diff --git a/Number_types/doc/Number_types/CGAL/Gmpzf.h b/Number_types/doc/Number_types/CGAL/Gmpzf.h index 876bd37069f..675e55ac9e4 100644 --- a/Number_types/doc/Number_types/CGAL/Gmpzf.h +++ b/Number_types/doc/Number_types/CGAL/Gmpzf.h @@ -9,7 +9,8 @@ numbers of the form \f$ m*2^e\f$, where \f$ m\f$ is an arbitrary precision integ based on the \gmp library, and \f$ e\f$ is of type `long`. This type can be considered exact, even if the exponent is not a multiple-precision number. This number type offers -functionality very similar to `MP_Float` but is generally faster. +functionality very similar to `MP_Float` but is generally faster. `Mpzf` also +provides similar functionality and is generally faster than `Gmpzf`. \cgalModels{EuclideanRing,RealEmbeddable} diff --git a/Number_types/doc/Number_types/CGAL/MP_Float.h b/Number_types/doc/Number_types/CGAL/MP_Float.h index 6f3b097d71b..ac2c6124b75 100644 --- a/Number_types/doc/Number_types/CGAL/MP_Float.h +++ b/Number_types/doc/Number_types/CGAL/MP_Float.h @@ -24,8 +24,8 @@ plan to also have a multiprecision exponent to fix this issue. The implementation of `MP_Float` is simple but provides a quadratic complexity for multiplications. This can be a problem for large operands. -For faster implementations of the same functionality with large integral -values, you may want to consider using `GMP` or `LEDA` instead. +For faster implementations of the same functionality, if `GMP` is available, +you may want to consider using `Mpzf` or `Gmpzf`. */