mirror of https://github.com/CGAL/cgal
fixed: introduction
This commit is contained in:
parent
523db58064
commit
28cba8cfed
|
|
@ -28,32 +28,27 @@
|
|||
|
||||
This chapter describes routines for solving geometric optimisation problems.
|
||||
The first two sections contain algorithms for computing and updating the
|
||||
smallest enclosing circle (Section~\ref{sec:smallest_enclosing_circles})
|
||||
resp.\ ellipse (Section~\ref{sec:smallest_enclosing_ellipses}) of a finite
|
||||
point set. Formally, the `smallest enclosing circle' is the boundary of the
|
||||
closed disk of minimum area covering the point set. It is known that this
|
||||
disk is unique. We usually identify the disk with its bounding circle,
|
||||
allowing us to talk about points being on the boundary of the circle, etc.
|
||||
The same holds for the smallest enclosing ellipse. These algorithms work in
|
||||
an incremental manner. They are implemented as semi-dynamic data structures,
|
||||
thus allowing to insert points while maintaining the smallest enclosing
|
||||
circle resp.\ ellipse.
|
||||
|
||||
The remaining sections describe algorithms for searching in matrices with
|
||||
specific properties and some applications. In particular, there are
|
||||
general implementations of
|
||||
\begin{itemize}
|
||||
\item monotone matrix search (see Section~\ref{secMonotoneMatrixSearch}),
|
||||
\item smallest enclosing circle
|
||||
(Section~\ref{sec:smallest_enclosing_circles}) and the
|
||||
\item smallest enclosing ellipse
|
||||
(Section~\ref{sec:smallest_enclosing_ellipses}), respectively,
|
||||
\end{itemize}
|
||||
of a finite point set. The remaining sections describe algorithms for
|
||||
searching in matrices with specific properties and some applications.
|
||||
In particular, there are general implementations of
|
||||
\begin{itemize}
|
||||
\item monotone matrix search (Section~\ref{secMonotoneMatrixSearch}),
|
||||
which can be applied to compute
|
||||
\begin{itemize}
|
||||
\item extremal polygons of a convex polygon
|
||||
(see Section~\ref{secComputingExtremalPolygons}) \textit{or}
|
||||
(Section~\ref{secComputingExtremalPolygons}) \textit{or}
|
||||
\item all furthest neighbors for the vertices of a convex polygon
|
||||
(see Section~\ref{secAllFurthestNeighbors}),
|
||||
(Section~\ref{secAllFurthestNeighbors}),
|
||||
\end{itemize}
|
||||
\item and sorted matrix search (see Section~\ref{secSortedMatrixSearch}),
|
||||
\item and sorted matrix search (Section~\ref{secSortedMatrixSearch}),
|
||||
which can be used to compute the $p$-centers of a planar point set
|
||||
(see Section~\ref{sec_RectangularPCenters}).
|
||||
(Section~\ref{sec_RectangularPCenters}).
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection*{Traits Class}
|
||||
|
|
|
|||
|
|
@ -28,32 +28,27 @@
|
|||
|
||||
This chapter describes routines for solving geometric optimisation problems.
|
||||
The first two sections contain algorithms for computing and updating the
|
||||
smallest enclosing circle (Section~\ref{sec:smallest_enclosing_circles})
|
||||
resp.\ ellipse (Section~\ref{sec:smallest_enclosing_ellipses}) of a finite
|
||||
point set. Formally, the `smallest enclosing circle' is the boundary of the
|
||||
closed disk of minimum area covering the point set. It is known that this
|
||||
disk is unique. We usually identify the disk with its bounding circle,
|
||||
allowing us to talk about points being on the boundary of the circle, etc.
|
||||
The same holds for the smallest enclosing ellipse. These algorithms work in
|
||||
an incremental manner. They are implemented as semi-dynamic data structures,
|
||||
thus allowing to insert points while maintaining the smallest enclosing
|
||||
circle resp.\ ellipse.
|
||||
|
||||
The remaining sections describe algorithms for searching in matrices with
|
||||
specific properties and some applications. In particular, there are
|
||||
general implementations of
|
||||
\begin{itemize}
|
||||
\item monotone matrix search (see Section~\ref{secMonotoneMatrixSearch}),
|
||||
\item smallest enclosing circle
|
||||
(Section~\ref{sec:smallest_enclosing_circles}) and the
|
||||
\item smallest enclosing ellipse
|
||||
(Section~\ref{sec:smallest_enclosing_ellipses}), respectively,
|
||||
\end{itemize}
|
||||
of a finite point set. The remaining sections describe algorithms for
|
||||
searching in matrices with specific properties and some applications.
|
||||
In particular, there are general implementations of
|
||||
\begin{itemize}
|
||||
\item monotone matrix search (Section~\ref{secMonotoneMatrixSearch}),
|
||||
which can be applied to compute
|
||||
\begin{itemize}
|
||||
\item extremal polygons of a convex polygon
|
||||
(see Section~\ref{secComputingExtremalPolygons}) \textit{or}
|
||||
(Section~\ref{secComputingExtremalPolygons}) \textit{or}
|
||||
\item all furthest neighbors for the vertices of a convex polygon
|
||||
(see Section~\ref{secAllFurthestNeighbors}),
|
||||
(Section~\ref{secAllFurthestNeighbors}),
|
||||
\end{itemize}
|
||||
\item and sorted matrix search (see Section~\ref{secSortedMatrixSearch}),
|
||||
\item and sorted matrix search (Section~\ref{secSortedMatrixSearch}),
|
||||
which can be used to compute the $p$-centers of a planar point set
|
||||
(see Section~\ref{sec_RectangularPCenters}).
|
||||
(Section~\ref{sec_RectangularPCenters}).
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection*{Traits Class}
|
||||
|
|
|
|||
Loading…
Reference in New Issue