Merge remote-tracking branch 'cgal/master' into Triangulation_3-CDT_3-lrineau

This commit is contained in:
Laurent Rineau 2023-11-07 15:02:43 +01:00
commit 25de4ee6b7
1739 changed files with 123501 additions and 120786 deletions

View File

@ -60,7 +60,7 @@ jobs:
content: 'rocket'
})
- uses: actions/checkout@v3
- uses: actions/checkout@v4
name: "checkout branch"
if: steps.get_round.outputs.result != 'stop'
with:

View File

@ -11,7 +11,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: install dependencies
run: |
.github/install.sh

View File

@ -11,7 +11,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: install dependencies
run: sudo apt-get install -y libboost-dev libboost-program-options-dev libmpfr-dev libeigen3-dev
- name: configure all
@ -25,7 +25,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: install dependencies
run: sudo bash -e .github/install.sh
- name: configure all

View File

@ -14,7 +14,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: delete directory
run: |
set -x

View File

@ -9,7 +9,7 @@ jobs:
batch_1:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: install dependencies
run: .github/install.sh
- name: run1
@ -17,7 +17,7 @@ jobs:
batch_2:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: install dependencies
run: .github/install.sh
- name: run2
@ -25,7 +25,7 @@ jobs:
batch_3:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: install dependencies
run: .github/install.sh
- name: run3
@ -33,7 +33,7 @@ jobs:
batch_4:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: install dependencies
run: .github/install.sh
- name: run4

View File

@ -12,7 +12,7 @@
messages: ${{ steps.cat_output.outputs.message }}
steps:
- name: checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: run script
run: |
chmod +x ./Scripts/developer_scripts/list_cgal_workflows_last_run.sh

View File

@ -10,17 +10,17 @@ jobs:
reuse:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: REUSE version
uses: fsfe/reuse-action@v1
uses: fsfe/reuse-action@v2
with:
args: --version
- name: REUSE lint
uses: fsfe/reuse-action@v1
uses: fsfe/reuse-action@v2
with:
args: --include-submodules lint
- name: REUSE SPDX SBOM
uses: fsfe/reuse-action@v1
uses: fsfe/reuse-action@v2
with:
args: spdx
- name: install dependencies
@ -30,6 +30,6 @@ jobs:
mkdir -p ./release
cmake -DDESTINATION=./release -DCGAL_VERSION=9.9 -P ./Scripts/developer_scripts/cgal_create_release_with_cmake.cmake
- name: REUSE lint release tarball
uses: fsfe/reuse-action@v1
uses: fsfe/reuse-action@v2
with:
args: --root ./release/CGAL-9.9 --include-submodules lint

View File

@ -11,7 +11,9 @@ and the primitives stored in the AABB tree.
\cgalRefines{SearchGeomTraits_3}
\cgalHasModel All models of the concept `Kernel`
\cgalHasModelsBegin
\cgalHasModelsBare{All models of the concept `Kernel`}
\cgalHasModelsEnd
\sa `CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>`
\sa `CGAL::AABB_tree<AABBTraits>`
@ -47,7 +49,7 @@ Provides the operator:
`return_type operator()(const Query& q, const Primitive::Datum& d)`,
which computes the intersection between `q` and `d`. The type of the returned object
must be a `boost::optional` of a `boost::variant` of the possible intersection types.
must be a `std::optional` of a `std::variant` of the possible intersection types.
*/
typedef unspecified_type Intersect_3;

View File

@ -12,11 +12,13 @@ The concept `AABBPrimitive` describes the requirements for the primitives stored
The `Primitive` type can be, e.g., a wrapper around a `Handle`. Assume for instance that the input objects are the triangle faces of a mesh stored as a `CGAL::Polyhedron_3`. The `Datum` would be a `Triangle_3` and the `Id` would be a polyhedron `Face_handle`. Method `datum()` can return either a `Triangle_3` constructed on the fly from the face handle or a `Triangle_3` stored internally. This provides a way for the user to trade memory for efficiency.
\cgalHasModel `CGAL::AABB_primitive<Id,ObjectPropertyMap,PointPropertyMap,Tag_false,CacheDatum>`
\cgalHasModel `CGAL::AABB_segment_primitive<Iterator,CacheDatum>`
\cgalHasModel `CGAL::AABB_triangle_primitive<Iterator,CacheDatum>`
\cgalHasModel `CGAL::AABB_halfedge_graph_segment_primitive<HalfedgeGraph,VertexPointPMap,Tag_false,CacheDatum>`
\cgalHasModel `CGAL::AABB_face_graph_triangle_primitive<FaceGraph,VertexPointPMap,Tag_false,CacheDatum>`
\cgalHasModelsBegin
\cgalHasModels{CGAL::AABB_primitive<Id,ObjectPropertyMap,PointPropertyMap,Tag_false,CacheDatum>}
\cgalHasModels{CGAL::AABB_segment_primitive<Iterator,CacheDatum>}
\cgalHasModels{CGAL::AABB_triangle_primitive<Iterator,CacheDatum>}
\cgalHasModels{CGAL::AABB_halfedge_graph_segment_primitive<HalfedgeGraph,VertexPointPMap,Tag_false,CacheDatum>}
\cgalHasModels{CGAL::AABB_face_graph_triangle_primitive<FaceGraph,VertexPointPMap,Tag_false,CacheDatum>}
\cgalHasModelsEnd
*/
class AABBPrimitive {

View File

@ -21,9 +21,11 @@ The `Datum` would be a `Triangle_3` and the `Id` a `std::size_t`. The shared dat
`std::vector<Triangle_3>`.
The method `datum(const Shared_data&)` then returns a triangle from the vector.
\cgalHasModel `CGAL::AABB_primitive<Id,ObjectPropertyMap,PointPropertyMap,Tag_true,CacheDatum>`
\cgalHasModel `CGAL::AABB_halfedge_graph_segment_primitive<HalfedgeGraph,VertexPointPMap,Tag_true,CacheDatum>`
\cgalHasModel `CGAL::AABB_face_graph_triangle_primitive<FaceGraph,VertexPointPMap,Tag_true,CacheDatum>`
\cgalHasModelsBegin
\cgalHasModels{CGAL::AABB_primitive<Id,ObjectPropertyMap,PointPropertyMap,Tag_true,CacheDatum>}
\cgalHasModels{CGAL::AABB_halfedge_graph_segment_primitive<HalfedgeGraph,VertexPointPMap,Tag_true,CacheDatum>}
\cgalHasModels{CGAL::AABB_face_graph_triangle_primitive<FaceGraph,VertexPointPMap,Tag_true,CacheDatum>}
\cgalHasModelsEnd
*/
class AABBPrimitiveWithSharedData {

View File

@ -9,7 +9,9 @@ define the Intersection_distance functor.
\cgalRefines{AABBGeomTraits}
\cgalHasModel All models of the concept `Kernel`
\cgalHasModelsBegin
\cgalHasModelsBare{All models of the concept `Kernel`}
\cgalHasModelsEnd
\sa `CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>`
\sa `CGAL::AABB_tree<AABBTraits>`

View File

@ -7,7 +7,9 @@ The concept `AABBRayIntersectionTraits` is a refinement of the concept
`AABBTraits` it also requires function objects to calculate the
distance of an intersection along a ray.
\cgalHasModel `CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>`
\cgalHasModelsBegin
\cgalHasModels{CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>}
\cgalHasModelsEnd
\sa `CGAL::AABB_tree<AABBTraits>`
\sa `AABBPrimitive`
@ -25,15 +27,15 @@ public:
/*!
A functor object to compute the distance between the source of a ray and its
closest intersection point between the ray and a primitive or a bounding box.
An empty `boost::optional` is returned, if there is no intersection.
An empty `std::optional` is returned, if there is no intersection.
When there is an intersection, an object of type `FT` is returned such that
if `i1` and `i2` are two intersection points, then `i1` is closer to the source
of the ray than `i2` iff `n1 < n2`, `n1` and `n2` being the numbers returned for `i1` and `i2`
respectively.
Provides the operators:
`boost::optional<FT> operator()(const Ray_3& r, const Bounding_box& bbox)`.
`boost::optional<std::pair<FT, Intersection_and_primitive_id<Ray_3>::%Type > >
`std::optional<FT> operator()(const Ray_3& r, const Bounding_box& bbox)`.
`std::optional<std::pair<FT, Intersection_and_primitive_id<Ray_3>::%Type > >
operator()(const Ray_3& r, const Primitive& primitive)`.
A common algorithm to compute the intersection between a bounding box and a ray is <A

View File

@ -5,7 +5,9 @@
The concept `AABBTraits` provides the geometric primitive types and methods for the class `CGAL::AABB_tree<AABBTraits>`.
\cgalHasModel `CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>`
\cgalHasModelsBegin
\cgalHasModels{CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>}
\cgalHasModelsEnd
\cgalRefines{SearchGeomTraits_3}
@ -119,10 +121,10 @@ typedef unspecified_type Do_intersect;
/*!
A functor object to compute the intersection of a query and a primitive. Provides the operator:
`boost::optional<Intersection_and_primitive_id<Query>::%Type > operator()(const Query & q, const Primitive& primitive);` which returns the intersection as a pair composed of an object and a primitive id, iff the query intersects the primitive.
`std::optional<Intersection_and_primitive_id<Query>::%Type > operator()(const Query & q, const Primitive& primitive);` which returns the intersection as a pair composed of an object and a primitive id, iff the query intersects the primitive.
\cgalHeading{Note on Backward Compatibility}
Before the release 4.3 of \cgal, the return type of this function used to be `boost::optional<Object_and_primitive_id>`.
Before the release 4.3 of \cgal, the return type of this function used to be `std::optional<Object_and_primitive_id>`.
*/
typedef unspecified_type Intersection;

View File

@ -19,8 +19,8 @@ typedef CGAL::Polyhedron_3<K> Polyhedron;
typedef CGAL::AABB_face_graph_triangle_primitive<Polyhedron> Primitive;
typedef CGAL::AABB_traits<K, Primitive> Traits;
typedef CGAL::AABB_tree<Traits> Tree;
typedef boost::optional< Tree::Intersection_and_primitive_id<Segment>::Type > Segment_intersection;
typedef boost::optional< Tree::Intersection_and_primitive_id<Plane>::Type > Plane_intersection;
typedef std::optional< Tree::Intersection_and_primitive_id<Segment>::Type > Segment_intersection;
typedef std::optional< Tree::Intersection_and_primitive_id<Plane>::Type > Plane_intersection;
typedef Tree::Primitive_id Primitive_id;
int main()
@ -57,7 +57,7 @@ int main()
if(intersection)
{
// gets intersection object
const Point* p = boost::get<Point>(&(intersection->first));
const Point* p = std::get_if<Point>(&(intersection->first));
if(p)
std::cout << "intersection object is a point " << *p << std::endl;
@ -81,7 +81,7 @@ int main()
if(plane_intersection)
{
if(boost::get<Segment>(&(plane_intersection->first)))
if(std::get_if<Segment>(&(plane_intersection->first)))
std::cout << "intersection object is a segment" << std::endl;
}

View File

@ -23,7 +23,7 @@ typedef boost::graph_traits<Mesh>::halfedge_descriptor halfedge_descriptor;
typedef CGAL::AABB_face_graph_triangle_primitive<Mesh> Primitive;
typedef CGAL::AABB_traits<K, Primitive> Traits;
typedef CGAL::AABB_tree<Traits> Tree;
typedef boost::optional<Tree::Intersection_and_primitive_id<Ray>::Type> Ray_intersection;
typedef std::optional<Tree::Intersection_and_primitive_id<Ray>::Type> Ray_intersection;
struct Skip
{
@ -70,8 +70,8 @@ int main(int argc, char* argv[])
Ray_intersection intersection = tree.first_intersection(ray, skip);
if(intersection)
{
if(boost::get<Point>(&(intersection->first))){
const Point* p = boost::get<Point>(&(intersection->first) );
if(std::get_if<Point>(&(intersection->first))){
const Point* p = std::get_if<Point>(&(intersection->first) );
std::cout << *p << std::endl;
}
}

View File

@ -33,7 +33,7 @@ namespace CGAL {
* while the AABB tree holding the primitive is in use.
* The triangle type of the primitive (`Datum`) is `CGAL::Kernel_traits< boost::property_traits< VertexPointPMap >::%value_type >::%Kernel::Triangle_3`.
*
* \cgalModels `AABBPrimitiveWithSharedData`
* \cgalModels{AABBPrimitiveWithSharedData}
*
*\tparam FaceGraph is a model of the face graph concept.
*\tparam VertexPointPMap is a property map with `boost::graph_traits<FaceGraph>::%vertex_descriptor`

View File

@ -41,8 +41,10 @@ namespace CGAL {
* of `VertexPointPMap` (using the `Kernel_traits` mechanism).
* The segment type of the primitive (`Datum`) is `CGAL::Kernel_traits< boost::property_traits< VertexPointPMap >::%value_type >::%Kernel::Segment_3`.
*
* \cgalModels `AABBPrimitive` if `OneHalfedgeGraphPerTree` is `CGAL::Tag_false`,
* and `AABBPrimitiveWithSharedData` if `OneHalfedgeGraphPerTree` is `CGAL::Tag_true`.
* \cgalModelsBareBegin
* \cgalModelsBare{`AABBPrimitive` if `OneHalfedgeGraphPerTree` is `CGAL::Tag_false`}
* \cgalModelsBare{`AABBPrimitiveWithSharedData` if `OneHalfedgeGraphPerTree` is `CGAL::Tag_true`}
* \cgalModelsBareEnd
*
* \tparam HalfedgeGraph is a model of the halfedge graph concept.
* as key type and a \cgal Kernel `Point_3` as value type.

View File

@ -42,7 +42,7 @@ namespace CGAL {
/// AABB tree is built should not be deleted while the AABB tree
/// is in use.
///
/// \cgalModels `AABBPrimitive`
/// \cgalModels{AABBPrimitive}
/// \tparam GeomTraits must provide a \c %Point_3
/// type, used as \c Point, and a \c %Segment_3 type, used as \c
/// Datum and constructible from two arguments of type \c

View File

@ -35,7 +35,7 @@ namespace CGAL {
/// the polyhedron from which the AABB tree is built should not be
/// deleted while the AABB tree is in use.
///
/// \cgalModels `AABBPrimitive`
/// \cgalModels{AABBPrimitive}
/// \tparam GeomTraits must provides a \c %Point_3
/// type, used as \c Point, and a \c %Triangle_3 type, used as \c
/// Datum and constructible from three arguments of type \c

View File

@ -53,8 +53,10 @@ public:
* The two property maps which are template parameters of the class enable to get the datum and the reference point of
* the primitive from the identifier. The last template parameter controls whether the primitive class holds a copy of the datum.
*
* \cgalModels `AABBPrimitive` if `ExternalPropertyMaps` is `CGAL::Tag_false`.
* \cgalModels `AABBPrimitiveWithSharedData` if `ExternalPropertyMaps` is `CGAL::Tag_true`.
* \cgalModelsBareBegin
* \cgalModelsBare{`AABBPrimitive` if `ExternalPropertyMaps` is `CGAL::Tag_false`}
* \cgalModelsBare{`AABBPrimitiveWithSharedData` if `ExternalPropertyMaps` is `CGAL::Tag_true`}
* \cgalModelsBareEnd
*
* \tparam ObjectPropertyMap is a model of `ReadablePropertyMap` with `Id` as
* `key_type`. It must be a model of `CopyConstructible`, `DefaultConstructible`, and `CopyAssignable`.

View File

@ -54,7 +54,7 @@ namespace internal {
* The iterator from which the primitive is built should not be invalided
* while the AABB tree holding the primitive is in use.
*
* \cgalModels `AABBPrimitive`
* \cgalModels{AABBPrimitive}
*
* \tparam GeomTraits is a traits class providing the nested type `Point_3` and `Segment_3`.
* It also provides the functor `Construct_source_3` that has an operator taking a `Segment_3`

View File

@ -27,7 +27,7 @@
#include <CGAL/Kernel_23/internal/Has_boolean_tags.h>
#include <boost/optional.hpp>
#include <optional>
/// \file AABB_traits.h
@ -39,7 +39,7 @@ template <class T>
struct Remove_optional { typedef T type; };
template <class T>
struct Remove_optional< ::boost::optional<T> > { typedef T type; };
struct Remove_optional< ::std::optional<T> > { typedef T type; };
//helper controlling whether extra data should be stored in the AABB_tree traits class
template <class Primitive, bool has_shared_data=Has_nested_type_Shared_data<Primitive>::value>
@ -85,7 +85,7 @@ struct AABB_traits_base_2<GeomTraits,true>{
typedef typename CGAL::Bbox_3 Bounding_box;
struct Intersection_distance {
boost::optional<FT> operator()(const Ray_3& ray, const Bounding_box& bbox) const {
std::optional<FT> operator()(const Ray_3& ray, const Bounding_box& bbox) const {
FT t_near = -DBL_MAX; // std::numeric_limits<FT>::lowest(); C++1903
FT t_far = DBL_MAX;
@ -101,7 +101,7 @@ struct AABB_traits_base_2<GeomTraits,true>{
for(int i = 0; i < 3; ++i, ++source_iter, ++direction_iter) {
if(*direction_iter == 0) {
if((*source_iter < (bbox.min)(i)) || (*source_iter > (bbox.max)(i))) {
return boost::none;
return std::nullopt;
}
} else {
FT t1 = ((bbox.min)(i) - *source_iter) / *direction_iter;
@ -118,7 +118,7 @@ struct AABB_traits_base_2<GeomTraits,true>{
// t_far = t2;
if(t_near > t_far || t_far < FT(0.))
return boost::none;
return std::nullopt;
}
}
@ -149,9 +149,8 @@ class AABB_tree;
/// computations, and it handles points as query type for distance
/// queries.
///
/// \cgalModels AABBTraits
/// \cgalModels AABBRayIntersectionTraits
/// \cgalModels{AABBTraits,AABBRayIntersectionTraits}
///
/// \tparam GeomTraits must be a model of the concept \ref AABBGeomTraits,
/// and provide the geometric types as well as the intersection tests and computations.
/// \tparam Primitive provide the type of primitives stored in the AABB_tree.
@ -193,7 +192,7 @@ public:
/// `Intersection_and_primitive_id<Query>::%Type::first_type` is found according to
/// the result type of `GeomTraits::Intersect_3::operator()`. If it is
/// `boost::optional<T>` then it is `T`, and the result type otherwise.
/// `std::optional<T>` then it is `T`, and the result type otherwise.
template<typename Query>
struct Intersection_and_primitive_id {
typedef decltype(
@ -364,12 +363,12 @@ public:
Intersection(const AABB_traits<GeomTraits,AABBPrimitive,BboxMap>& traits)
:m_traits(traits) {}
template<typename Query>
boost::optional< typename Intersection_and_primitive_id<Query>::Type >
std::optional< typename Intersection_and_primitive_id<Query>::Type >
operator()(const Query& query, const typename AT::Primitive& primitive) const {
auto inter_res = GeomTraits().intersect_3_object()(query, internal::Primitive_helper<AT>::get_datum(primitive,m_traits));
if (!inter_res)
return boost::none;
return boost::make_optional( std::make_pair(*inter_res, primitive.id()) );
return std::nullopt;
return std::make_optional( std::make_pair(*inter_res, primitive.id()) );
}
};

View File

@ -26,7 +26,7 @@
#include <CGAL/AABB_tree/internal/AABB_search_tree.h>
#include <CGAL/AABB_tree/internal/Has_nested_type_Shared_data.h>
#include <CGAL/AABB_tree/internal/Primitive_helper.h>
#include <boost/optional.hpp>
#include <optional>
#ifdef CGAL_HAS_THREADS
#include <CGAL/mutex.h>
@ -270,7 +270,7 @@ public:
/// \tparam Query must be a type for which `Do_intersect` operators are
/// defined in the traits class `AABBTraits`.
template <typename Query>
boost::optional<Primitive_id> any_intersected_primitive(const Query& query) const;
std::optional<Primitive_id> any_intersected_primitive(const Query& query) const;
///@}
/// \name Intersections
@ -293,7 +293,7 @@ public:
/// \tparam Query must be a type for which `Do_intersect` and `Intersection` operators are
/// defined in the traits class `AABBTraits`.
template <typename Query>
boost::optional< typename Intersection_and_primitive_id<Query>::Type >
std::optional< typename Intersection_and_primitive_id<Query>::Type >
any_intersection(const Query& query) const;
@ -317,12 +317,12 @@ public:
/// `AABBTraits` must be a model of `AABBRayIntersectionTraits` to
/// call this member function.
template<typename Ray, typename SkipFunctor>
boost::optional< typename Intersection_and_primitive_id<Ray>::Type >
std::optional< typename Intersection_and_primitive_id<Ray>::Type >
first_intersection(const Ray& query, const SkipFunctor& skip) const;
/// \cond
template<typename Ray>
boost::optional< typename Intersection_and_primitive_id<Ray>::Type >
std::optional< typename Intersection_and_primitive_id<Ray>::Type >
first_intersection(const Ray& query) const
{
return first_intersection(query, [](Primitive_id){ return false; });
@ -342,12 +342,12 @@ public:
/// `AABBTraits` must be a model of `AABBRayIntersectionTraits` to
/// call this member function.
template<typename Ray, typename SkipFunctor>
boost::optional<Primitive_id>
std::optional<Primitive_id>
first_intersected_primitive(const Ray& query, const SkipFunctor& skip) const;
/// \cond
template<typename Ray>
boost::optional<Primitive_id>
std::optional<Primitive_id>
first_intersected_primitive(const Ray& query) const
{
return first_intersected_primitive(query, [](Primitive_id){ return false; });
@ -963,7 +963,7 @@ public:
template <typename Tr>
template <typename Query>
boost::optional< typename AABB_tree<Tr>::template Intersection_and_primitive_id<Query>::Type >
std::optional< typename AABB_tree<Tr>::template Intersection_and_primitive_id<Query>::Type >
AABB_tree<Tr>::any_intersection(const Query& query) const
{
using namespace CGAL::internal::AABB_tree;
@ -975,7 +975,7 @@ public:
template <typename Tr>
template <typename Query>
boost::optional<typename AABB_tree<Tr>::Primitive_id>
std::optional<typename AABB_tree<Tr>::Primitive_id>
AABB_tree<Tr>::any_intersected_primitive(const Query& query) const
{
using namespace CGAL::internal::AABB_tree;

View File

@ -19,8 +19,7 @@
#include <functional>
#include <type_traits>
#include <boost/optional.hpp>
#include <boost/variant/apply_visitor.hpp>
#include <optional>
# if defined(BOOST_MSVC)
# pragma warning(push)
# pragma warning(disable: 4996)
@ -43,7 +42,7 @@ class AABB_ray_intersection {
public:
AABB_ray_intersection(const AABBTree& tree) : tree_(tree) {}
boost::optional< Ray_intersection_and_primitive_id >
std::optional< Ray_intersection_and_primitive_id >
ray_intersection(const Ray& query, SkipFunctor skip) const {
// We hit the root, now continue on the children. Keep track of
// nb_primitives through a variable in each Node on the stack. In
@ -63,7 +62,7 @@ public:
Heap_type pq;
// pq.reserve(tree_.size() / 2);
boost::optional< Ray_intersection_and_primitive_id >
std::optional< Ray_intersection_and_primitive_id >
intersection, /* the temporary for calculating the result */
p; /* the current best intersection */
@ -84,7 +83,7 @@ public:
if(!skip(current.node->left_data().id()) /* && do_intersect_obj(query, current.node->left_data()) */) {
intersection = intersection_obj(query, current.node->left_data());
if(intersection) {
FT ray_distance = boost::apply_visitor(param_visitor, intersection->first);
FT ray_distance = std::visit(param_visitor, intersection->first);
if(ray_distance < t) {
t = ray_distance;
p = intersection;
@ -96,7 +95,7 @@ public:
if(!skip(current.node->right_data().id()) /* && do_intersect_obj(query, current.node->right_data()) */) {
intersection = intersection_obj(query, current.node->right_data());
if(intersection) {
FT ray_distance = boost::apply_visitor(param_visitor, intersection->first);
FT ray_distance = std::visit(param_visitor, intersection->first);
if(ray_distance < t) {
t = ray_distance;
p = intersection;
@ -111,7 +110,7 @@ public:
if(!skip(current.node->left_data().id()) /* && do_intersect_obj(query, current.node->left_data()) */) {
intersection = intersection_obj(query, current.node->left_data());
if(intersection) {
FT ray_distance = boost::apply_visitor(param_visitor, intersection->first);
FT ray_distance = std::visit(param_visitor, intersection->first);
if(ray_distance < t) {
t = ray_distance;
p = intersection;
@ -121,7 +120,7 @@ public:
// right child
const Node* child = &(current.node->right_child());
boost::optional< FT > dist = intersection_distance_obj(query, child->bbox());
std::optional< FT > dist = intersection_distance_obj(query, child->bbox());
if(dist)
pq.push(Node_ptr_with_ft(child, *dist, 2));
@ -130,7 +129,7 @@ public:
default: // Children both inner nodes
{
const Node* child = &(current.node->left_child());
boost::optional<FT> dist = intersection_distance_obj(query, child->bbox());
std::optional<FT> dist = intersection_distance_obj(query, child->bbox());
if(dist)
pq.push(Node_ptr_with_ft(child, *dist, current.nb_primitives/2));
@ -198,7 +197,7 @@ private:
template<typename AABBTraits>
template<typename Ray, typename SkipFunctor>
boost::optional< typename AABB_tree<AABBTraits>::template Intersection_and_primitive_id<Ray>::Type >
std::optional< typename AABB_tree<AABBTraits>::template Intersection_and_primitive_id<Ray>::Type >
AABB_tree<AABBTraits>::first_intersection(const Ray& query,
const SkipFunctor& skip) const {
static_assert(std::is_same<Ray, typename AABBTraits::Ray_3>::value,
@ -219,22 +218,22 @@ AABB_tree<AABBTraits>::first_intersection(const Ray& query,
break;
}
}
return boost::none;
return std::nullopt;
}
template<typename AABBTraits>
template<typename Ray, typename SkipFunctor>
boost::optional<typename AABB_tree<AABBTraits>::Primitive_id>
std::optional<typename AABB_tree<AABBTraits>::Primitive_id>
AABB_tree<AABBTraits>::first_intersected_primitive(const Ray& query,
const SkipFunctor& skip) const
{
boost::optional<
std::optional<
typename AABB_tree<AABBTraits>::
template Intersection_and_primitive_id<Ray>::Type > res =
first_intersection(query, skip);
if ( (bool) res )
return boost::make_optional( res->second );
return boost::none;
return std::make_optional( res->second );
return std::nullopt;
}
}

View File

@ -17,7 +17,7 @@
#include <CGAL/AABB_tree/internal/AABB_node.h>
#include <boost/optional.hpp>
#include <optional>
namespace CGAL {
@ -69,7 +69,7 @@ class First_intersection_traits
public:
typedef
boost::optional< typename AABBTraits::template Intersection_and_primitive_id<Query>::Type >
std::optional< typename AABBTraits::template Intersection_and_primitive_id<Query>::Type >
Result;
public:
First_intersection_traits(const AABBTraits& traits)
@ -124,7 +124,7 @@ public:
void intersection(const Query& query, const Primitive& primitive)
{
boost::optional< typename AABBTraits::template Intersection_and_primitive_id<Query>::Type >
std::optional< typename AABBTraits::template Intersection_and_primitive_id<Query>::Type >
intersection = m_traits.intersection_object()(query, primitive);
if(intersection)
@ -211,7 +211,7 @@ public:
{
if( m_traits.do_intersect_object()(query, primitive) )
{
m_result = boost::optional<typename Primitive::Id>(primitive.id());
m_result = std::optional<typename Primitive::Id>(primitive.id());
m_is_found = true;
}
}
@ -221,12 +221,12 @@ public:
return m_traits.do_intersect_object()(query, node.bbox());
}
boost::optional<typename Primitive::Id> result() const { return m_result; }
std::optional<typename Primitive::Id> result() const { return m_result; }
bool is_intersection_found() const { return m_is_found; }
private:
bool m_is_found;
boost::optional<typename Primitive::Id> m_result;
std::optional<typename Primitive::Id> m_result;
const AABBTraits& m_traits;
};

View File

@ -55,7 +55,7 @@ namespace internal {
* The iterator from which the primitive is built should not be invalided
* while the AABB tree holding the primitive is in use.
*
* \cgalModels `AABBPrimitive`
* \cgalModels{AABBPrimitive}
*
* \tparam GeomTraits is a traits class providing the nested type `Point_3` and `Triangle_3`.
* It also provides the functor `Construct_vertex_3` that has an operator taking a `Triangle_3`

View File

@ -28,7 +28,7 @@ namespace CGAL {
// the TriangleMesh from which the AABB tree is built should not be
// deleted while the AABB tree is in use.
//
// \cgalModels `AABBPrimitive`
// \cgalModels{AABBPrimitive}
// \tparam GeomTraits must provides a \c %Point_3
// type, used as \c Point, and a \c %Triangle_3 type, used as \c
// Datum and constructible from three arguments of type \c

View File

@ -95,20 +95,23 @@ void test_all_intersection_query_types(Tree& tree)
tree.all_intersected_primitives(segment,std::back_inserter(primitives));
// any_intersection
boost::optional< typename Tree::AABB_traits::template Intersection_and_primitive_id<Ray>::Type > r = tree.any_intersection(ray);
boost::optional< typename Tree::AABB_traits::template Intersection_and_primitive_id<Line>::Type > l = tree.any_intersection(line);
boost::optional< typename Tree::AABB_traits::template Intersection_and_primitive_id<Segment>::Type > s = tree.any_intersection(segment);
std::optional< typename Tree::AABB_traits::template Intersection_and_primitive_id<Ray>::Type > r = tree.any_intersection(ray);
std::optional< typename Tree::AABB_traits::template Intersection_and_primitive_id<Line>::Type > l = tree.any_intersection(line);
std::optional< typename Tree::AABB_traits::template Intersection_and_primitive_id<Segment>::Type > s = tree.any_intersection(segment);
CGAL_USE(r);
CGAL_USE(l);
CGAL_USE(s);
// any_intersected_primitive
boost::optional<typename Primitive::Id> optional_primitive;
std::optional<typename Primitive::Id> optional_primitive;
optional_primitive = tree.any_intersected_primitive(ray);
optional_primitive = tree.any_intersected_primitive(line);
optional_primitive = tree.any_intersected_primitive(segment);
// all_intersections
std::list< boost::optional< typename Tree::AABB_traits::template Intersection_and_primitive_id<Ray>::Type > > intersections_r;
std::list< boost::optional< typename Tree::AABB_traits::template Intersection_and_primitive_id<Line>::Type > > intersections_l;
std::list< boost::optional< typename Tree::AABB_traits::template Intersection_and_primitive_id<Segment>::Type > > intersections_s;
std::list< std::optional< typename Tree::AABB_traits::template Intersection_and_primitive_id<Ray>::Type > > intersections_r;
std::list< std::optional< typename Tree::AABB_traits::template Intersection_and_primitive_id<Line>::Type > > intersections_l;
std::list< std::optional< typename Tree::AABB_traits::template Intersection_and_primitive_id<Segment>::Type > > intersections_s;
tree.all_intersections(ray,std::back_inserter(intersections_r));
tree.all_intersections(line,std::back_inserter(intersections_l));
tree.all_intersections(segment,std::back_inserter(intersections_s));
@ -322,7 +325,7 @@ class Naive_implementations
typedef typename Traits::Point_3 Point;
typedef typename Traits::Point_and_primitive_id Point_and_primitive_id;
typedef boost::optional<Object_and_primitive_id> Intersection_result;
typedef std::optional<Object_and_primitive_id> Intersection_result;
const Traits& m_traits;
public:
@ -380,7 +383,7 @@ public:
Polyhedron_primitive_iterator it = Pr_generator().begin(p);
for ( ; it != Pr_generator().end(p) ; ++it )
{
boost::optional< typename Traits::template Intersection_and_primitive_id<Query>::Type >
std::optional< typename Traits::template Intersection_and_primitive_id<Query>::Type >
intersection = m_traits.intersection_object()(query, Pr(it,p));
if ( intersection )
*out++ = *intersection;
@ -653,7 +656,7 @@ private:
}
// any_intersected_primitive test (do not count time here)
typedef boost::optional<typename Primitive::Id> Any_primitive;
typedef std::optional<typename Primitive::Id> Any_primitive;
Any_primitive primitive = tree.any_intersected_primitive(query);
// Check: verify we do get the result by naive method
@ -723,7 +726,7 @@ private:
}
// Any intersection test (do not count time here)
boost::optional< typename Tree::AABB_traits::template Intersection_and_primitive_id<Query>::Type >
std::optional< typename Tree::AABB_traits::template Intersection_and_primitive_id<Query>::Type >
intersection = tree.any_intersection(query);
// Check: verify we do get the result by naive method

View File

@ -46,7 +46,7 @@ std::size_t intersect(ForwardIterator b, ForwardIterator e, const Tree& tree, lo
v.reserve(elements);
for(; b != e; ++b) {
tree.all_intersections(*b, std::back_inserter(v));
boost::optional<Obj_type> o = tree.any_intersection(*b);
std::optional<Obj_type> o = tree.any_intersection(*b);
if(o)
++counter;
}

View File

@ -65,7 +65,7 @@ int test()
return EXIT_FAILURE;
}
boost::optional<Object_and_primitive_id> any;
std::optional<Object_and_primitive_id> any;
any = tree.any_intersection(pq);
if(!any)
{

View File

@ -35,7 +35,7 @@ FT point_on_ray_dist(const Ray& ray, const Point& point) {
std::size_t accum = 0;
boost::optional<
std::optional<
Tree::Intersection_and_primitive_id<Ray>::Type
>
min_intersection(const Tree& tree, const Ray& ray) {
@ -45,12 +45,12 @@ min_intersection(const Tree& tree, const Ray& ray) {
tree.all_intersections(ray, std::back_inserter(all_intersections));
accum += all_intersections.size();
Tree::FT min_distance = DBL_MAX;
boost::optional<
std::optional<
Tree::Intersection_and_primitive_id<Ray>::Type
> mini = boost::none;
> mini = std::nullopt;
for(IntersectionVector::iterator it2 = all_intersections.begin(); it2 != all_intersections.end(); ++it2) {
if(Point* point = boost::get<Point>(&(it2->first))) {
if(Point* point = std::get_if<Point>(&(it2->first))) {
Vector i_ray(*point, ray.source());
Tree::FT new_distance = i_ray.squared_length();
if(new_distance < min_distance) {
@ -124,7 +124,7 @@ int main()
rays.reserve(NB_RAYS);
std::transform(v1.begin(), v1.end(), v2.begin(),
std::back_inserter(rays), boost::value_factory<Ray>());
std::vector< boost::optional<Tree::Intersection_and_primitive_id<Ray>::Type > > primitives1, primitives2;
std::vector< std::optional<Tree::Intersection_and_primitive_id<Ray>::Type > > primitives1, primitives2;
primitives1.reserve(NB_RAYS); primitives2.reserve(NB_RAYS);
@ -139,7 +139,7 @@ int main()
}
assert(primitives1.size() == primitives2.size()); // Different amount of primitives intersected
assert(std::equal(primitives1.begin(), primitives1.end(), primitives2.begin())); // Primitives mismatch
std::size_t c = primitives1.size() - std::count(primitives1.begin(), primitives1.end(), boost::none);
std::size_t c = primitives1.size() - std::count(primitives1.begin(), primitives1.end(), std::nullopt);
std::cout << "Intersected " << c << " primitives with " << NB_RAYS << " rays" << std::endl;
std::cout << "Primitive method had to sort " << accum/NB_RAYS
<< " intersections on average." << std::endl;

View File

@ -11,7 +11,9 @@ together with a few geometric predicates and constructions on these objects.
\cgalRefines{DelaunayTriangulationTraits_3}
\cgalHasModel All models of `Kernel`.
\cgalHasModelsBegin
\cgalHasModelsBare{All models of the concept `Kernel`}
\cgalHasModelsEnd
*/
class AdvancingFrontSurfaceReconstructionTraits_3
{

View File

@ -169,8 +169,8 @@ Every \cgal `Kernel` comes with two <I>real number types</I>
(number types embeddable into the real numbers). One of them is a
`FieldNumberType`, and the other a `RingNumberType`. The
coordinates of the basic kernel objects (points, vectors, etc.) come
from one of these types (the `FieldNumberType` in case of Cartesian
kernels, and the `RingNumberType` for Homogeneous kernels).
from one of these types (the `FieldNumberType` in case of %Cartesian
kernels, and the `RingNumberType` for %Homogeneous kernels).
The concept `FieldNumberType` combines the requirements of the
concepts `Field` and `RealEmbeddable`, while
@ -277,4 +277,3 @@ subsequent chapters.
*/
} /* namespace CGAL */

View File

@ -5,7 +5,7 @@ namespace CGAL {
An instance of `Algebraic_structure_traits` is a model of `AlgebraicStructureTraits`, where <span class="textsc">T</span> is the associated type.
\cgalModels `AlgebraicStructureTraits`
\cgalModels{AlgebraicStructureTraits}
*/
template< typename T >
@ -22,7 +22,7 @@ namespace CGAL {
Tag indicating that a type is a model of the
`EuclideanRing` concept.
\cgalModels `DefaultConstructible`
\cgalModels{DefaultConstructible}
\sa `EuclideanRing`
\sa `AlgebraicStructureTraits`
@ -38,7 +38,7 @@ struct Euclidean_ring_tag : public Unique_factorization_domain_tag {
Tag indicating that a type is a model of the `Field` concept.
\cgalModels `DefaultConstructible`
\cgalModels{DefaultConstructible}
\sa `Field`
\sa `AlgebraicStructureTraits`
@ -54,7 +54,7 @@ struct Field_tag : public Integral_domain_tag {
Tag indicating that a type is a model of the `FieldWithKthRoot` concept.
\cgalModels `DefaultConstructible`
\cgalModels{DefaultConstructible}
\sa `FieldWithKthRoot`
\sa `AlgebraicStructureTraits`
@ -70,7 +70,7 @@ struct Field_with_kth_root_tag : public Field_with_sqrt_tag {
Tag indicating that a type is a model of the `FieldWithRootOf` concept.
\cgalModels `DefaultConstructible`
\cgalModels{DefaultConstructible}
\sa `FieldWithRootOf`
\sa `AlgebraicStructureTraits`
@ -86,7 +86,7 @@ struct Field_with_root_of_tag : public Field_with_kth_root_tag {
Tag indicating that a type is a model of the `FieldWithSqrt` concept.
\cgalModels `DefaultConstructible`
\cgalModels{DefaultConstructible}
\sa `FieldWithSqrt`
\sa `AlgebraicStructureTraits`
@ -102,7 +102,7 @@ struct Field_with_sqrt_tag : public Field_tag {
Tag indicating that a type is a model of the `IntegralDomain` concept.
\cgalModels `DefaultConstructible`
\cgalModels{DefaultConstructible}
\sa `IntegralDomain`
\sa `AlgebraicStructureTraits`
@ -118,7 +118,7 @@ struct Integral_domain_tag : public Integral_domain_without_division_tag {
Tag indicating that a type is a model of the `IntegralDomainWithoutDivision` concept.
\cgalModels `DefaultConstructible`
\cgalModels{DefaultConstructible}
\sa `IntegralDomainWithoutDivision`
@ -133,7 +133,7 @@ struct Integral_domain_without_division_tag {
Tag indicating that a type is a model of the `UniqueFactorizationDomain` concept.
\cgalModels `DefaultConstructible`
\cgalModels{DefaultConstructible}
\sa `UniqueFactorizationDomain`
\sa `AlgebraicStructureTraits`

View File

@ -6,7 +6,7 @@ namespace CGAL {
An instance of `Fraction_traits` is a model of `FractionTraits`,
where `T` is the associated type.
\cgalModels `FractionTraits`
\cgalModels{FractionTraits}
*/
template< typename T >

View File

@ -6,7 +6,7 @@ namespace CGAL {
An instance of `Real_embeddable_traits` is a model of `RealEmbeddableTraits`, where <span class="textsc">T</span> is the associated type.
\cgalModels `RealEmbeddableTraits`
\cgalModels{RealEmbeddableTraits}
*/
template< typename T >

View File

@ -28,7 +28,9 @@ algebraic operations within that structure.
\sa `CGAL::Field_with_kth_root_tag`
\sa `CGAL::Field_with_root_of_tag`
\cgalHasModel `CGAL::Algebraic_structure_traits<T>`
\cgalHasModelsBegin
\cgalHasModels{CGAL::Algebraic_structure_traits<T>}
\cgalHasModelsEnd
*/

View File

@ -3,7 +3,7 @@
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
A model of `EuclideanRing` represents an euclidean ring (or Euclidean domain).
A model of `EuclideanRing` represents a Euclidean ring (or Euclidean domain).
It is an `UniqueFactorizationDomain` that affords a suitable notion of minimality of remainders
such that given \f$ x\f$ and \f$ y \neq 0\f$ we obtain an (almost) unique solution to
\f$ x = qy + r \f$ by demanding that a solution \f$ (q,r)\f$ is chosen to minimize \f$ r\f$.

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicFoundationsInteroperabilityConcepts
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
Two types `A` and `B` are a model of the `ExplicitInteroperable`
@ -27,4 +27,3 @@ class ExplicitInteroperable {
public:
}; /* end ExplicitInteroperable */

View File

@ -5,20 +5,22 @@
The concept `FieldNumberType` combines the requirements of the concepts
`Field` and `RealEmbeddable`.
A model of `FieldNumberType` can be used as a template parameter
for Cartesian kernels.
for %Cartesian kernels.
\cgalRefines{Field,RealEmbeddable}
\cgalHasModel float
\cgalHasModel double
\cgalHasModel `CGAL::Gmpq`
\cgalHasModel `CGAL::Interval_nt`
\cgalHasModel `CGAL::Interval_nt_advanced`
\cgalHasModel `CGAL::Lazy_exact_nt<FieldNumberType>`
\cgalHasModel `CGAL::Quotient<RingNumberType>`
\cgalHasModel `leda_rational`
\cgalHasModel `leda_bigfloat`
\cgalHasModel `leda_real`
\cgalHasModelsBegin
\cgalHasModels{float}
\cgalHasModels{double}
\cgalHasModels{CGAL::Gmpq}
\cgalHasModels{CGAL::Interval_nt}
\cgalHasModels{CGAL::Interval_nt_advanced}
\cgalHasModels{CGAL::Lazy_exact_nt<FieldNumberType>}
\cgalHasModels{CGAL::Quotient<RingNumberType>}
\cgalHasModels{leda_rational}
\cgalHasModels{leda_bigfloat}
\cgalHasModels{leda_real}
\cgalHasModelsEnd
\sa `RingNumberType`
\sa `Kernel`
@ -32,4 +34,3 @@ public:
/// @}
}; /* end FieldNumberType */

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicFoundationsFractionsConcepts
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
A type is considered as a `Fraction`, if there is a reasonable way to
@ -17,4 +17,3 @@ class Fraction {
public:
}; /* end Fraction */

View File

@ -8,7 +8,9 @@ A model of `FractionTraits` is associated with a type `Type`.
In case the associated type is a `Fraction`, a model of `FractionTraits` provides the relevant functionality for decomposing and re-composing as well
as the numerator and denominator type.
\cgalHasModel `CGAL::Fraction_traits<T>`
\cgalHasModelsBegin
\cgalHasModels{CGAL::Fraction_traits<T>}
\cgalHasModelsEnd
\sa `FractionTraits_::Decompose`
\sa `FractionTraits_::Compose`

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicFoundationsConcepts
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
A model of the concept `FromDoubleConstructible` is required
@ -27,4 +27,3 @@ FromDoubleConstructible(const double& d);
/// @}
}; /* end FromDoubleConstructible */

View File

@ -1,14 +1,16 @@
/*!
\ingroup PkgAlgebraicFoundationsConcepts
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
A model of the concept `FromIntConstructible` is required
to be constructible from int.
\cgalHasModel int
\cgalHasModel long
\cgalHasModel double
\cgalHasModelsBegin
\cgalHasModels{int}
\cgalHasModels{long}
\cgalHasModels{double}
\cgalHasModelsEnd
*/
@ -26,4 +28,3 @@ FromIntConstructible(int& i);
/// @}
}; /* end FromIntConstructible */

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicFoundationsInteroperabilityConcepts
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
Two types `A` and `B` are a model of the concept
@ -29,4 +29,3 @@ class ImplicitInteroperable {
public:
}; /* end ImplicitInteroperable */

View File

@ -7,7 +7,9 @@ A model of `RealEmbeddableTraits` is associated to a number type
`Type` and reflects the properties of this type with respect
to the concept `RealEmbeddable`.
\cgalHasModel `CGAL::Real_embeddable_traits<T>`
\cgalHasModelsBegin
\cgalHasModels{CGAL::Real_embeddable_traits<T>}
\cgalHasModelsEnd
*/
class RealEmbeddableTraits {

View File

@ -6,23 +6,25 @@
The concept `RingNumberType` combines the requirements of the concepts
`IntegralDomainWithoutDivision` and `RealEmbeddable`.
A model of `RingNumberType` can be used as a template parameter
for Homogeneous kernels.
for homogeneous kernels.
\cgalRefines{IntegralDomainWithoutDivision,RealEmbeddable}
\cgalHasModel \cpp built-in number types
\cgalHasModel `CGAL::Gmpq`
\cgalHasModel `CGAL::Gmpz`
\cgalHasModel `CGAL::Interval_nt`
\cgalHasModel `CGAL::Interval_nt_advanced`
\cgalHasModel `CGAL::Lazy_exact_nt<RingNumberType>`
\cgalHasModel `CGAL::MP_Float`
\cgalHasModel `CGAL::Gmpzf`
\cgalHasModel `CGAL::Quotient<RingNumberType>`
\cgalHasModel `leda_integer`
\cgalHasModel `leda_rational`
\cgalHasModel `leda_bigfloat`
\cgalHasModel `leda_real`
\cgalHasModelsBegin
\cgalHasModelsBare{\cpp built-in number types}
\cgalHasModels{CGAL::Gmpq}
\cgalHasModels{CGAL::Gmpz}
\cgalHasModels{CGAL::Interval_nt}
\cgalHasModels{CGAL::Interval_nt_advanced}
\cgalHasModels{CGAL::Lazy_exact_nt<RingNumberType>}
\cgalHasModels{CGAL::MP_Float}
\cgalHasModels{CGAL::Gmpzf}
\cgalHasModels{CGAL::Quotient<RingNumberType>}
\cgalHasModels{leda_integer}
\cgalHasModels{leda_rational}
\cgalHasModels{leda_bigfloat}
\cgalHasModels{leda_real}
\cgalHasModelsEnd
\sa `FieldNumberType`
@ -32,4 +34,3 @@ class RingNumberType {
public:
}; /* end RingNumberType */

View File

@ -27,7 +27,7 @@ approximation of an algebraic real root is a slightly modified
(filtered) version of the one presented in \cgalCite{abbott-qir-06}. The
method has quadratic convergence.
\cgalModels `AlgebraicKernel_d_1`
\cgalModels{AlgebraicKernel_d_1}
\sa `AlgebraicKernel_d_1`
\sa `Polynomial_d`

View File

@ -47,7 +47,7 @@ above. `ROOT` should be one of the integer types. See also the
documentation of `Sqrt_extension<NT,ROOT>`.
\cgalAdvancedEnd
\cgalModels `AlgebraicKernel_d_2`
\cgalModels{AlgebraicKernel_d_2}
\sa `AlgebraicKernel_d_1`
\sa `AlgebraicKernel_d_2`

View File

@ -12,7 +12,7 @@ rational univariate polynomial root isolation. It is a model of the
isolate integer polynomials, the operations of this kernel have the
overhead of converting the polynomials to integer.
\cgalModels `AlgebraicKernel_d_1`
\cgalModels{AlgebraicKernel_d_1}
\sa `Algebraic_kernel_rs_gmpz_d_1`

View File

@ -10,7 +10,7 @@ This univariate algebraic kernel uses the Rs library to perform
integer univariate polynomial root isolation. It is a model of the
`AlgebraicKernel_d_1` concept.
\cgalModels `AlgebraicKernel_d_1`
\cgalModels{AlgebraicKernel_d_1}
\sa `Algebraic_kernel_rs_gmpz_d_1`

View File

@ -8,8 +8,10 @@ algebraic functionalities on univariate polynomials of general degree \f$ d\f$.
\cgalRefines{CopyConstructible,Assignable}
\cgalHasModel `CGAL::Algebraic_kernel_rs_gmpz_d_1`
\cgalHasModel `CGAL::Algebraic_kernel_rs_gmpq_d_1`
\cgalHasModelsBegin
\cgalHasModels{CGAL::Algebraic_kernel_rs_gmpz_d_1}
\cgalHasModels{CGAL::Algebraic_kernel_rs_gmpq_d_1}
\cgalHasModelsEnd
\sa `AlgebraicKernel_d_2`

View File

@ -27,7 +27,7 @@
#include <type_traits>
#include <CGAL/iterator.h>
#include <CGAL/assertions.h>
#include <boost/optional.hpp>
#include <optional>
#include <CGAL/basic.h>
#include <CGAL/config.h>
@ -359,7 +359,7 @@ public:
Unary_compose(const Unary_compose& other) = default;
Unary_compose& operator=(const Unary_compose& other) = default;
Unary_compose() : _inner(::boost::none),_outer(::boost::none) {}
Unary_compose() : _inner(::std::nullopt),_outer(::std::nullopt) {}
typedef typename InnerFunctor::argument_type argument_type;
typedef typename OuterFunctor::result_type result_type;
@ -368,11 +368,11 @@ public:
result_type operator() (const argument_type& arg) const {
CGAL_assertion(bool(_inner));
CGAL_assertion(bool(_outer));
return _outer.get()(_inner.get()(arg));
return _outer.value()(_inner.value()(arg));
}
private:
::boost::optional<InnerFunctor> _inner;
::boost::optional<OuterFunctor> _outer;
::std::optional<InnerFunctor> _inner;
::std::optional<OuterFunctor> _outer;
};
template<typename InnerFunctor,typename OuterFunctor>

View File

@ -174,7 +174,7 @@ public:
long old_precision = get_precision( BFI() );
set_precision( BFI(), 53 );
std::pair<double, double> interval = CGAL::to_interval( convert_to_bfi( (*this)));
this->ptr()->interval_option = boost::optional< std::pair<double, double> >(interval);
this->ptr()->interval_option = std::optional< std::pair<double, double> >(interval);
set_precision( BFI(), old_precision );
return *(this->ptr()->interval_option);
}

View File

@ -86,10 +86,10 @@ private:
CGAL::Polynomial_traits_d<Poly>::template Rebind<BFI,1>
::Other::Type BFI_polynomial;
mutable boost::optional
mutable std::optional
< BFI_polynomial > f_bfi_;
mutable boost::optional<BFI> low_bfi_, f_low_bfi_,
mutable std::optional<BFI> low_bfi_, f_low_bfi_,
high_bfi_, f_high_bfi_;
mutable long N;
@ -113,8 +113,8 @@ private:
low_bfi_ = CGAL::convert_to_bfi(this->low());
high_bfi_ = CGAL::convert_to_bfi(this->high());
f_low_bfi_ = f_bfi_.get().evaluate(low_bfi_.get());
f_high_bfi_ = f_bfi_.get().evaluate(high_bfi_.get());
f_low_bfi_ = f_bfi_.value().evaluate(low_bfi_.value());
f_high_bfi_ = f_bfi_.value().evaluate(high_bfi_.value());
}
@ -125,7 +125,7 @@ private:
}
m_bfi = CGAL::convert_to_bfi(m);
f_m_bfi = f_bfi_.get().evaluate(m_bfi);
f_m_bfi = f_bfi_.value().evaluate(m_bfi);
if(CGAL::zero_in(f_m_bfi)) {
@ -229,21 +229,21 @@ protected:
bool poly_changed = (P!=this->polynomial());
if(poly_changed) {
f_bfi_ = boost::none;
f_bfi_ = std::nullopt;
}
if(poly_changed || LOW != this->low()) {
f_low_bfi_ = low_bfi_ = boost::none;
f_low_bfi_ = low_bfi_ = std::nullopt;
}
if(poly_changed || HIGH != this->high()) {
f_high_bfi_ = high_bfi_ = boost::none;
f_high_bfi_ = high_bfi_ = std::nullopt;
}
Base::set_implicit_rep(P,LOW,HIGH,dummy_bool);
}
virtual void set_explicit_rep(const Field& m) const {
f_bfi_ = boost::none;
f_low_bfi_ = low_bfi_ = boost::none;
f_high_bfi_ = high_bfi_ = boost::none;
f_bfi_ = std::nullopt;
f_low_bfi_ = low_bfi_ = std::nullopt;
f_high_bfi_ = high_bfi_ = std::nullopt;
Base::set_explicit_rep(m);
}
@ -256,13 +256,13 @@ public:
if(this->is_rational()) return;
if(old_low_!=this->low_) {
f_low_bfi_ = low_bfi_ = boost::none;
f_low_bfi_ = low_bfi_ = std::nullopt;
}
if(old_high_!=this->high_) {
f_high_bfi_ = high_bfi_ = boost::none;
f_high_bfi_ = high_bfi_ = std::nullopt;
}
if(old_pol != this->polynomial()) {
f_bfi_ = boost::none;
f_bfi_ = std::nullopt;
}
}
@ -329,25 +329,25 @@ private:
low_bfi_ = CGAL::convert_to_bfi(this->low());
}
if(! f_low_bfi_) {
f_low_bfi_ = f_bfi_.get().evaluate(low_bfi_.get());
f_low_bfi_ = f_bfi_.value().evaluate(low_bfi_.value());
}
if(! high_bfi_) {
high_bfi_ = CGAL::convert_to_bfi(this->high());
}
if(! f_high_bfi_) {
f_high_bfi_ = f_bfi_.get().evaluate(high_bfi_.get());
f_high_bfi_ = f_bfi_.value().evaluate(high_bfi_.value());
}
Integer i;
while(true) {
if(CGAL::zero_in(f_low_bfi_.get() - f_high_bfi_.get())) {
if(CGAL::zero_in(f_low_bfi_.value() - f_high_bfi_.value())) {
_set_prec(2*prec_);
continue;
}
BFI denom = f_low_bfi_.get()-f_high_bfi_.get();
BFI denom = f_low_bfi_.value()-f_high_bfi_.value();
BFI z = f_low_bfi_.get() / denom;
BFI z = f_low_bfi_.value() / denom;
std::pair<Integer, Integer> int_pair = _to_integer_interval(z,N);
Integer i_low = int_pair.first;
@ -458,7 +458,7 @@ protected:
f_bfi_ = _convert_polynomial_to_bfi(this->polynomial());
}
BFI eval = f_bfi_.get().evaluate(convert_to_bfi(m));
BFI eval = f_bfi_.value().evaluate(convert_to_bfi(m));
CGAL::Sign s = CGAL::sign(CGAL::lower(eval));
@ -490,7 +490,7 @@ public:
Poly f_old = this->polynomial();
Base::simplify();
if(f_old != this->polynomial()) {
f_bfi_ = boost::none;
f_bfi_ = std::nullopt;
}
}
};

View File

@ -23,7 +23,7 @@
#include <CGAL/basic.h>
#include <CGAL/Polynomial_type_generator.h>
#include <CGAL/Polynomial_traits_d.h>
#include <boost/optional.hpp>
#include <optional>
namespace CGAL {
@ -56,7 +56,7 @@ private:
typedef Algebraic_real_rep <Coefficient,Rational> Self;
public:
typedef boost::optional< std::pair<double, double> > Interval_option;
typedef std::optional< std::pair<double, double> > Interval_option;
mutable Poly polynomial_; //!< square free polynomial
mutable Rational low_; //!< lower endpoint of interval

View File

@ -31,7 +31,7 @@
#include <CGAL/Random.h>
#include <CGAL/tss.h>
#include <boost/optional.hpp>
#include <optional>
/*
* AUXILIARY CLASSES AND FUNCTIONS

View File

@ -196,7 +196,7 @@ private:
size_type index_of_content_root;
size_type mult_of_prim_lcoeff_root;
size_type index_of_prim_lcoeff_root;
boost::optional<Status_line_1> stack;
std::optional<Status_line_1> stack;
};
// Functor to get the X_coordinate of an Event_coordinate
@ -210,14 +210,14 @@ private:
//! The object holding the information about events, as an optional
mutable boost::optional<std::vector<Event_coordinate_1> >
mutable std::optional<std::vector<Event_coordinate_1> >
event_coordinates;
//! The algebraic kernel to use
Algebraic_kernel_with_analysis_2* _m_kernel;
//! The polynomial defining the curve
boost::optional<Polynomial_2> f;
std::optional<Polynomial_2> f;
//! How degenerate situations are handled
CGAL::Degeneracy_strategy degeneracy_strategy;
@ -230,24 +230,24 @@ private:
* \c f/cont(f). The corresponding curve is equal to the curve of \c f,
* only without vertical line components.
*/
mutable boost::optional<Polynomial_2> f_primitive;
mutable std::optional<Polynomial_2> f_primitive;
//! the polynomial containing all roots of the resultant of the primitive
//! part of f and its y-derivative
mutable boost::optional<Polynomial_1>
mutable std::optional<Polynomial_1>
resultant_of_primitive_and_derivative_y;
//! the polynomial containing all roots of the resultant of the primitive
//! part of f and its x-derivative
mutable boost::optional<Polynomial_1>
mutable std::optional<Polynomial_1>
resultant_of_primitive_and_derivative_x;
//! The Sturm-Habicht polynomials of f
mutable boost::optional<std::vector<Polynomial_2> >
mutable std::optional<std::vector<Polynomial_2> >
sturm_habicht_of_primitive;
//! The content of f
mutable boost::optional<Polynomial_1> content;
mutable std::optional<Polynomial_1> content;
//! The non-working shear factors, as far as known
mutable std::set<Integer> bad_shears;
@ -256,10 +256,10 @@ private:
mutable std::map<Integer,Handle> sheared_curves;
//! Has the curve vertical line components
mutable boost::optional<bool> has_vertical_component;
mutable std::optional<bool> has_vertical_component;
//! The intermediate values
mutable boost::optional<std::vector<boost::optional<Bound> > >
mutable std::optional<std::vector<std::optional<Bound> > >
intermediate_values;
//! stores Y_values at rational coordinate
@ -272,7 +272,7 @@ private:
* are asymptotic to y=beta,
* or go to +/- infty also in y-direction
*/
mutable boost::optional<std::vector<CGAL::Object> >
mutable std::optional<std::vector<CGAL::Object> >
horizontal_asymptotes_left, horizontal_asymptotes_right;
//! friends
@ -546,7 +546,7 @@ private:
if(! this->ptr()->intermediate_values) {
this->ptr()->intermediate_values
= std::vector<boost::optional<Bound> >
= std::vector<std::optional<Bound> >
(number_of_status_lines_with_event()+1);
}
@ -583,7 +583,7 @@ public:
*/
void set_f(Polynomial_2 f) {
CGAL_precondition(! has_defining_polynomial());
if((! this->ptr()->f) || f!=this->ptr()->f.get()) {
if((! this->ptr()->f) || f!=this->ptr()->f.value()) {
this->copy_on_write();
this->ptr()->f=f;
}
@ -630,7 +630,7 @@ public:
event_coordinates();
CGAL_assertion(this->ptr()->has_vertical_component);
}
return this->ptr()->has_vertical_component.get();
return this->ptr()->has_vertical_component.value();
}
public:
@ -638,7 +638,7 @@ public:
//! Returns the defining polynomial
Polynomial_2 polynomial_2() const {
CGAL_precondition(bool(this->ptr()->f));
return this->ptr()->f.get();
return this->ptr()->f.value();
}
public:
@ -713,8 +713,8 @@ public:
= event_line;
event_coordinates()[i].stack = event_line;
}
CGAL_postcondition(event_coordinates()[i].stack.get().is_event());
return event_coordinates()[i].stack.get();
CGAL_postcondition(event_coordinates()[i].stack.value().is_event());
return event_coordinates()[i].stack.value();
}
public:
@ -1348,7 +1348,7 @@ public:
}
}
}
return intermediate_values()[i].get();
return intermediate_values()[i].value();
}
@ -1369,7 +1369,7 @@ public:
if(! this->ptr()->content) {
compute_content_and_primitive_part();
}
return this->ptr()->content.get();
return this->ptr()->content.value();
}
public:
@ -1388,7 +1388,7 @@ public:
if(! this->ptr()->f_primitive) {
compute_content_and_primitive_part();
}
return this->ptr()->f_primitive.get();
return this->ptr()->f_primitive.value();
}
Algebraic_kernel_with_analysis_2* kernel() const {
@ -1436,7 +1436,7 @@ private:
if(! this->ptr()->sturm_habicht_of_primitive) {
compute_sturm_habicht_of_primitive();
}
return this->ptr()->sturm_habicht_of_primitive.get();
return this->ptr()->sturm_habicht_of_primitive.value();
}
public:
@ -1557,7 +1557,7 @@ private:
if(! this->ptr()->resultant_of_primitive_and_derivative_y) {
this->ptr()->resultant_of_primitive_and_derivative_y = stha[0][0];
if(this->ptr()->resultant_of_primitive_and_derivative_y.
get().is_zero()) {
value().is_zero()) {
throw internal::Zero_resultant_exception<Polynomial_2>
(polynomial_2());
}
@ -1581,7 +1581,7 @@ private:
if(! this->ptr()->resultant_of_primitive_and_derivative_y) {
compute_resultant_of_primitive_and_derivative_y();
}
return this->ptr()->resultant_of_primitive_and_derivative_y.get();
return this->ptr()->resultant_of_primitive_and_derivative_y.value();
}
private:
@ -1592,7 +1592,7 @@ private:
if(! this->ptr()->resultant_of_primitive_and_derivative_x) {
compute_resultant_of_primitive_and_derivative_x();
}
return this->ptr()->resultant_of_primitive_and_derivative_x.get();
return this->ptr()->resultant_of_primitive_and_derivative_x.value();
}
private:
@ -1713,20 +1713,20 @@ private:
if(! this->ptr()->event_coordinates) {
compute_event_coordinates();
}
return this->ptr()->event_coordinates.get();
return this->ptr()->event_coordinates.value();
}
private:
// Returns the intermediate values for intervals between events
std::vector<boost::optional<Bound> >& intermediate_values() const
std::vector<std::optional<Bound> >& intermediate_values() const
{
if(! this->ptr()->intermediate_values) {
// This is created during event_coordiantes()
event_coordinates();
CGAL_assertion(bool(this->ptr()->intermediate_values));
}
return this->ptr()->intermediate_values.get();
return this->ptr()->intermediate_values.value();
}
@ -1915,7 +1915,7 @@ private:
static_cast<size_type>(content_roots.size()));
this->ptr()->intermediate_values
= std::vector<boost::optional<Bound> >
= std::vector<std::optional<Bound> >
(event_coordinate_vector.size()+1);
this->ptr()->event_coordinates = event_coordinate_vector;
@ -2110,7 +2110,7 @@ public:
compute_horizontal_asymptotes();
}
std::vector<Asymptote_y>& asym_info
= this->ptr()->horizontal_asymptotes_left.get();
= this->ptr()->horizontal_asymptotes_left.value();
CGAL_precondition(arcno>=0 &&
arcno<static_cast<size_type>(asym_info.size()));
return asym_info[arcno];
@ -2120,7 +2120,7 @@ public:
compute_horizontal_asymptotes();
}
std::vector<Asymptote_y>& asym_info
= this->ptr()->horizontal_asymptotes_right.get();
= this->ptr()->horizontal_asymptotes_right.value();
CGAL_precondition(arcno>=0 &&
arcno<static_cast<size_type>(asym_info.size()));
return asym_info[arcno];

View File

@ -22,7 +22,7 @@
#include <vector>
#include <algorithm>
#include <boost/optional.hpp>
#include <optional>
#include <CGAL/Handle_with_policy.h>
#include <CGAL/boost/iterator/transform_iterator.hpp>
@ -136,9 +136,9 @@ public:
typedef std::vector<Slice_element> Slice_info;
typedef boost::optional<Slice_info> Lazy_slice_info;
typedef std::optional<Slice_info> Lazy_slice_info;
typedef boost::optional<Bound> Lazy_bound;
typedef std::optional<Bound> Lazy_bound;
typedef CGAL::internal::Event_indices<size_type> Event_indices;
@ -151,11 +151,11 @@ public:
typedef std::vector<std::vector<Intersection_info> >
Intersection_info_container;
typedef boost::optional<Intersection_info_container>
typedef std::optional<Intersection_info_container>
Lazy_intersection_info_container;
// For lazy evaluation of Status_line_CPA_1s.
typedef boost::optional<Status_line_CPA_1> Lazy_status_line_CPA_1;
typedef std::optional<Status_line_CPA_1> Lazy_status_line_CPA_1;
//! @}
@ -191,31 +191,31 @@ private:
Polynomial_2 g;
mutable boost::optional<std::vector<Polynomial_2> > subresultants;
mutable std::optional<std::vector<Polynomial_2> > subresultants;
mutable boost::optional<std::vector<Polynomial_1> >
mutable std::optional<std::vector<Polynomial_1> >
principal_subresultants;
mutable boost::optional<std::vector<Polynomial_1> >
mutable std::optional<std::vector<Polynomial_1> >
coprincipal_subresultants;
mutable boost::optional<Polynomial_1> resultant;
mutable std::optional<Polynomial_1> resultant;
mutable boost::optional<std::vector<Algebraic_real_1> > resultant_roots;
mutable boost::optional<std::vector<Algebraic_real_1> >
mutable std::optional<std::vector<Algebraic_real_1> > resultant_roots;
mutable std::optional<std::vector<Algebraic_real_1> >
event_x_coordinates;
mutable boost::optional<std::vector<size_type> >
mutable std::optional<std::vector<size_type> >
multiplicities_of_resultant_roots;
mutable boost::optional<std::vector<Bound> > stripe_values;
mutable std::optional<std::vector<Bound> > stripe_values;
mutable std::vector< Lazy_status_line_CPA_1 > event_slices;
mutable boost::optional<std::vector< Lazy_bound > > intermediate_values;
mutable std::optional<std::vector< Lazy_bound > > intermediate_values;
mutable boost::optional< std::vector< Lazy_status_line_CPA_1 > >
mutable std::optional< std::vector< Lazy_status_line_CPA_1 > >
intermediate_slices;
mutable boost::optional<std::vector<Event_indices> > event_indices;
mutable std::optional<std::vector<Event_indices> > event_indices;
mutable Lazy_intersection_info_container intersection_info_container;
@ -530,7 +530,7 @@ private:
/*
* \brief Computes the intermediate x-coordinates and their status lines
*
* In fact, it only fills the data fields with boost::none instances,
* In fact, it only fills the data fields with std::nullopt instances,
* according to the lazy philosophy of the whole class.
*/
void compute_intermediate_values_and_slices() const;
@ -547,7 +547,7 @@ public:
compute_resultant();
}
CGAL_assertion(bool(this->ptr()->resultant));
return this->ptr()->resultant.get();
return this->ptr()->resultant.value();
}
std::vector<Algebraic_real_1>& resultant_roots() const {
@ -555,7 +555,7 @@ public:
compute_resultant_roots_with_multiplicities();
}
CGAL_assertion(bool(this->ptr()->resultant_roots));
return this->ptr()->resultant_roots.get();
return this->ptr()->resultant_roots.value();
}
Algebraic_real_1& resultant_roots(size_type i) const {
@ -569,7 +569,7 @@ public:
compute_resultant_roots_with_multiplicities();
}
CGAL_assertion(bool(this->ptr()->multiplicities_of_resultant_roots));
return this->ptr()->multiplicities_of_resultant_roots.get();
return this->ptr()->multiplicities_of_resultant_roots.value();
}
size_type multiplicities_of_resultant_roots(size_type i) const {
@ -586,10 +586,10 @@ public:
(kernel(),
resultant_roots().begin(),
resultant_roots().end(),
std::back_inserter(this->ptr()->stripe_values.get()));
std::back_inserter(this->ptr()->stripe_values.value()));
}
CGAL_assertion(bool(this->ptr()->stripe_values));
return this->ptr()->stripe_values.get();
return this->ptr()->stripe_values.value();
}
std::vector<Algebraic_real_1>& event_x_coordinates() const {
@ -597,7 +597,7 @@ public:
compute_event_x_coordinates_with_event_indices();
}
CGAL_assertion(bool(this->ptr()->event_x_coordinates));
return this->ptr()->event_x_coordinates.get();
return this->ptr()->event_x_coordinates.value();
}
std::vector<Event_indices>& event_indices() const {
@ -605,7 +605,7 @@ public:
compute_event_x_coordinates_with_event_indices();
}
CGAL_assertion(bool(this->ptr()->event_indices));
return this->ptr()->event_indices.get();
return this->ptr()->event_indices.value();
}
public:
@ -613,7 +613,7 @@ public:
/*
* \brief returns the indices of the <tt>i</tt>th event value
*
* Returns a Event_indices <tt>(fg,ffy,ggy)</tt> such that
* Returns an `Event_indices` <tt>(fg,ffy,ggy)</tt> such that
* the <tt>i</tt>th event root is the <tt>fg</tt>th root of the
* resultant of \c f and \c g, the <tt>ffy</tt>th root of the
* discriminant of \c f, and the <tt>ggy</tt>th root of the
@ -633,7 +633,7 @@ private:
compute_intermediate_values_and_slices();
}
CGAL_assertion(bool(this->ptr()->intermediate_values));
return this->ptr()->intermediate_values.get();
return this->ptr()->intermediate_values.value();
}
std::vector<Lazy_status_line_CPA_1>& intermediate_slices() const {
@ -641,7 +641,7 @@ private:
compute_intermediate_values_and_slices();
}
CGAL_assertion(bool(this->ptr()->intermediate_slices));
return this->ptr()->intermediate_slices.get();
return this->ptr()->intermediate_slices.value();
}
@ -652,7 +652,7 @@ private:
compute_subresultants();
}
CGAL_assertion(bool(this->ptr()->subresultants));
return this->ptr()->subresultants.get();
return this->ptr()->subresultants.value();
}
Polynomial_2& subresultants(size_type i) const {
@ -666,7 +666,7 @@ private:
compute_subresultants();
}
CGAL_assertion(bool(this->ptr()->principal_subresultants));
return this->ptr()->principal_subresultants.get();
return this->ptr()->principal_subresultants.value();
}
Polynomial_1& principal_subresultants(size_type i) const {
@ -681,7 +681,7 @@ private:
compute_subresultants();
}
CGAL_assertion(bool(this->ptr()->coprincipal_subresultants));
return this->ptr()->coprincipal_subresultants.get();
return this->ptr()->coprincipal_subresultants.value();
}
Polynomial_1& coprincipal_subresultants(size_type i) const {
@ -1030,7 +1030,7 @@ public:
this->ptr()->event_slices[i] = create_event_slice(i);
}
CGAL_assertion(bool(this->ptr()->event_slices[i]));
return this->ptr()->event_slices[i].get();
return this->ptr()->event_slices[i].value();
}
@ -1045,7 +1045,7 @@ public:
}
return intermediate_slices()[i].get();
return intermediate_slices()[i].value();
}
//! Returns bound representative value at the <tt>i</tt>th interval
@ -1074,7 +1074,7 @@ public:
}
}
CGAL_assertion(bool(intermediate_values()[i]));
return intermediate_values()[i].get();
return intermediate_values()[i].value();
}
@ -1312,11 +1312,11 @@ void Curve_pair_analysis_2<AlgebraicKernelWithAnalysis_2>::compute_resultant()
compute_subresultants();
this->ptr()->resultant
= this->ptr()->principal_subresultants.get()[0];
= this->ptr()->principal_subresultants.value()[0];
}
if(this->ptr()->resultant.get().is_zero()) {
if(this->ptr()->resultant.value().is_zero()) {
throw CGAL::internal::Zero_resultant_exception<Polynomial_2>
(this->ptr()->f,
this->ptr()->g);
@ -1345,8 +1345,8 @@ compute_resultant_roots_with_multiplicities() const {
solve_1(resultant(), std::back_inserter(res_pairs));
for(int i=0; i < static_cast<int>(res_pairs.size()); i++ ) {
this->ptr()->resultant_roots.get().push_back(res_pairs[i].first);
this->ptr()->multiplicities_of_resultant_roots.get()
this->ptr()->resultant_roots.value().push_back(res_pairs[i].first);
this->ptr()->multiplicities_of_resultant_roots.value()
.push_back(res_pairs[i].second);
}
@ -1357,13 +1357,13 @@ compute_resultant_roots_with_multiplicities() const {
#if CGAL_ACK_DEBUG_FLAG
for(size_type i = 0;
i<static_cast<size_type>
(this->ptr()->resultant_roots.get().size());
(this->ptr()->resultant_roots.value().size());
i++) {
CGAL_ACK_DEBUG_PRINT
<< "Root at "
<< CGAL::to_double(this->ptr()->resultant_roots.get()[i])
<< CGAL::to_double(this->ptr()->resultant_roots.value()[i])
<< " with multiplicity "
<< this->ptr()->multiplicities_of_resultant_roots.get()[i]
<< this->ptr()->multiplicities_of_resultant_roots.value()[i]
<< std::endl;
}
#endif
@ -1401,18 +1401,18 @@ compute_event_x_coordinates_with_event_indices() const {
one_curve_events.end(),
resultant_roots().begin(),
resultant_roots().end(),
std::back_inserter(this->ptr()->event_x_coordinates.get()),
std::back_inserter(this->ptr()->event_x_coordinates.value()),
std::back_inserter(events_type),
compare);
std::vector<Algebraic_real_1>& events
= this->ptr()->event_x_coordinates.get();
= this->ptr()->event_x_coordinates.value();
typename std::vector<CGAL::internal::Three_valued>::iterator one_curve_it
=one_curve_events_type.begin();
size_type inter_count=0, f_count=0,g_count=0;
this->ptr()->event_indices = std::vector<Event_indices>();
std::vector<Event_indices>& event_indices
= this->ptr()->event_indices.get();
= this->ptr()->event_indices.value();
for(size_type i=0;i<static_cast<size_type>(events.size());i++) {
/*
#if CGAL_ACK_DEBUG_FLAG
@ -1519,8 +1519,8 @@ compute_intermediate_values_and_slices() const {
std::size_t size = event_x_coordinates().size()+1;
this->ptr()->intermediate_values=std::vector<Lazy_bound>();
this->ptr()->intermediate_slices=std::vector<Lazy_status_line_CPA_1>();
this->ptr()->intermediate_values.get().resize(size);
this->ptr()->intermediate_slices.get().resize(size);
this->ptr()->intermediate_values.value().resize(size);
this->ptr()->intermediate_slices.value().resize(size);
#if CGAL_ACK_DEBUG_FLAG
CGAL_ACK_DEBUG_PRINT << "done" << std::endl;
#endif
@ -1539,25 +1539,25 @@ compute_subresultants() const {
if(CGAL::degree(f,1)<CGAL::degree(g,1)) {
#if CGAL_ACK_USE_BEZOUT_MATRIX_FOR_SUBRESULTANTS
CGAL::internal::bezout_polynomial_subresultants
(g,f,std::back_inserter(this->ptr()->subresultants.get()));
(g,f,std::back_inserter(this->ptr()->subresultants.value()));
#else
typename CGAL::Polynomial_traits_d<Polynomial_2>
::Polynomial_subresultants()
(g,f,std::back_inserter(this->ptr()->subresultants.get()));
(g,f,std::back_inserter(this->ptr()->subresultants.value()));
#endif
} else {
#if CGAL_ACK_USE_BEZOUT_MATRIX_FOR_SUBRESULTANTS
CGAL::internal::bezout_polynomial_subresultants
(f,g,std::back_inserter(this->ptr()->subresultants.get()));
(f,g,std::back_inserter(this->ptr()->subresultants.value()));
#else
typename CGAL::Polynomial_traits_d<Polynomial_2>
::Polynomial_subresultants()
(f,g,std::back_inserter(this->ptr()->subresultants.get()));
(f,g,std::back_inserter(this->ptr()->subresultants.value()));
#endif
}
std::vector<Polynomial_2>& subresultants
= this->ptr()->subresultants.get();
= this->ptr()->subresultants.value();
size_type n = static_cast<size_type>(subresultants.size());
@ -1584,11 +1584,11 @@ compute_subresultants() const {
// This must be corrected, if f and g have same degree:
if(CGAL::degree(f,1) == CGAL::degree(g,1)) {
if(n>=1) {
this->ptr()->principal_subresultants.get()[n-1]
this->ptr()->principal_subresultants.value()[n-1]
= Polynomial_1(CGAL::leading_coefficient(g));
}
if(n>=2) {
this->ptr()->coprincipal_subresultants.get()[n-2]
this->ptr()->coprincipal_subresultants.value()[n-2]
= Polynomial_1(g[CGAL::degree(g,1)-1]);
}
}

View File

@ -127,7 +127,7 @@ public:
//Arc_pair _m_num_arcs;
//! sequence of arcs crossing this status line (valid only event lines)
mutable boost::optional<Arc_container> _m_arcs;
mutable std::optional<Arc_container> _m_arcs;
//! number of arcs intersecting this status line
mutable int _m_total_arcs;
@ -160,10 +160,10 @@ public:
std::vector< int > multiplicities_;*/
// stores algebraic real over the vertical line
mutable std::vector<boost::optional< Algebraic_real_2 > >_m_xy_coords;
mutable std::vector<std::optional< Algebraic_real_2 > >_m_xy_coords;
// stores the isolator instance
mutable boost::optional<Bitstream_descartes> isolator;
mutable std::optional<Bitstream_descartes> isolator;
// befriending the handle
friend class Status_line_CA_1<Curve_analysis_2, Self>;
@ -555,7 +555,7 @@ public:
//! Returns the isolator instance
Bitstream_descartes& isolator() const {
CGAL_assertion(bool(this->ptr()->isolator));
return this->ptr()->isolator.get();
return this->ptr()->isolator.value();
}
//! Returns whether an isolator has been given for that status line

View File

@ -75,7 +75,7 @@ public:
// represents x-coordinate of event of rational value over interval
// computed only by demand
mutable boost::optional<Algebraic_real_1> _m_x;
mutable std::optional<Algebraic_real_1> _m_x;
// for each event point stores a pair of arcnos of the 1st and 2nd curve
// or -1 if respective curve is not involved

View File

@ -81,10 +81,10 @@ public:
mutable int _m_arcno;
// y-coordinate
mutable boost::optional< Algebraic_real_1 > _m_y;
mutable std::optional< Algebraic_real_1 > _m_y;
//! A bounding box for the given point
mutable boost::optional< std::pair<double,Bbox_2> > _m_bbox_2_pair;
mutable std::optional< std::pair<double,Bbox_2> > _m_bbox_2_pair;
};
@ -254,7 +254,7 @@ public:
/*!
* \brief y-coordinate of this point
*
* Note: In general, this method results in a extremely large polynomial
* Note: In general, this method results in an extremely large polynomial
* for the y-coordinate. It is recommended to use it carefully,
* and using get_approximation_y() instead whenever approximations suffice.
*/

View File

@ -16,7 +16,7 @@ if `Alpha_shape_face_base_2` is intended to be used with an alpha-shape class ba
\link Tag_true `Tag_true`\endlink, triggers exact comparisons between alpha values. See the description
provided in the documentation of `Alpha_shape_2` for more details. The default value is \link Tag_false `Tag_false`\endlink.
\cgalModels `AlphaShapeFace_2`
\cgalModels{AlphaShapeFace_2}
\sa `Triangulation_face_base_2`
\sa `Regular_triangulation_face_base_2`

View File

@ -17,7 +17,7 @@ if `Alpha_shape_vertex_base_2` is intended to be used with an alpha-shape class
\link Tag_true `Tag_true`\endlink, triggers exact comparisons between alpha values. See the description
provided in the documentation of `Alpha_shape_2` for more details. The default value is \link Tag_false `Tag_false`\endlink.
\cgalModels `AlphaShapeVertex_2`
\cgalModels{AlphaShapeVertex_2}
\sa `Triangulation_vertex_base_2`
\sa `Regular_triangulation_vertex_base_2`

View File

@ -9,7 +9,9 @@ The concept `AlphaShapeFace_2` describes the requirements for the base face of a
RegularTriangulationFaceBase_2 if the underlying triangulation of the alpha shape is a regular triangulation,
Periodic_2TriangulationFaceBase_2 if the underlying triangulation of the alpha shape is a periodic triangulation}
\cgalHasModel `CGAL::Alpha_shape_face_base_2` (templated with the appropriate triangulation face base class).
\cgalHasModelsBegin
\cgalHasModels{CGAL::Alpha_shape_face_base_2 (templated with the appropriate triangulation face base class)}
\cgalHasModelsEnd
*/
class AlphaShapeFace_2 {

View File

@ -9,8 +9,10 @@ class of the underlying Delaunay triangulation of a basic alpha shape.
\cgalRefines{DelaunayTriangulationTraits_2 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
Periodic_2DelaunayTriangulationTraits_2 if the underlying triangulation of the alpha shape is a periodic Delaunay triangulation}
\cgalHasModel All models of `Kernel`.
\cgalHasModel Projection traits such as `CGAL::Projection_traits_xy_3<K>`.
\cgalHasModelsBegin
\cgalHasModelsBare{All models of `Kernel`}
\cgalHasModelsBare{Projection traits such as `CGAL::Projection_traits_xy_3<K>`}
\cgalHasModelsEnd
\sa `CGAL::Exact_predicates_inexact_constructions_kernel` (recommended kernel)
*/

View File

@ -9,7 +9,9 @@ The concept `AlphaShapeVertex_2` describes the requirements for the base vertex
RegularTriangulationVertexBase_2 if the underlying triangulation of the alpha shape is a regular triangulation,
Periodic_2TriangulationVertexBase_2 if the underlying triangulation of the alpha shape is a periodic triangulation}
\cgalHasModel `CGAL::Alpha_shape_vertex_base_2` (templated with the appropriate triangulation vertex base class).
\cgalHasModelsBegin
\cgalHasModelsBare{`CGAL::Alpha_shape_vertex_base_2` (templated with the appropriate triangulation vertex base class)}
\cgalHasModelsEnd
*/
class AlphaShapeVertex_2 {
public:

View File

@ -9,8 +9,10 @@ of the underlying regular triangulation of a weighted alpha shape.
\cgalRefines{RegularTriangulationTraits_2 if the underlying triangulation of the alpha shape is a regular triangulation.}
\cgalHasModel All models of `Kernel`.
\cgalHasModel Projection traits such as `CGAL::Projection_traits_xy_3<K>`.
\cgalHasModelsBegin
\cgalHasModelsBare{All models of `Kernel`,}
\cgalHasModelsBare{Projection traits such as `CGAL::Projection_traits_xy_3<K>`}
\cgalHasModelsEnd
\sa `CGAL::Exact_predicates_inexact_constructions_kernel` (recommended kernel)
*/

View File

@ -167,7 +167,7 @@ class Lazy_alpha_nt_2
//members
//the members can be updated when calling method exact()
mutable boost::optional<NT_exact> exact_;
mutable std::optional<NT_exact> exact_;
mutable NT_approx approx_;
//private functions
@ -235,7 +235,7 @@ public:
const NT_exact& exact() const
{
if (exact_ == boost::none) {
if (exact_ == std::nullopt) {
update_exact();
approx_=to_interval(*exact_);
}

View File

@ -19,7 +19,7 @@ provided in the documentation of `Alpha_shape_3` for more details. The default v
must be \link Tag_true `Tag_true`\endlink if the underlying triangulation of the alpha shape to be used is a regular triangulation
and \link Tag_false `Tag_false`\endlink otherwise. The default is \link Tag_false `Tag_false`\endlink.
\cgalModels `AlphaShapeCell_3`
\cgalModels{AlphaShapeCell_3}
\sa `Delaunay_triangulation_cell_base_3`
\sa `Regular_triangulation_cell_base_3`

View File

@ -19,7 +19,7 @@ provided in the documentation of `Alpha_shape_3` for more details. The default v
must be \link Tag_true `Tag_true`\endlink if the underlying triangulation of the alpha shape to be used is a regular triangulation
and \link Tag_false `Tag_false`\endlink otherwise. The default is \link Tag_false `Tag_false`\endlink.
\cgalModels `AlphaShapeVertex_3`
\cgalModels{AlphaShapeVertex_3}
\sa `Triangulation_vertex_base_3`
\sa `Regular_triangulation_vertex_base_3`

View File

@ -13,7 +13,7 @@ to the `Alpha_shape_3` class.
By default, it is instantiated with `Delaunay_triangulation_cell_base_3<Traits>`,
which is appropriate for basic alpha shapes.
\cgalModels `FixedAlphaShapeCell_3`
\cgalModels{FixedAlphaShapeCell_3}
\sa `Alpha_shape_cell_base_3`
\sa `Delaunay_triangulation_cell_base_3`

View File

@ -13,7 +13,7 @@ to the `Alpha_shape_3` class.
By default, it is instantiated with `Triangulation_vertex_base_3<Traits>`,
which is appropriate for basic alpha shapes.
\cgalModels `FixedAlphaShapeVertex_3`
\cgalModels{FixedAlphaShapeVertex_3}
\sa `Alpha_shape_vertex_base_3`
\sa `Triangulation_vertex_base_3`

View File

@ -9,7 +9,9 @@ The concept `AlphaShapeCell_3` describes the requirements for the base cell of a
RegularTriangulationCellBase_3 if the underlying triangulation of the alpha shape is a regular triangulation,
Periodic_3TriangulationDSCellBase_3 if the underlying triangulation of the alpha shape is a periodic triangulation}
\cgalHasModel `CGAL::Alpha_shape_cell_base_3` (templated with the appropriate triangulation cell base class).
\cgalHasModelsBegin
\cgalHasModelsBare{`CGAL::Alpha_shape_cell_base_3` (templated with the appropriate triangulation cell base class)}
\cgalHasModelsEnd
\sa `CGAL::Alpha_status`

View File

@ -10,7 +10,9 @@ of the underlying Delaunay triangulation of a basic alpha shape.
\cgalRefines{DelaunayTriangulationTraits_3 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
Periodic_3DelaunayTriangulationTraits_3 if the underlying triangulation of the alpha shape is a periodic Delaunay triangulation}
\cgalHasModel All models of `Kernel`.
\cgalHasModelsBegin
\cgalHasModelsBare{All models of `Kernel`}
\cgalHasModelsEnd
\sa `CGAL::Exact_predicates_inexact_constructions_kernel` (recommended kernel)
*/

View File

@ -9,7 +9,9 @@ The concept `AlphaShapeVertex_3` describes the requirements for the base vertex
RegularTriangulationVertexBase_3 if the underlying triangulation of the alpha shape is a regular triangulation.
Periodic_3TriangulationDSVertexBase_3 if the underlying triangulation of the alpha shape is a periodic triangulation}
\cgalHasModel `CGAL::Alpha_shape_vertex_base_3` (templated with the appropriate triangulation vertex base class).
\cgalHasModelsBegin
\cgalHasModelsBare{`CGAL::Alpha_shape_vertex_base_3` (templated with the appropriate triangulation vertex base class)}
\cgalHasModelsEnd
\sa `CGAL::Alpha_status`

View File

@ -9,7 +9,9 @@ The concept `FixedAlphaShapeCell_3` describes the requirements for the base cell
RegularTriangulationCellBase_3 if the underlying triangulation of the alpha shape is a regular triangulation,
Periodic_3TriangulationDSCellBase_3 if the underlying triangulation of the alpha shape is a periodic triangulation}
\cgalHasModel `CGAL::Fixed_alpha_shape_cell_base_3` (templated with the appropriate triangulation cell base class).
\cgalHasModelsBegin
\cgalHasModelsBare{`CGAL::Fixed_alpha_shape_cell_base_3` (templated with the appropriate triangulation cell base class)}
\cgalHasModelsEnd
*/
class FixedAlphaShapeCell_3 {
public:

View File

@ -10,7 +10,9 @@ of the underlying Delaunay triangulation of a basic alpha shape with a fixed val
\cgalRefines{DelaunayTriangulationTraits_3 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
Periodic_3DelaunayTriangulationTraits_3 if the underlying triangulation of the alpha shape is a periodic Delaunay triangulation}
\cgalHasModel All models of `Kernel`.
\cgalHasModelsBegin
\cgalHasModelsBare{All models of `Kernel`}
\cgalHasModelsEnd
\sa CGAL::Exact_predicates_inexact_constructions_kernel (recommended kernel)
*/

View File

@ -9,7 +9,9 @@ The concept `FixedAlphaShapeVertex_3` describes the requirements for the base ve
RegularTriangulationVertexBase_3 if the underlying triangulation of the alpha shape is a regular triangulation,
Periodic_3TriangulationDSVertexBase_3 if the underlying triangulation of the alpha shape is a periodic triangulation}
\cgalHasModel `CGAL::Fixed_alpha_shape_vertex_base_3` (templated with the appropriate triangulation vertex base class).
\cgalHasModelsBegin
\cgalHasModelsBare{`CGAL::Fixed_alpha_shape_vertex_base_3` (templated with the appropriate triangulation vertex base class)}
\cgalHasModelsEnd
*/
class FixedAlphaShapeVertex_3 {

View File

@ -9,7 +9,9 @@ for the geometric traits class of the underlying regular triangulation of a weig
\cgalRefines{RegularTriangulationTraits_3 if the underlying triangulation of the alpha shape is a regular triangulation,
Periodic_3RegularTriangulationTraits_3 if the underlying triangulation of the alpha shape is a periodic regular triangulation}
\cgalHasModel All models of `Kernel`.
\cgalHasModelsBegin
\cgalHasModelsBare{All models of `Kernel`}
\cgalHasModelsEnd
\sa `CGAL::Exact_predicates_inexact_constructions_kernel` (recommended kernel)
*/

View File

@ -10,7 +10,9 @@ of the underlying regular triangulation of a weighted alpha shape.
\cgalRefines{RegularTriangulationTraits_3 if the underlying triangulation of the alpha shape is a regular triangulation,
Periodic_3RegularTriangulationTraits_3 if the underlying triangulation of the alpha shape is a periodic regular triangulation}
\cgalHasModel All models of `Kernel`.
\cgalHasModelsBegin
\cgalHasModelsBare{All models of `Kernel`}
\cgalHasModelsEnd
\sa `CGAL::Exact_predicates_inexact_constructions_kernel` (recommended kernel)
*/

View File

@ -22,7 +22,7 @@
#include <memory>
#include <boost/type_traits.hpp>
#include <boost/optional.hpp>
#include <optional>
#include <iostream>
@ -158,7 +158,7 @@ class Lazy_alpha_nt_3{
//members
//the members can be updated when calling method exact()
mutable boost::optional<NT_exact> exact_;
mutable std::optional<NT_exact> exact_;
mutable NT_approx approx_;
//private functions
@ -229,7 +229,7 @@ public:
}
const NT_exact& exact() const {
if (exact_ == boost::none){
if (exact_ == std::nullopt){
update_exact();
approx_=to_interval(*exact_);
}

View File

@ -9,10 +9,12 @@ The concept `AlphaWrapOracle` defines the requirements for an Alpha Wrap <em>Ora
that answers a number of queries over the input of the algorithm.
The oracle is the template parameter of the class `CGAL::Alpha_wraps_3_::Alpha_wrap_3`.
\cgalHasModel `CGAL::Alpha_wraps_3_::Point_set_oracle`
\cgalHasModel `CGAL::Alpha_wraps_3_::Segment_soup_oracle`
\cgalHasModel `CGAL::Alpha_wraps_3_::Triangle_mesh_oracle`
\cgalHasModel `CGAL::Alpha_wraps_3_::Triangle_soup_oracle`
\cgalHasModelsBegin
\cgalHasModels{CGAL::Alpha_wraps_3_::Point_set_oracle}
\cgalHasModels{CGAL::Alpha_wraps_3_::Segment_soup_oracle}
\cgalHasModels{CGAL::Alpha_wraps_3_::Triangle_mesh_oracle}
\cgalHasModels{CGAL::Alpha_wraps_3_::Triangle_soup_oracle}
\cgalHasModelsEnd
*/
template <typename GeomTraits>

View File

@ -11,7 +11,9 @@ you require Kernel. Stitch_borders doesn't even have clear geometric traits requ
The concept `AlphaWrapTraits_3` defines the requirements for the geometric traits class
of an alpha wrap oracle.
\cgalHasModel Any 3D %kernel is a model of this traits concept.
\cgalHasModelsBegin
\cgalHasModelsBare{Any 3D %kernel is a model of this traits concept}
\cgalHasModelsEnd
*/
class AlphaWrapTraits_3

View File

@ -12,3 +12,4 @@ create_single_source_cgal_program("triangle_soup_wrap.cpp")
create_single_source_cgal_program("point_set_wrap.cpp")
create_single_source_cgal_program("wrap_from_cavity.cpp")
create_single_source_cgal_program("mixed_inputs_wrap.cpp")
create_single_source_cgal_program("volumetric_wrap.cpp")

View File

@ -16,9 +16,9 @@ using K = CGAL::Exact_predicates_inexact_constructions_kernel;
using Point_3 = K::Point_3;
using Segment_3 = K::Segment_3;
using Face = std::array<std::size_t, 3>;
using Segments = std::vector<Segment_3>;
using Points = std::vector<Point_3>;
using Face = std::array<std::size_t, 3>;
using Faces = std::vector<Face>;
using Mesh = CGAL::Surface_mesh<Point_3>;

View File

@ -0,0 +1,173 @@
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Surface_mesh.h>
#include <CGAL/alpha_wrap_3.h>
#include <CGAL/tetrahedral_remeshing.h>
#include <CGAL/Tetrahedral_remeshing/Remeshing_cell_base_3.h>
#include <CGAL/Tetrahedral_remeshing/Remeshing_vertex_base_3.h>
#include <CGAL/Simplicial_mesh_cell_base_3.h>
#include <CGAL/Simplicial_mesh_vertex_base_3.h>
#include <CGAL/Polygon_mesh_processing/bbox.h>
#include <CGAL/Polygon_mesh_processing/IO/polygon_mesh_io.h>
#include <CGAL/property_map.h>
#include <CGAL/Real_timer.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/draw_triangulation_3.h>
#include <CGAL/IO/Triangulation_off_ostream_3.h>
#include <CGAL/IO/File_medit.h>
#include <iostream>
#include <string>
namespace PMP = CGAL::Polygon_mesh_processing;
namespace AW3i = CGAL::Alpha_wraps_3::internal;
using K = CGAL::Exact_predicates_inexact_constructions_kernel;
using Point_3 = K::Point_3;
using Points = std::vector<Point_3>;
using Face = std::array<std::size_t, 3>;
using Faces = std::vector<Face>;
using Mesh = CGAL::Surface_mesh<Point_3>;
// If we provide a triangulation, AW3 uses its Gt, so we have to make the Gt stack explicit
using Gtb = AW3i::Alpha_wrap_AABB_geom_traits<K>; // provides Ball_3
using Gt = CGAL::Robust_circumcenter_filtered_traits_3<Gtb>; // better inexact constructions (not mandatory)
// Since we are going to use tetrahedral remeshing on the underlying triangulation,
// we need special vertex and cell base types that meets the requirements of the
// tetrahedral remeshing concepts
using Vbbb = AW3i::Alpha_wrap_triangulation_vertex_base_3<K>;
using Vbb = CGAL::Simplicial_mesh_vertex_base_3<K, int, int, int, int, Vbbb>;
using Vb = CGAL::Tetrahedral_remeshing::Remeshing_vertex_base_3<K, Vbb>;
using Cbbb = AW3i::Alpha_wrap_triangulation_cell_base_3<K>;
using Cbb = CGAL::Simplicial_mesh_cell_base_3<K, int, int, Cbbb>;
using Cb = CGAL::Tetrahedral_remeshing::Remeshing_cell_base_3<K, Cbb>;
using Tds = CGAL::Triangulation_data_structure_3<Vb, Cb>;
using Delaunay_triangulation = CGAL::Delaunay_triangulation_3<Gt, Tds, CGAL::Fast_location>;
// because the Fast_location does all kinds of rebinding shenanigans + T3_hierarchy is in the stack...
using Triangulation = CGAL::Triangulation_3<typename Delaunay_triangulation::Geom_traits,
typename Delaunay_triangulation::Triangulation_data_structure>;
using Facet = Triangulation::Facet;
int main(int argc, char** argv)
{
// Read the input
const std::string filename = (argc > 1) ? argv[1] : CGAL::data_file_path("meshes/bull.off");
std::cout << "Reading " << filename << "..." << std::endl;
Points points;
Faces faces;
if(!CGAL::IO::read_polygon_soup(filename, points, faces) || faces.empty())
{
std::cerr << "Invalid input." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Input: " << points.size() << " vertices, " << faces.size() << " faces" << std::endl;
// Compute the alpha and offset values
const double relative_alpha = (argc > 2) ? std::stod(argv[2]) : 20.;
const double relative_offset = (argc > 3) ? std::stod(argv[3]) : 600.;
CGAL::Bbox_3 bbox;
for(const Point_3& p : points)
bbox += p.bbox();
const double diag_length = std::sqrt(CGAL::square(bbox.xmax() - bbox.xmin()) +
CGAL::square(bbox.ymax() - bbox.ymin()) +
CGAL::square(bbox.zmax() - bbox.zmin()));
const double alpha = diag_length / relative_alpha;
const double offset = diag_length / relative_offset;
std::cout << "alpha: " << alpha << ", offset: " << offset << std::endl;
// Construct the wrap
CGAL::Real_timer t;
t.start();
using Oracle = CGAL::Alpha_wraps_3::internal::Triangle_soup_oracle<K>;
Oracle oracle(K{});
oracle.add_triangle_soup(points, faces, CGAL::parameters::default_values());
CGAL::Alpha_wraps_3::internal::Alpha_wrap_3<Oracle, Delaunay_triangulation> aw3(oracle);
Mesh wrap;
aw3(alpha, offset, wrap);
t.stop();
std::cout << "Result: " << num_vertices(wrap) << " vertices, " << num_faces(wrap) << " faces" << std::endl;
std::cout << "Took " << t.time() << " s." << std::endl;
// Get the interior tetrahedrization
auto dt = aw3.triangulation();
// Save the result
std::string input_name = std::string(filename);
input_name = input_name.substr(input_name.find_last_of("/") + 1, input_name.length() - 1);
input_name = input_name.substr(0, input_name.find_last_of("."));
std::string output_name = input_name
+ "_" + std::to_string(static_cast<int>(relative_alpha))
+ "_" + std::to_string(static_cast<int>(relative_offset)) + ".off";
std::cout << "Writing to " << output_name << std::endl;
CGAL::IO::write_polygon_mesh(output_name, wrap, CGAL::parameters::stream_precision(17));
// Remesh the interior of the wrap
const Delaunay_triangulation& aw3_dt = aw3.triangulation();
const Triangulation& aw3_tr = static_cast<const Triangulation&>(aw3_dt);
Triangulation tr = aw3_tr; // intentional copy
std::cout << "BEFORE: " << tr.number_of_vertices() << " vertices, " << tr.number_of_cells() << " cells" << std::endl;
// Set up the c3t3 information
for(auto v : tr.finite_vertex_handles())
v->set_dimension(3);
for(auto c : tr.finite_cell_handles())
{
if(c->is_outside())
c->set_subdomain_index(0);
else
c->set_subdomain_index(1);
// if the neighboring cell has a different outside info, put the vertices
// of the common face on the surface boundary
for(int i=0; i<4; ++i)
{
if(c->neighbor(i)->is_outside() != c->is_outside())
{
c->set_surface_patch_index(i, 1);
for(int j=1; j<4; ++j)
c->vertex((i+j)%4)->set_dimension(2);
}
}
}
std::ofstream out_before("before_remeshing.mesh");
CGAL::IO::write_MEDIT(out_before, tr);
// edge length of equilateral triangle with circumradius alpha
// const double l = 2 * alpha * 0.8660254037844386; // sqrt(3)/2
// edge length of regular tetrahedron with circumradius alpha
const double l = 1.6329931618554521 * alpha; // sqrt(8/3)
CGAL::tetrahedral_isotropic_remeshing(tr, l, CGAL::parameters::remesh_boundaries(false));
std::cout << "AFTER: " << tr.number_of_vertices() << " vertices, " << tr.number_of_cells() << " cells" << std::endl;
std::ofstream out_after("after_remeshing.mesh");
CGAL::IO::write_MEDIT(out_after, tr);
return EXIT_SUCCESS;
}

View File

@ -1,4 +1,4 @@
// Copyright (c) 2019-2022 Google LLC (USA).
// Copyright (c) 2019-2023 Google LLC (USA).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
@ -29,16 +29,25 @@
#include <CGAL/license/Alpha_wrap_3.h>
#include <CGAL/Alpha_wrap_3/internal/Alpha_wrap_triangulation_cell_base_3.h>
#include <CGAL/Alpha_wrap_3/internal/Alpha_wrap_triangulation_vertex_base_3.h>
#include <CGAL/Alpha_wrap_3/internal/Alpha_wrap_AABB_geom_traits.h>
#include <CGAL/Alpha_wrap_3/internal/gate_priority_queue.h>
#include <CGAL/Alpha_wrap_3/internal/geometry_utils.h>
#include <CGAL/Alpha_wrap_3/internal/oracles.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_data_structure_3.h>
#include <CGAL/Delaunay_triangulation_cell_base_3.h>
#include <CGAL/Delaunay_triangulation_cell_base_with_circumcenter_3.h>
#include <CGAL/Robust_weighted_circumcenter_filtered_traits_3.h>
#include <CGAL/Cartesian_converter.h>
#include <CGAL/Simple_cartesian.h>
#include <CGAL/boost/graph/Euler_operations.h>
#include <CGAL/boost/graph/named_params_helper.h>
#include <CGAL/Default.h>
#include <CGAL/Named_function_parameters.h>
#include <CGAL/Modifiable_priority_queue.h>
#include <CGAL/Polygon_mesh_processing/bbox.h>
@ -50,16 +59,9 @@
#include <CGAL/Polygon_mesh_processing/stitch_borders.h> // only if non-manifoldness is not treated
#include <CGAL/property_map.h>
#include <CGAL/Real_timer.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_data_structure_3.h>
#include <CGAL/Delaunay_triangulation_cell_base_3.h>
#include <CGAL/Triangulation_cell_base_with_info_3.h>
#include <CGAL/Delaunay_triangulation_cell_base_with_circumcenter_3.h>
#include <CGAL/Triangulation_vertex_base_with_info_3.h>
#include <CGAL/Robust_weighted_circumcenter_filtered_traits_3.h>
#include <array>
#include <algorithm>
#include <array>
#include <fstream>
#include <functional>
#include <iostream>
@ -74,30 +76,11 @@ namespace CGAL {
namespace Alpha_wraps_3 {
namespace internal {
template <typename Cb>
class Cell_base_with_timestamp
: public Cb
{
std::size_t time_stamp_;
namespace {
public:
template <typename... Args>
Cell_base_with_timestamp(const Args&... args) : Cb(args...), time_stamp_(-1) { }
namespace AW3i = ::CGAL::Alpha_wraps_3::internal;
Cell_base_with_timestamp(const Cell_base_with_timestamp& other) : Cb(other), time_stamp_(other.time_stamp_) { }
typedef CGAL::Tag_true Has_timestamp;
std::size_t time_stamp() const { return time_stamp_; }
void set_time_stamp(const std::size_t& ts) { time_stamp_ = ts; }
template <class TDS>
struct Rebind_TDS
{
typedef typename Cb::template Rebind_TDS<TDS>::Other Cb2;
typedef Cell_base_with_timestamp<Cb2> Other;
};
};
} // unnamed namespace
struct Wrapping_default_visitor
{
@ -125,11 +108,34 @@ struct Wrapping_default_visitor
void on_alpha_wrapping_end(const AlphaWrapper&) { };
};
template <typename Oracle>
template <typename Oracle_,
typename Triangulation_ = CGAL::Default>
class Alpha_wrap_3
{
using Oracle = Oracle_;
// Triangulation
using Base_GT = typename Oracle::Geom_traits;
using Geom_traits = Robust_circumcenter_filtered_traits_3<Base_GT>;
using Default_Gt = CGAL::Robust_circumcenter_filtered_traits_3<Base_GT>;
using Default_Vb = Alpha_wrap_triangulation_vertex_base_3<Default_Gt>;
using Default_Cb = Alpha_wrap_triangulation_cell_base_3<Default_Gt>;
using Default_Cbt = Cell_base_with_timestamp<Default_Cb>; // determinism
using Default_Tds = CGAL::Triangulation_data_structure_3<Default_Vb, Default_Cbt>;
using Default_Triangulation = CGAL::Delaunay_triangulation_3<Default_Gt, Default_Tds, Fast_location>;
using Triangulation = typename Default::Get<Triangulation_, Default_Triangulation>::type;
using Cell_handle = typename Triangulation::Cell_handle;
using Facet = typename Triangulation::Facet;
using Vertex_handle = typename Triangulation::Vertex_handle;
using Locate_type = typename Triangulation::Locate_type;
using Gate = internal::Gate<Triangulation>;
using Alpha_PQ = Modifiable_priority_queue<Gate, Less_gate, Gate_ID_PM<Triangulation>, CGAL_BOOST_PAIRING_HEAP>;
// Use the geom traits from the triangulation, and trust the (advanced) user that provided it
using Geom_traits = typename Triangulation::Geom_traits;
using FT = typename Geom_traits::FT;
using Point_3 = typename Geom_traits::Point_3;
@ -143,34 +149,6 @@ class Alpha_wrap_3
using SC_Iso_cuboid_3 = SC::Iso_cuboid_3;
using SC2GT = Cartesian_converter<SC, Geom_traits>;
struct Cell_info
{
bool is_outside = false;
};
enum Vertex_info
{
DEFAULT = 0,
BBOX_VERTEX,
SEED_VERTEX
};
using Vb = Triangulation_vertex_base_3<Geom_traits>;
using Vbi = Triangulation_vertex_base_with_info_3<Vertex_info, Geom_traits, Vb>;
using Cbb = Delaunay_triangulation_cell_base_3<Geom_traits>;
using Cb = Delaunay_triangulation_cell_base_with_circumcenter_3<Geom_traits, Cbb>;
using Cbi = Triangulation_cell_base_with_info_3<Cell_info, Geom_traits, Cb>;
using Cbt = Cell_base_with_timestamp<Cbi>;
using Tds = Triangulation_data_structure_3<Vbi, Cbt>;
using Dt = Delaunay_triangulation_3<Geom_traits, Tds, Fast_location>;
using Cell_handle = typename Dt::Cell_handle;
using Facet = typename Dt::Facet;
using Vertex_handle = typename Dt::Vertex_handle;
using Locate_type = typename Dt::Locate_type;
using Gate = internal::Gate<Dt>;
using Alpha_PQ = Modifiable_priority_queue<Gate, Less_gate, Gate_ID_PM<Dt>, CGAL_BOOST_PAIRING_HEAP>;
protected:
const Oracle m_oracle;
@ -179,7 +157,7 @@ protected:
FT m_alpha, m_sq_alpha;
FT m_offset, m_sq_offset;
Dt m_dt;
Triangulation m_tr;
Alpha_PQ m_queue;
public:
@ -187,7 +165,7 @@ public:
Alpha_wrap_3(const Oracle& oracle)
:
m_oracle(oracle),
m_dt(Geom_traits(oracle.geom_traits())),
m_tr(Geom_traits(oracle.geom_traits())),
// used to set up the initial MPQ, use some arbitrary not-too-small value
m_queue(4096)
{
@ -197,9 +175,9 @@ public:
}
public:
const Geom_traits& geom_traits() const { return m_dt.geom_traits(); }
Dt& triangulation() { return m_dt; }
const Dt& triangulation() const { return m_dt; }
const Geom_traits& geom_traits() const { return m_tr.geom_traits(); }
Triangulation& triangulation() { return m_tr; }
const Triangulation& triangulation() const { return m_tr; }
const Alpha_PQ& queue() const { return m_queue; }
double default_alpha() const
@ -216,13 +194,13 @@ private:
const Point_3& circumcenter(const Cell_handle c) const
{
// We only cross an infinite facet once, so this isn't going to be recomputed many times
if(m_dt.is_infinite(c))
if(m_tr.is_infinite(c))
{
const int inf_index = c->index(m_dt.infinite_vertex());
const int inf_index = c->index(m_tr.infinite_vertex());
c->set_circumcenter(
geom_traits().construct_circumcenter_3_object()(m_dt.point(c, (inf_index+1)&3),
m_dt.point(c, (inf_index+2)&3),
m_dt.point(c, (inf_index+3)&3)));
geom_traits().construct_circumcenter_3_object()(m_tr.point(c, (inf_index+1)&3),
m_tr.point(c, (inf_index+2)&3),
m_tr.point(c, (inf_index+3)&3)));
}
return c->circumcenter(geom_traits());
@ -418,11 +396,11 @@ private:
for(int i=0; i<8; ++i)
{
const Point_3 bp = SC2GT()(m_bbox.vertex(i));
Vertex_handle bv = m_dt.insert(bp);
Vertex_handle bv = m_tr.insert(bp);
#ifdef CGAL_AW3_DEBUG_INITIALIZATION
std::cout << "\t" << bp << std::endl;
#endif
bv->info() = BBOX_VERTEX;
bv->type() = AW3i::Vertex_type:: BBOX_VERTEX;
}
}
@ -433,7 +411,7 @@ private:
// that the refinement point is separated from the existing point set.
bool cavity_cell_outside_tag(const Cell_handle ch)
{
CGAL_precondition(!m_dt.is_infinite(ch));
CGAL_precondition(!m_tr.is_infinite(ch));
const Tetrahedron_with_outside_info<Geom_traits> tet(ch, geom_traits());
if(m_oracle.do_intersect(tet))
@ -536,8 +514,8 @@ private:
// This problem only appears when the seed and icosahedron vertices are close to the offset surface,
// which usually happens for large alpha values.
Vertex_handle seed_v = m_dt.insert(seed_p);
seed_v->info() = SEED_VERTEX;
Vertex_handle seed_v = m_tr.insert(seed_p);
seed_v->type() = AW3i::Vertex_type:: SEED_VERTEX;
seed_vs.push_back(seed_v);
// Icosahedron vertices (see also BGL::make_icosahedron())
@ -573,8 +551,8 @@ private:
if(bbox.has_on_unbounded_side(seed_neighbor_p))
continue;
Vertex_handle ico_v = m_dt.insert(seed_neighbor_p, seed_v /*hint*/);
ico_v->info() = SEED_VERTEX;
Vertex_handle ico_v = m_tr.insert(seed_neighbor_p, seed_v /*hint*/);
ico_v->type() = AW3i::Vertex_type:: SEED_VERTEX;
}
}
@ -587,26 +565,26 @@ private:
}
#ifdef CGAL_AW3_DEBUG_INITIALIZATION
std::cout << m_dt.number_of_vertices() - 8 /*bbox*/ << " vertice(s) due to seeds" << std::endl;
std::cout << m_tr.number_of_vertices() - 8 /*bbox*/ << " vertice(s) due to seeds" << std::endl;
#endif
for(Vertex_handle seed_v : seed_vs)
{
std::vector<Cell_handle> inc_cells;
inc_cells.reserve(64);
m_dt.incident_cells(seed_v, std::back_inserter(inc_cells));
m_tr.incident_cells(seed_v, std::back_inserter(inc_cells));
for(Cell_handle ch : inc_cells)
ch->info().is_outside = cavity_cell_outside_tag(ch);
ch->is_outside() = cavity_cell_outside_tag(ch);
}
// Might as well go through the full triangulation since only seeds should have been inserted
for(Cell_handle ch : m_dt.all_cell_handles())
for(Cell_handle ch : m_tr.all_cell_handles())
{
if(!ch->info().is_outside)
if(!ch->is_outside())
continue;
// When the algorithm starts from a manually dug hole, infinite cells are tagged "inside"
CGAL_assertion(!m_dt.is_infinite(ch));
CGAL_assertion(!m_tr.is_infinite(ch));
for(int i=0; i<4; ++i)
push_facet(std::make_pair(ch, i));
@ -627,17 +605,17 @@ private:
// init queue with all convex hull facets
bool initialize_from_infinity()
{
for(Cell_handle ch : m_dt.all_cell_handles())
for(Cell_handle ch : m_tr.all_cell_handles())
{
if(m_dt.is_infinite(ch))
if(m_tr.is_infinite(ch))
{
ch->info().is_outside = true;
const int inf_index = ch->index(m_dt.infinite_vertex());
ch->is_outside() = true;
const int inf_index = ch->index(m_tr.infinite_vertex());
push_facet(std::make_pair(ch, inf_index));
}
else
{
ch->info().is_outside = false;
ch->is_outside() = false;
}
}
@ -659,13 +637,13 @@ public:
clear(output_mesh);
CGAL_assertion_code(for(auto cit=m_dt.finite_cells_begin(), cend=m_dt.finite_cells_end(); cit!=cend; ++cit))
CGAL_assertion_code(for(auto cit=m_tr.finite_cells_begin(), cend=m_tr.finite_cells_end(); cit!=cend; ++cit))
CGAL_assertion(cit->tds_data().is_clear());
for(auto cit=m_dt.finite_cells_begin(), cend=m_dt.finite_cells_end(); cit!=cend; ++cit)
for(auto cit=m_tr.finite_cells_begin(), cend=m_tr.finite_cells_end(); cit!=cend; ++cit)
{
Cell_handle seed = cit;
if(seed->info().is_outside || seed->tds_data().processed())
if(seed->is_outside() || seed->tds_data().processed())
continue;
std::queue<Cell_handle> to_visit;
@ -678,7 +656,7 @@ public:
while(!to_visit.empty())
{
const Cell_handle cell = to_visit.front();
CGAL_assertion(!cell->info().is_outside && !m_dt.is_infinite(cell));
CGAL_assertion(!cell->is_outside() && !m_tr.is_infinite(cell));
to_visit.pop();
@ -690,17 +668,17 @@ public:
for(int fid=0; fid<4; ++fid)
{
const Cell_handle neighbor = cell->neighbor(fid);
if(neighbor->info().is_outside)
if(neighbor->is_outside())
{
// There shouldn't be any artificial vertex on the inside/outside boundary
// (past initialization)
// CGAL_assertion(cell->vertex((fid + 1)&3)->info() == DEFAULT);
// CGAL_assertion(cell->vertex((fid + 2)&3)->info() == DEFAULT);
// CGAL_assertion(cell->vertex((fid + 3)&3)->info() == DEFAULT);
// CGAL_assertion(cell->vertex((fid + 1)&3)->type() == AW3i::Vertex_type:: DEFAULT);
// CGAL_assertion(cell->vertex((fid + 2)&3)->type() == AW3i::Vertex_type:: DEFAULT);
// CGAL_assertion(cell->vertex((fid + 3)&3)->type() == AW3i::Vertex_type:: DEFAULT);
points.push_back(m_dt.point(cell, Dt::vertex_triple_index(fid, 0)));
points.push_back(m_dt.point(cell, Dt::vertex_triple_index(fid, 1)));
points.push_back(m_dt.point(cell, Dt::vertex_triple_index(fid, 2)));
points.push_back(m_tr.point(cell, Triangulation::vertex_triple_index(fid, 0)));
points.push_back(m_tr.point(cell, Triangulation::vertex_triple_index(fid, 1)));
points.push_back(m_tr.point(cell, Triangulation::vertex_triple_index(fid, 2)));
faces.push_back({idx, idx + 1, idx + 2});
idx += 3;
}
@ -722,7 +700,7 @@ public:
CGAL_assertion(is_closed(output_mesh));
}
for(auto cit=m_dt.finite_cells_begin(), cend=m_dt.finite_cells_end(); cit!=cend; ++cit)
for(auto cit=m_tr.finite_cells_begin(), cend=m_tr.finite_cells_end(); cit!=cend; ++cit)
cit->tds_data().clear();
CGAL_postcondition(!is_empty(output_mesh));
@ -742,7 +720,7 @@ public:
std::cout << "> Extract wrap... ()" << std::endl;
#endif
CGAL_assertion_code(for(Vertex_handle v : m_dt.finite_vertex_handles()))
CGAL_assertion_code(for(Vertex_handle v : m_tr.finite_vertex_handles()))
CGAL_assertion(!is_non_manifold(v));
clear(output_mesh);
@ -754,26 +732,26 @@ public:
std::unordered_map<Vertex_handle, std::size_t> vertex_to_id;
std::size_t nv = 0;
for(auto fit=m_dt.finite_facets_begin(), fend=m_dt.finite_facets_end(); fit!=fend; ++fit)
for(auto fit=m_tr.finite_facets_begin(), fend=m_tr.finite_facets_end(); fit!=fend; ++fit)
{
Facet f = *fit;
if(!f.first->info().is_outside)
f = m_dt.mirror_facet(f);
if(!f.first->is_outside())
f = m_tr.mirror_facet(f);
const Cell_handle c = f.first;
const int s = f.second;
const Cell_handle nh = c->neighbor(s);
if(c->info().is_outside == nh->info().is_outside)
if(c->is_outside() == nh->is_outside())
continue;
std::array<std::size_t, 3> ids;
for(int pos=0; pos<3; ++pos)
{
Vertex_handle vh = c->vertex(Dt::vertex_triple_index(s, pos));
Vertex_handle vh = c->vertex(Triangulation::vertex_triple_index(s, pos));
auto insertion_res = vertex_to_id.emplace(vh, nv);
if(insertion_res.second) // successful insertion, never-seen-before vertex
{
points.push_back(m_dt.point(vh));
points.push_back(m_tr.point(vh));
++nv;
}
@ -817,14 +795,14 @@ public:
private:
bool is_traversable(const Facet& f) const
{
return less_squared_radius_of_min_empty_sphere(m_sq_alpha, f, m_dt);
return less_squared_radius_of_min_empty_sphere(m_sq_alpha, f, m_tr);
}
bool compute_steiner_point(const Cell_handle ch,
const Cell_handle neighbor,
Point_3& steiner_point) const
{
CGAL_precondition(!m_dt.is_infinite(neighbor));
CGAL_precondition(!m_tr.is_infinite(neighbor));
typename Geom_traits::Construct_ball_3 ball = geom_traits().construct_ball_3_object();
typename Geom_traits::Construct_vector_3 vector = geom_traits().construct_vector_3_object();
@ -920,7 +898,7 @@ private:
// e.g. from DT3
Facet_queue_status facet_status(const Facet& f) const
{
CGAL_precondition(!m_dt.is_infinite(f));
CGAL_precondition(!m_tr.is_infinite(f));
#ifdef CGAL_AW3_DEBUG_FACET_STATUS
std::cout << "facet status: "
@ -933,10 +911,10 @@ private:
const Cell_handle ch = f.first;
const int id = f.second;
const Cell_handle nh = ch->neighbor(id);
if(m_dt.is_infinite(nh))
if(m_tr.is_infinite(nh))
return TRAVERSABLE;
if(nh->info().is_outside)
if(nh->is_outside())
{
#ifdef CGAL_AW3_DEBUG_FACET_STATUS
std::cout << "Neighbor already outside" << std::endl;
@ -947,8 +925,9 @@ private:
// push if facet is connected to artificial vertices
for(int i=0; i<3; ++i)
{
const Vertex_handle vh = ch->vertex(Dt::vertex_triple_index(id, i));
if(vh->info() == BBOX_VERTEX || vh->info() == SEED_VERTEX)
const Vertex_handle vh = ch->vertex(Triangulation::vertex_triple_index(id, i));
if(vh->type() == AW3i::Vertex_type:: BBOX_VERTEX ||
vh->type() == AW3i::Vertex_type:: SEED_VERTEX)
{
#ifdef CGAL_AW3_DEBUG_FACET_STATUS
std::cout << "artificial facet due to artificial vertex #" << i << std::endl;
@ -974,7 +953,7 @@ private:
bool push_facet(const Facet& f)
{
CGAL_precondition(f.first->info().is_outside);
CGAL_precondition(f.first->is_outside());
// skip if f is already in queue
if(m_queue.contains_with_bounds_check(Gate(f)))
@ -986,9 +965,9 @@ private:
const Cell_handle ch = f.first;
const int id = f.second;
const Point_3& p0 = m_dt.point(ch, (id+1)&3);
const Point_3& p1 = m_dt.point(ch, (id+2)&3);
const Point_3& p2 = m_dt.point(ch, (id+3)&3);
const Point_3& p0 = m_tr.point(ch, (id+1)&3);
const Point_3& p1 = m_tr.point(ch, (id+2)&3);
const Point_3& p2 = m_tr.point(ch, (id+3)&3);
// @todo should prob be the real value we compare to alpha instead of squared_radius
const FT sqr = geom_traits().compute_squared_radius_3_object()(p0, p1, p2);
@ -1022,7 +1001,7 @@ private:
m_offset = FT(offset);
m_sq_offset = square(m_offset);
m_dt.clear();
m_tr.clear();
m_queue.clear();
insert_bbox_corners();
@ -1052,7 +1031,7 @@ private:
// const& to something that will be popped, but safe as `ch` && `id` are extracted before the pop
const Gate& gate = m_queue.top();
const Facet& f = gate.facet();
CGAL_precondition(!m_dt.is_infinite(f));
CGAL_precondition(!m_tr.is_infinite(f));
const Cell_handle ch = f.first;
const int id = f.second;
@ -1060,11 +1039,11 @@ private:
#ifdef CGAL_AW3_DEBUG_QUEUE
static int fid = 0;
std::cout << m_dt.number_of_vertices() << " DT vertices" << std::endl;
std::cout << m_tr.number_of_vertices() << " DT vertices" << std::endl;
std::cout << m_queue.size() << " facets in the queue" << std::endl;
std::cout << "Face " << fid++ << "\n"
<< "c = " << &*ch << " (" << m_dt.is_infinite(ch) << "), n = " << &*neighbor << " (" << m_dt.is_infinite(neighbor) << ")" << "\n"
<< m_dt.point(ch, (id+1)&3) << "\n" << m_dt.point(ch, (id+2)&3) << "\n" << m_dt.point(ch, (id+3)&3) << std::endl;
<< "c = " << &*ch << " (" << m_tr.is_infinite(ch) << "), n = " << &*neighbor << " (" << m_tr.is_infinite(neighbor) << ")" << "\n"
<< m_tr.point(ch, (id+1)&3) << "\n" << m_tr.point(ch, (id+2)&3) << "\n" << m_tr.point(ch, (id+3)&3) << std::endl;
std::cout << "Priority: " << gate.priority() << std::endl;
#endif
@ -1080,13 +1059,13 @@ private:
std::string face_name = "results/steps/face_" + std::to_string(static_cast<int>(i++)) + ".xyz";
std::ofstream face_out(face_name);
face_out.precision(17);
face_out << "3\n" << m_dt.point(ch, (id+1)&3) << "\n" << m_dt.point(ch, (id+2)&3) << "\n" << m_dt.point(ch, (id+3)&3) << std::endl;
face_out << "3\n" << m_tr.point(ch, (id+1)&3) << "\n" << m_tr.point(ch, (id+2)&3) << "\n" << m_tr.point(ch, (id+3)&3) << std::endl;
face_out.close();
#endif
if(m_dt.is_infinite(neighbor))
if(m_tr.is_infinite(neighbor))
{
neighbor->info().is_outside = true;
neighbor->is_outside() = true;
continue;
}
@ -1100,14 +1079,16 @@ private:
// locate cells that are going to be destroyed and remove their facet from the queue
int li, lj = 0;
Locate_type lt;
const Cell_handle conflict_cell = m_dt.locate(steiner_point, lt, li, lj, neighbor);
CGAL_assertion(lt != Dt::VERTEX);
const Cell_handle conflict_cell = m_tr.locate(steiner_point, lt, li, lj, neighbor);
CGAL_assertion(lt != Triangulation::VERTEX);
// Using small vectors like in Triangulation_3 does not bring any runtime improvement
std::vector<Facet> boundary_facets;
std::vector<Cell_handle> conflict_zone;
boundary_facets.reserve(32);
conflict_zone.reserve(32);
m_dt.find_conflicts(steiner_point, conflict_cell,
m_tr.find_conflicts(steiner_point, conflict_cell,
std::back_inserter(boundary_facets),
std::back_inserter(conflict_zone));
@ -1125,7 +1106,7 @@ private:
for(const Facet& f : boundary_facets)
{
const Facet mf = m_dt.mirror_facet(f); // boundary facets have incident cells in the CZ
const Facet mf = m_tr.mirror_facet(f); // boundary facets have incident cells in the CZ
if(m_queue.contains_with_bounds_check(Gate(mf)))
m_queue.erase(Gate(mf));
}
@ -1133,18 +1114,20 @@ private:
visitor.before_Steiner_point_insertion(*this, steiner_point);
// Actual insertion of the Steiner point
Vertex_handle vh = m_dt.insert(steiner_point, lt, conflict_cell, li, lj);
vh->info() = DEFAULT;
// We could use TDS functions to avoid recomputing the conflict zone, but in practice
// it does not bring any runtime improvements
Vertex_handle vh = m_tr.insert(steiner_point, lt, conflict_cell, li, lj);
vh->type() = AW3i::Vertex_type:: DEFAULT;
visitor.after_Steiner_point_insertion(*this, vh);
std::vector<Cell_handle> new_cells;
new_cells.reserve(32);
m_dt.incident_cells(vh, std::back_inserter(new_cells));
m_tr.incident_cells(vh, std::back_inserter(new_cells));
for(const Cell_handle& ch : new_cells)
{
// std::cout << "new cell has time stamp " << ch->time_stamp() << std::endl;
ch->info().is_outside = m_dt.is_infinite(ch);
ch->is_outside() = m_tr.is_infinite(ch);
}
// Push all new boundary facets to the queue.
@ -1156,25 +1139,25 @@ private:
{
for(int i=0; i<4; ++i)
{
if(m_dt.is_infinite(ch, i))
if(m_tr.is_infinite(ch, i))
continue;
const Cell_handle nh = ch->neighbor(i);
if(nh->info().is_outside == ch->info().is_outside) // not on the boundary
if(nh->is_outside() == ch->is_outside()) // not on the boundary
continue;
const Facet boundary_f = std::make_pair(ch, i);
if(ch->info().is_outside)
if(ch->is_outside())
push_facet(boundary_f);
else
push_facet(m_dt.mirror_facet(boundary_f));
push_facet(m_tr.mirror_facet(boundary_f));
}
}
}
else
{
// tag neighbor as OUTSIDE
neighbor->info().is_outside = true;
neighbor->is_outside() = true;
// for each finite facet of neighbor, push it to the queue
for(int i=0; i<4; ++i)
@ -1188,10 +1171,10 @@ private:
visitor.on_flood_fill_end(*this);
// Check that no useful facet has been ignored
CGAL_postcondition_code(for(auto fit=m_dt.finite_facets_begin(), fend=m_dt.finite_facets_end(); fit!=fend; ++fit) {)
CGAL_postcondition_code( if(fit->first->info().is_outside == fit->first->neighbor(fit->second)->info().is_outside) continue;)
CGAL_postcondition_code(for(auto fit=m_tr.finite_facets_begin(), fend=m_tr.finite_facets_end(); fit!=fend; ++fit) {)
CGAL_postcondition_code( if(fit->first->is_outside() == fit->first->neighbor(fit->second)->is_outside()) continue;)
CGAL_postcondition_code( Facet f = *fit;)
CGAL_postcondition_code( if(!fit->first->info().is_outside) f = m_dt.mirror_facet(f);)
CGAL_postcondition_code( if(!fit->first->is_outside()) f = m_tr.mirror_facet(f);)
CGAL_postcondition( facet_status(f) == IRRELEVANT);
CGAL_postcondition_code(})
}
@ -1199,13 +1182,13 @@ private:
private:
bool is_non_manifold(Vertex_handle v) const
{
CGAL_precondition(!m_dt.is_infinite(v));
CGAL_precondition(!m_tr.is_infinite(v));
bool is_non_manifold = false;
std::vector<Cell_handle> inc_cells;
inc_cells.reserve(64);
m_dt.incident_cells(v, std::back_inserter(inc_cells));
m_tr.incident_cells(v, std::back_inserter(inc_cells));
// Flood one inside and outside CC.
// Process both an inside and an outside CC to also detect edge pinching.
@ -1218,7 +1201,7 @@ private:
for(Cell_handle ic : inc_cells)
{
ic->tds_data().clear();
if(ic->info().is_outside)
if(ic->is_outside())
outside_start = ic;
else if(inside_start == Cell_handle())
inside_start = ic;
@ -1253,7 +1236,7 @@ private:
CGAL_assertion(neigh_c->has_vertex(v));
if(neigh_c->tds_data().processed() ||
neigh_c->info().is_outside != curr_c->info().is_outside) // do not cross the boundary
neigh_c->is_outside() != curr_c->is_outside()) // do not cross the boundary
continue;
cells_to_visit.push(neigh_c);
@ -1278,7 +1261,7 @@ private:
bool is_non_manifold(Cell_handle c) const
{
CGAL_precondition(!m_dt.is_infinite(c));
CGAL_precondition(!m_tr.is_infinite(c));
for(int i=0; i<4; ++i)
{
@ -1294,7 +1277,7 @@ private:
{
// Not the best complexity, but it's not important: this function is purely for information
// Better complexity --> see PMP::non_manifold_vertices + throw
for(const Vertex_handle v : m_dt.finite_vertex_handles())
for(const Vertex_handle v : m_tr.finite_vertex_handles())
if(is_non_manifold(v))
return true;
@ -1307,18 +1290,18 @@ private:
bool remove_bbox_vertices()
{
bool do_remove = true;
auto vit = m_dt.finite_vertices_begin();
auto vit = m_tr.finite_vertices_begin();
for(std::size_t i=0; i<8; ++i)
{
Vertex_handle v = vit++;
std::vector<Cell_handle> inc_cells;
inc_cells.reserve(64);
m_dt.finite_incident_cells(v, std::back_inserter(inc_cells));
m_tr.finite_incident_cells(v, std::back_inserter(inc_cells));
for(Cell_handle c : inc_cells)
{
if(!c->info().is_outside)
if(!c->is_outside())
{
do_remove = false;
break;
@ -1333,11 +1316,11 @@ private:
if(!do_remove)
return false;
vit = m_dt.finite_vertices_begin();
vit = m_tr.finite_vertices_begin();
for(std::size_t i=0; i<8; ++i)
{
Vertex_handle v = vit++;
m_dt.remove(v);
m_tr.remove(v);
}
return true;
@ -1355,7 +1338,7 @@ public:
// remove_bbox_vertices();
std::stack<Vertex_handle> non_manifold_vertices; // @todo sort somehow?
for(Vertex_handle v : m_dt.finite_vertex_handles())
for(Vertex_handle v : m_tr.finite_vertex_handles())
{
if(is_non_manifold(v))
non_manifold_vertices.push(v);
@ -1365,15 +1348,20 @@ public:
auto has_artificial_vertex = [](Cell_handle c) -> bool
{
for(int i=0; i<4; ++i)
if(c->vertex(i)->info() == BBOX_VERTEX || c->vertex(i)->info() == SEED_VERTEX)
{
if(c->vertex(i)->type() == AW3i::Vertex_type:: BBOX_VERTEX ||
c->vertex(i)->type() == AW3i::Vertex_type:: SEED_VERTEX)
{
return true;
}
}
return false;
};
auto is_on_boundary = [](Cell_handle c, int i) -> bool
{
return (c->info().is_outside != c->neighbor(i)->info().is_outside);
return (c->is_outside() != c->neighbor(i)->is_outside());
};
auto count_boundary_facets = [&](Cell_handle c, Vertex_handle v) -> int
@ -1395,17 +1383,17 @@ public:
// auto sq_circumradius = [&](Cell_handle c) -> FT
// {
// const Point_3& cc = circumcenter(c);
// return geom_traits().compute_squared_distance_3_object()(m_dt.point(c, 0), cc);
// return geom_traits().compute_squared_distance_3_object()(m_tr.point(c, 0), cc);
// };
auto sq_longest_edge = [&](Cell_handle c) -> FT
{
return (std::max)({ squared_distance(m_dt.point(c, 0), m_dt.point(c, 1)),
squared_distance(m_dt.point(c, 0), m_dt.point(c, 2)),
squared_distance(m_dt.point(c, 0), m_dt.point(c, 3)),
squared_distance(m_dt.point(c, 1), m_dt.point(c, 2)),
squared_distance(m_dt.point(c, 3), m_dt.point(c, 3)),
squared_distance(m_dt.point(c, 2), m_dt.point(c, 3)) });
return (std::max)({ squared_distance(m_tr.point(c, 0), m_tr.point(c, 1)),
squared_distance(m_tr.point(c, 0), m_tr.point(c, 2)),
squared_distance(m_tr.point(c, 0), m_tr.point(c, 3)),
squared_distance(m_tr.point(c, 1), m_tr.point(c, 2)),
squared_distance(m_tr.point(c, 3), m_tr.point(c, 3)),
squared_distance(m_tr.point(c, 2), m_tr.point(c, 3)) });
};
#ifdef CGAL_AW3_DEBUG_MANIFOLDNESS
@ -1450,7 +1438,7 @@ public:
std::vector<Cell_handle> inc_cells;
inc_cells.reserve(64);
m_dt.finite_incident_cells(v, std::back_inserter(inc_cells));
m_tr.finite_incident_cells(v, std::back_inserter(inc_cells));
#define CGAL_AW3_USE_BRUTE_FORCE_MUTABLE_PRIORITY_QUEUE
#ifndef CGAL_AW3_USE_BRUTE_FORCE_MUTABLE_PRIORITY_QUEUE
@ -1464,10 +1452,10 @@ public:
std::sort(cit, cend, comparer);
#endif
Cell_handle ic = *cit;
CGAL_assertion(!m_dt.is_infinite(ic));
CGAL_assertion(!m_tr.is_infinite(ic));
// This is where new material is added
ic->info().is_outside = false;
ic->is_outside() = false;
#ifdef CGAL_AW3_DEBUG_DUMP_EVERY_STEP
static int i = 0;
@ -1484,14 +1472,14 @@ public:
std::vector<Vertex_handle> adj_vertices;
adj_vertices.reserve(64);
m_dt.finite_adjacent_vertices(v, std::back_inserter(adj_vertices));
m_tr.finite_adjacent_vertices(v, std::back_inserter(adj_vertices));
for(Vertex_handle nv : adj_vertices)
if(is_non_manifold(nv))
non_manifold_vertices.push(nv);
}
CGAL_assertion_code(for(Vertex_handle v : m_dt.finite_vertex_handles()))
CGAL_assertion_code(for(Vertex_handle v : m_tr.finite_vertex_handles()))
CGAL_assertion(!is_non_manifold(v));
}
@ -1508,12 +1496,12 @@ private:
const Facet& current_f = current_gate.facet();
const Cell_handle ch = current_f.first;
const int id = current_f.second;
const Point_3& p0 = m_dt.point(ch, (id+1)&3);
const Point_3& p1 = m_dt.point(ch, (id+2)&3);
const Point_3& p2 = m_dt.point(ch, (id+3)&3);
const Point_3& p0 = m_tr.point(ch, (id+1)&3);
const Point_3& p1 = m_tr.point(ch, (id+2)&3);
const Point_3& p2 = m_tr.point(ch, (id+3)&3);
const FT sqr = geom_traits().compute_squared_radius_3_object()(p0, p1, p2);
std::cout << "At Facet with VID " << get(Gate_ID_PM<Dt>(), current_gate) << std::endl;
std::cout << "At Facet with VID " << get(Gate_ID_PM<Triangulation>(), current_gate) << std::endl;
if(current_gate.priority() != sqr)
std::cerr << "Error: facet in queue has wrong priority" << std::endl;
@ -1546,13 +1534,13 @@ private:
std::size_t nv = 0;
std::size_t nf = 0;
for(auto fit=m_dt.finite_facets_begin(), fend=m_dt.finite_facets_end(); fit!=fend; ++fit)
for(auto fit=m_tr.finite_facets_begin(), fend=m_tr.finite_facets_end(); fit!=fend; ++fit)
{
Cell_handle c = fit->first;
int s = fit->second;
Cell_handle nc = c->neighbor(s);
if(only_boundary_faces && (c->info().is_outside == nc->info().is_outside))
if(only_boundary_faces && (c->is_outside() == nc->is_outside()))
continue;
std::array<std::size_t, 3> ids;
@ -1562,7 +1550,7 @@ private:
auto insertion_res = vertex_to_id.emplace(v, nv);
if(insertion_res.second)
{
vertices_ss << m_dt.point(v) << "\n";
vertices_ss << m_tr.point(v) << "\n";
++nv;
}

View File

@ -36,24 +36,24 @@ struct Tetrahedron_with_outside_info
using Triangle_3 = typename Kernel::Triangle_3;
template <typename CellHandle>
Tetrahedron_with_outside_info(const CellHandle ch, const K& k)
Tetrahedron_with_outside_info(const CellHandle c, const K& k)
{
typename K::Construct_bbox_3 bbox = k.construct_bbox_3_object();
typename K::Construct_tetrahedron_3 tetrahedron = k.construct_tetrahedron_3_object();
typename K::Construct_triangle_3 triangle = k.construct_triangle_3_object();
m_tet = tetrahedron(ch->vertex(0)->point(), ch->vertex(1)->point(),
ch->vertex(2)->point(), ch->vertex(3)->point());
m_tet = tetrahedron(c->vertex(0)->point(), c->vertex(1)->point(),
c->vertex(2)->point(), c->vertex(3)->point());
m_bbox = bbox(m_tet);
for(int i=0; i<4; ++i)
{
if(ch->neighbor(i)->info().is_outside)
if(c->neighbor(i)->is_outside())
m_b.set(i, true);
m_triangles[i] = triangle(ch->vertex((i+1)& 3)->point(),
ch->vertex((i+2)& 3)->point(),
ch->vertex((i+3)& 3)->point());
m_triangles[i] = triangle(c->vertex((i+1)& 3)->point(),
c->vertex((i+2)& 3)->point(),
c->vertex((i+3)& 3)->point());
m_tbox[i] = bbox(m_triangles[i]);
}
}

View File

@ -0,0 +1,97 @@
// Copyright (c) 2019-2023 Google LLC (USA).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Mael Rouxel-Labbé
#ifndef CGAL_ALPHA_WRAP_TRIANGULATION_CELL_BASE_3_H
#define CGAL_ALPHA_WRAP_TRIANGULATION_CELL_BASE_3_H
#include <CGAL/license/Alpha_wrap_3.h>
#include <CGAL/Delaunay_triangulation_cell_base_with_circumcenter_3.h>
namespace CGAL {
namespace Alpha_wraps_3 {
namespace internal {
template < typename GT,
typename Cb = CGAL::Delaunay_triangulation_cell_base_with_circumcenter_3<GT> >
class Alpha_wrap_triangulation_cell_base_3
: public Cb
{
private:
bool outside = false;
public:
typedef typename Cb::Vertex_handle Vertex_handle;
typedef typename Cb::Cell_handle Cell_handle;
template < typename TDS2 >
struct Rebind_TDS
{
using Cb2 = typename Cb::template Rebind_TDS<TDS2>::Other;
using Other = Alpha_wrap_triangulation_cell_base_3<GT, Cb2>;
};
Alpha_wrap_triangulation_cell_base_3()
: Cb()
{}
Alpha_wrap_triangulation_cell_base_3(Vertex_handle v0, Vertex_handle v1,
Vertex_handle v2, Vertex_handle v3)
: Cb(v0, v1, v2, v3)
{}
Alpha_wrap_triangulation_cell_base_3(Vertex_handle v0, Vertex_handle v1,
Vertex_handle v2, Vertex_handle v3,
Cell_handle n0, Cell_handle n1,
Cell_handle n2, Cell_handle n3)
: Cb(v0, v1, v2, v3, n0, n1, n2, n3)
{}
bool is_outside() const { return outside; }
bool& is_outside() { return outside; }
};
template <typename Cb>
class Cell_base_with_timestamp
: public Cb
{
std::size_t time_stamp_;
public:
using Has_timestamp = CGAL::Tag_true;
template <class TDS>
struct Rebind_TDS
{
using Cb2 = typename Cb::template Rebind_TDS<TDS>::Other;
using Other = Cell_base_with_timestamp<Cb2>;
};
public:
template <typename... Args>
Cell_base_with_timestamp(const Args&... args)
: Cb(args...), time_stamp_(-1)
{ }
Cell_base_with_timestamp(const Cell_base_with_timestamp& other)
: Cb(other), time_stamp_(other.time_stamp_)
{ }
public:
std::size_t time_stamp() const { return time_stamp_; }
void set_time_stamp(const std::size_t& ts) { time_stamp_ = ts; }
};
} // namespace internal
} // namespace Alpha_wraps_3
} // namespace CGAL
#endif // CGAL_ALPHA_WRAP_TRIANGULATION_CELL_BASE_3_H

View File

@ -0,0 +1,71 @@
// Copyright (c) 2019-2023 Google LLC (USA).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Mael Rouxel-Labbé
#ifndef CGAL_ALPHA_WRAP_TRIANGULATION_VERTEX_BASE_3_H
#define CGAL_ALPHA_WRAP_TRIANGULATION_VERTEX_BASE_3_H
#include <CGAL/license/Alpha_wrap_3.h>
#include <CGAL/Triangulation_vertex_base_3.h>
namespace CGAL {
namespace Alpha_wraps_3 {
namespace internal {
enum class Vertex_type
{
DEFAULT = 0,
BBOX_VERTEX,
SEED_VERTEX
};
template <typename GT,
typename Vb = Triangulation_vertex_base_3<GT> >
class Alpha_wrap_triangulation_vertex_base_3
: public Vb
{
private:
Vertex_type vertex_type = Vertex_type::DEFAULT;
public:
using Cell_handle = typename Vb::Cell_handle;
using Point = typename Vb::Point;
template <typename TDS2>
struct Rebind_TDS
{
using Vb2 = typename Vb::template Rebind_TDS<TDS2>::Other;
using Other = Alpha_wrap_triangulation_vertex_base_3<GT, Vb2>;
};
public:
Alpha_wrap_triangulation_vertex_base_3()
: Vb() {}
Alpha_wrap_triangulation_vertex_base_3(const Point& p)
: Vb(p) {}
Alpha_wrap_triangulation_vertex_base_3(const Point& p, Cell_handle c)
: Vb(p, c) {}
Alpha_wrap_triangulation_vertex_base_3(Cell_handle c)
: Vb(c) {}
public:
const Vertex_type& type() const { return vertex_type; }
Vertex_type& type() { return vertex_type; }
};
} // namespace internal
} // namespace Alpha_wraps_3
} // namespace CGAL
#endif // CGAL_ALPHA_WRAP_TRIANGULATION_VERTEX_BASE_3_H

View File

@ -46,7 +46,7 @@ ag.incident_edges(ag.infinite_vertex());
ag.incident_edges(ag.infinite_vertex(), f);
\endcode
\cgalModels `DelaunayGraph_2`
\cgalModels{DelaunayGraph_2}
\sa `CGAL::Apollonius_graph_traits_2<K,Method_tag>`
\sa `CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>`
@ -608,24 +608,22 @@ Vertex_handle nearest_neighbor(const Point_2& p, Vertex_handle vnear) const;
/*!
Returns the
dual corresponding to the face handle `f`. The returned object can
be assignable to one of the following: `Site_2`, `Gt::Line_2`.
be assigned to one of the following: `Site_2`, `Gt::Line_2`.
*/
Gt::Object_2 dual(Face_handle f) const;
/*!
Returns the
dual of the face to which `it` points to. The returned object can
be assignable to one of the following: `Site_2`, `Gt::Line_2`.
be assigned to one of the following: `Site_2`, `Gt::Line_2`.
*/
Gt::Object_2 dual(All_faces_iterator it) const;
/*!
Returns
the dual of the face to which `it` points to. The returned
object can be assignable to one of the following: `Site_2`,
`Gt::Line_2`.
the dual of the face to which `it` points to.
*/
Gt::Object_2 dual(Finite_faces_iterator it) const;
Site dual(Finite_faces_iterator it) const;
/// @}

View File

@ -37,7 +37,7 @@ The default values for the template parameters are as follows:
`FK = CGAL::Simple_cartesian<CGAL::Interval_nt<false> >`,
`FM = CM`.
\cgalModels `ApolloniusGraphTraits_2`
\cgalModels{ApolloniusGraphTraits_2}
\sa `Kernel`
\sa `ApolloniusGraphTraits_2`

View File

@ -11,7 +11,7 @@ vertex base required by the
`Apollonius_graph_hierarchy_vertex_base_2` is templated by a class `Agvb` which must be a model
of the `ApolloniusGraphVertexBase_2` concept.
\cgalModels `ApolloniusGraphHierarchyVertexBase_2`
\cgalModels{ApolloniusGraphHierarchyVertexBase_2}
\sa `CGAL::Apollonius_graph_vertex_base_2<Gt,StoreHidden>`
\sa `CGAL::Triangulation_data_structure_2<Vb,Fb>`

View File

@ -20,7 +20,7 @@ default value for `Method_tag` is `CGAL::Integral_domain_without_division_tag`.
The way the predicates are evaluated is discussed in
\cgalCite{cgal:ke-ppawv-02}, \cgalCite{cgal:ke-rctac-03}.
\cgalModels `ApolloniusGraphTraits_2`
\cgalModels{ApolloniusGraphTraits_2}
\sa `CGAL::Apollonius_graph_2<Gt,Agds>`
\sa `CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>`

View File

@ -7,9 +7,12 @@ namespace CGAL {
The class `Apollonius_graph_vertex_base_2` provides a model for the
`ApolloniusGraphVertexBase_2` concept which is the vertex base
required by the `ApolloniusGraphDataStructure_2` concept. The
class `Apollonius_graph_vertex_base_2` has two template arguments, the first being the
geometric traits of the Apollonius graph and should be a model of the
concept `ApolloniusGraphTraits_2`. The second is a Boolean which
class `Apollonius_graph_vertex_base_2` has three template arguments.
\tparam Gt is the geometric traits of the Apollonius graph and must be a model of the
concept `ApolloniusGraphTraits_2`.
\tparam StoreHidden is a Boolean which
controls whether hidden sites are actually stored. Such a
control is important if the user is not interested in hidden sites
and/or if only insertions are made, in which case no hidden
@ -17,13 +20,17 @@ site can become visible. If `StoreHidden` is set to
`true`, hidden sites are stored, otherwise they are
discarded. By default `StoreHidden` is set to `true`.
\cgalModels `ApolloniusGraphVertexBase_2`
\tparam Vb must be a model of the concept `TriangulationDSVertexBase_2`
By default this parameter is
instantiated by `Triangulation_ds_vertex_base_2<>`.
\cgalModels{ApolloniusGraphVertexBase_2}
\sa `CGAL::Triangulation_data_structure_2<Vb,Fb>`
\sa `CGAL::Apollonius_graph_hierarchy_vertex_base_2<Gt>`
*/
template< typename Gt, typename StoreHidden >
class Apollonius_graph_vertex_base_2 {
template< typename Gt, typename StoreHidden, typename Vb >
class Apollonius_graph_vertex_base_2 : public Vb {
public:
/// \name Creation

View File

@ -8,7 +8,7 @@ The class `Apollonius_site_2` is a model for the concept
`ApolloniusSite_2`. It is parametrized by a template parameter
`K` which must be a model of the `Kernel` concept.
\cgalModels `ApolloniusSite_2`
\cgalModels{ApolloniusSite_2}
\cgalHeading{Types}

View File

@ -27,7 +27,9 @@ We only describe the additional requirements with respect to the
\cgalRefines{TriangulationDataStructure_2}
\cgalHasModel `CGAL::Triangulation_data_structure_2<Vb,Fb>`
\cgalHasModelsBegin
\cgalHasModels{CGAL::Triangulation_data_structure_2<Vb,Fb>}
\cgalHasModelsEnd
\sa `TriangulationDataStructure_2`
\sa `ApolloniusGraphVertexBase_2`

View File

@ -19,7 +19,9 @@ next and previous level graphs.
`ApolloniusGraphHierarchyVertexBase_2` does not introduce any
types in addition to those of `ApolloniusGraphVertexBase_2`.
\cgalHasModel `CGAL::Apollonius_graph_hierarchy_vertex_base_2<CGAL::Apollonius_graph_vertex_base_2<Gt,StoreHidden> >`
\cgalHasModelsBegin
\cgalHasModels{CGAL::Apollonius_graph_hierarchy_vertex_base_2<CGAL::Apollonius_graph_vertex_base_2<Gt,StoreHidden> >}
\cgalHasModelsEnd
\sa `ApolloniusGraphDataStructure_2`
\sa `CGAL::Apollonius_graph_hierarchy_2<Gt,Agds>`

View File

@ -12,8 +12,10 @@ it provides a type `Site_2`, which must be a model of the concept
constructions for sites and several function object
types for the predicates.
\cgalHasModel `CGAL::Apollonius_graph_traits_2<K,Method_tag>`
\cgalHasModel `CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>`
\cgalHasModelsBegin
\cgalHasModels{CGAL::Apollonius_graph_traits_2<K,Method_tag>}
\cgalHasModels{CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}
\cgalHasModelsEnd
\sa `CGAL::Apollonius_graph_2<Gt,Agds>`
\sa `CGAL::Apollonius_graph_traits_2<K,Method_tag>`

Some files were not shown because too many files have changed in this diff Show More