note that a rational
* function may be not continuous since roots of \f$Q\f$ induce vertical
* asymptotes, which would contradict the notion of an \f$x\f$-monotone curve as
* it is introduced by the `ArrangementTraits_2` concept. Thus, continuous
* it is introduced by the `AosTraits_2` concept. Thus, continuous
* portions of rational functions are represented by the nested type
* `X_monotone_curve_2`, which is different from `Curve_2`. Constructors for
* both classes are provided by the traits. A `Curve_2` may be split up into
@ -43,12 +43,12 @@ namespace CGAL {
* cleans up the cache on demand.
*
* While `Arr_rational_function_traits_2` models the concept
* `ArrangementDirectionalXMonotoneTraits_2`, the implementation of the
* `AosDirectionalXMonotoneTraits_2`, the implementation of the
* `Are_mergeable_2` operation does not enforce the input curves to have the
* same direction as a precondition. Moreover, `Arr_rational_function_traits_2`
* supports the merging of curves of opposite directions.
*
* \cgalModels{ArrangementTraits_2,ArrangementDirectionalXMonotoneTraits_2,ArrangementOpenBoundaryTraits_2}
* \cgalModels{AosTraits_2,AosDirectionalXMonotoneTraits_2,AosOpenBoundaryTraits_2}
*/
template <typename AlgebraicKernel_d_1>
class Arr_rational_function_traits_2 {

View File

@ -17,7 +17,7 @@ namespace CGAL {
* \sa `Arr_closed_side_tag`
* \sa `Arr_contracted_side_tag`
* \sa `Arr_identified_side_tag`
* \sa `ArrangementBasicTraits_2`
* \sa `AosBasicTraits_2`
*/
struct Arr_oblivious_side_tag {};

View File

@ -75,7 +75,7 @@ public:
typedef typename Algebraic_kernel_d_2::Polynomial_2 Polynomial_2;
/// public types for ArrangementTraits_2
/// public types for AosTraits_2
typedef typename Algebraic_kernel_d_2::Curve_analysis_2 Curve_2;

View File

@ -36,7 +36,7 @@
namespace CGAL {
/*! \class
* A model of the ArrangementTraits_2 concept that counts the methods invoked.
* A model of the AosTraits_2 concept that counts the methods invoked.
*/
template <typename Base_traits>
class Arr_counting_traits_2 : public Base_traits {

View File

@ -22,10 +22,10 @@ namespace CGAL {
/*! \class
* A model of the following concepts:
* 1. ArrangementBasicTraits_2,
* 2. ArrangementDirectionalXMonotoneTraits_2,
* 4. ArrangementConstructXMonotoneCurveTraits_2, and
* 3. ArrangementOpenBoundaryTraits_2
* 1. AosBasicTraits_2,
* 2. AosDirectionalXMonotoneTraits_2,
* 4. AosConstructXMonotoneCurveTraits_2, and
* 3. AosOpenBoundaryTraits_2
* It handles linear curves.
*/
template <class Kernel_T>
@ -43,7 +43,7 @@ public:
Arr_directional_non_caching_segment_basic_traits_2() : Base() {}
/// \name Types and functors inherited from the base, required by the
// ArrangementBasicTraits_2 concept.
// AosBasicTraits_2 concept.
//@{
// Traits types:

View File

@ -25,7 +25,7 @@
/*! \file The basic non-caching segment traits-class for the arrangement
* package. This traits class handles x-monotone non-intersecting segments.
* It is a model of the ArrangementBasicTraits_2 concept. The class is
* It is a model of the AosBasicTraits_2 concept. The class is
* templated by a kernel and inherits from it all the types and many of the
* functors required by the concept it models.
*/
@ -41,7 +41,7 @@
namespace CGAL {
/*! \class
* A model of the ArrangementBasicTraits_2 concept that handles x-monotone
* A model of the AosBasicTraits_2 concept that handles x-monotone
* non-intersecting line segments.
*/
template <class T_Kernel>

View File

@ -20,10 +20,10 @@
/*! \file The non-caching segment traits-class for the arrangement package.
* This traits class handles general segments. It is a model of the
* ArrangementTraits_2 concept, a refinement of the ArrangementBasicTraits_2
* AosTraits_2 concept, a refinement of the AosBasicTraits_2
* concept. The class is templated by a kernel and inherits from the
* Arr_non_caching_segment_basic_traits_2 class instantiated with the kernel -
* a model of the ArrangementBasicTraits_2 concept. It defined a few additional
* a model of the AosBasicTraits_2 concept. It defined a few additional
* functors required by the concept it models.
*/
@ -38,7 +38,7 @@
namespace CGAL {
/*! \class
* A model of the ArrangementTraits_2 concept that handles general
* A model of the AosTraits_2 concept that handles general
* line segments.
*/
template <typename Kernel_T = Exact_predicates_exact_constructions_kernel>

View File

@ -1037,7 +1037,7 @@ public:
//@}
/// \name Types and functors defined here, required by the
// ArrangementDirectionalXMonotoneTraits_2 concept.
// AosDirectionalXMonotoneTraits_2 concept.
//@{
Compare_endpoints_xy_2 compare_endpoints_xy_2_object() const

View File

@ -35,7 +35,7 @@
namespace CGAL {
/*! \class
* A model of the ArrangementTraits_2 concept that counts the methods invoked.
* A model of the AosTraits_2 concept that counts the methods invoked.
*/
template <typename Base_traits>
class Arr_tracing_traits_2 : public Base_traits {

View File

@ -2177,7 +2177,7 @@ public:
CGAL_precondition(is_in_x_range(xcv1, xcv2));
/* The traits class which the basic traits adaptor accepts as a template
* parameter is a model of the ArrangementBasicTraits_2 concept so it
* parameter is a model of the AosBasicTraits_2 concept so it
* needs not to support intersections at all, therefore it is complicated
* to check if the x-curves are disjoint in their interiors. Moreover,
* compare_y_position functor is called only from the arrangement class

View File

@ -64,7 +64,7 @@ public:
BaseCKvA::Curved_kernel_via_analysis_2> Functor_base;
};
//!\name Embedded types to fulfill \c ArrangementTraits_2 concept
//!\name Embedded types to fulfill \c AosTraits_2 concept
//! type of curve that can be analyzed
typedef typename Curve_kernel_2::Curve_analysis_2 Curve_2;
@ -245,14 +245,14 @@ public:
};
public:
//!\name Embedded types to fulfill \c ArrangementTraits_2 concept
//!\name Embedded types to fulfill \c AosTraits_2 concept
//!@{
typedef internal::Point_2< Self > Point_2;
typedef internal::Arc_2< Self > Arc_2;
//! type of weakly x-monotone arc for \c ArrangementTraits_2
//! type of weakly x-monotone arc for \c AosTraits_2
typedef Arc_2 X_monotone_curve_2;
//!@}

View File

@ -716,7 +716,7 @@ public:
//! type of an arc on generic curve
typedef internal::Arc_2< Self > Arc_2;
//! type of weakly x-monotone arc for \c ArrangementTraits_2
//! type of weakly x-monotone arc for \c AosTraits_2
typedef Arc_2 X_monotone_curve_2;
//!@}

View File

@ -18,7 +18,7 @@ public:
Splits the arc `ca` into `x`-monotone arcs that are returned through the
output iterator. Note that, to ensure an easy interface with the
`Arrangement_2` package, the arcs are returned as `CGAL::Object`'s
(see the `ArrangementTraits_2` concept).
(see the `AosTraits_2` concept).
*/
template < class OutputIterator >
OutputIterator
@ -27,4 +27,3 @@ operator()(const CircularKernel::Circular_arc_2 &ca, OutputIterator oit);
/// @}
}; /* end CircularKernel::MakeXMonotone_2 */

View File

@ -18,7 +18,7 @@ public:
Splits the arc `ca` into `y`-monotone arcs that are returned through the
output iterator. Note that, to ensure an easy interface with the
`Arrangement_2` package, the arcs are returned as `CGAL::Object`'s
(see the `ArrangementTraits_2` concept).
(see the `AosTraits_2` concept).
*/
template < class OutputIterator >
OutputIterator
@ -27,4 +27,3 @@ operator()(const CircularKernel::Circular_arc_2 &ca, OutputIterator oit);
/// @}
}; /* end CircularKernel::MakeXYMonotone_2 */

View File

@ -11,9 +11,9 @@ time, and the space needed to store the diagram class is linear in the
complexity of the envelope.
The envelope-diagram class is parameterized by a traits class, which is a
model of the `ArrangementXMonotoneTraits_2` concept, in case we handle
model of the `AosXMonotoneTraits_2` concept, in case we handle
only envelopes of \f$ x\f$-monotone curves, or of the refined
`ArrangementTraits_2` concept in case we handle arbitrary planar curves.
`AosTraits_2` concept in case we handle arbitrary planar curves.
\cgalModels{EnvelopeDiagram_1}

View File

@ -48,7 +48,7 @@ The lower envelope is represented using the output minimization diagram `diag`.
\tparam InputIterator must be an input iterator with value type `EnvelopeDiagram::X_monotone_curve_2`.
\tparam EnvelopeDiagram must be a model of the concept `EnvelopeDiagram_1`.
\tparam Traits must be a model of the concept `ArrangementXMonotoneTraits_2`.
\tparam Traits must be a model of the concept `AosXMonotoneTraits_2`.
*/
template<class InputIterator, class EnvelopeDiagram, class Traits>
void lower_envelope_x_monotone_2
@ -107,7 +107,7 @@ The upper envelope is represented using the output maximization diagram `diag`.
\tparam InputIterator must be an input iterator with value type `EnvelopeDiagram::X_monotone_curve_2`.
\tparam EnvelopeDiagram must be a model of the concept `EnvelopeDiagram_1`.
\tparam Traits must be a model of the concept `ArrangementXMonotoneTraits_2`.
\tparam Traits must be a model of the concept `AosXMonotoneTraits_2`.
*/
template<class InputIterator, class EnvelopeDiagram, class Traits>
void upper_envelope_x_monotone_2

View File

@ -136,11 +136,11 @@ Any model of the `EnvelopeDiagram_1` concept must define a geometric
traits class, which in turn defines the `Point_2` and
`X_monotone_curve_2` types defined with the diagram features.
The geometric traits class must be a model of the
`ArrangementXMonotoneTraits_2` concept in case we construct
`AosXMonotoneTraits_2` concept in case we construct
envelopes of \f$ x\f$-monotone curves. If we are interested in handling
arbitrary (not necessarily \f$ x\f$-monotone) curves, the traits class
must be a model of the `ArrangementTraits_2` concept. This
concepts refined the `ArrangementXMonotoneTraits_2` concept;
must be a model of the `AosTraits_2` concept. This
concepts refined the `AosXMonotoneTraits_2` concept;
a traits class that models this concepts must also defines a
`Curve_2` type, representing an arbitrary planar curve, and
provide a functor for subdividing such curves into \f$ x\f$-monotone
@ -199,4 +199,3 @@ that compute envelopes of arbitrary curves.
*/
} /* namespace CGAL */

View File

@ -3,7 +3,7 @@
*
* This concept defines the minimal set of geometric predicates and operations
* needed to compute the envelope of a set of arbitrary surfaces in \f$
* \mathbb{R}^3\f$. It refines the `ArrangementXMonotoneTraits_2` concept. In
* \mathbb{R}^3\f$. It refines the `AosXMonotoneTraits_2` concept. In
* addition to the `Point_2` and `X_monotone_curve_2` types and the
* `Has_boundary_category` category tag listed in the base concept, it also
* lists the `Surface_3` and `Xy_monotone_surface_3` types, which represent
@ -12,7 +12,7 @@
* operations usually involve the projection of 3D objects onto the \f$
* xy\f$-plane.
*
* \cgalRefines{ArrangementXMonotoneTraits_2}
* \cgalRefines{AosXMonotoneTraits_2}
*
* \cgalHasModelsBegin
* \cgalHasModels{CGAL::Env_triangle_traits_3<Kernel, ArrLinearTraits>}

View File

@ -9,7 +9,7 @@ the free function \ref CGAL::snap_rounding_2() `CGAL::snap_rounding_2<Traits,Inp
The list includes the nested types of the geometric primitives used in this class and
some function object types for the required predicates on those primitives.
\cgalRefines{ArrangementTraits_2}
\cgalRefines{AosTraits_2}
\cgalHasModelsBegin
\cgalHasModels{CGAL::Snap_rounding_traits_2<Kernel>}

View File

@ -27,7 +27,7 @@ input curves. When the flag `report_endpoints` is `true`,
this function reports all the curve endpoints as well. If a curve
endpoint is also an intersection point, it is reported once (regardless
of the value of the `report_endpoints` flag). The `Traits` type
must be a model of the `ArrangementTraits_2` concept, such that the
must be a model of the `AosTraits_2` concept, such that the
value-type of `InputIterator` is `Traits::Curve_2`, and the
value-type of `OutputIterator` is `Traits::Point_2`.
The output points are reported in an increasing \f$ xy\f$-lexicographical order.
@ -64,7 +64,7 @@ disjoint in their interior, as induced by the input curves.
If the flag `multiple_overlaps` is `true`, then a subcurve that
represents an overlap of \f$ k\f$ input curves is reported \f$ k\f$ times; otherwise,
each subcurve is reported only once. The `Traits` type must be a model
of the `ArrangementTraits_2` concept, such that the value-type of
of the `AosTraits_2` concept, such that the value-type of
`InputIterator` is `Traits::Curve_2`, and the value-type of
`OutputIterator` is `Traits::X_monotone_curve_2`.
*/
@ -94,7 +94,7 @@ Given a range of curves, check whether there is at least one pair of curves
that intersect in their interior. The function returns `true` if such
a pair is found, and `false` if all curves are pairwise disjoint in
their interior. The `Traits` type must be a model
of the `ArrangementTraits_2` concept, such that the value-type of
of the `AosTraits_2` concept, such that the value-type of
`InputIterator` is `Traits::Curve_2`.
*/
template <class InputIterator, class Traits>
@ -103,4 +103,3 @@ bool do_curves_intersect (InputIterator curves_begin,
Traits traits = Default_traits());
} /* namespace CGAL */