From 28cba8cfed040c5af6240a1695f5713c2c848be4 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Sven=20Sch=C3=B6nherr?= Date: Mon, 30 Mar 1998 13:38:21 +0000 Subject: [PATCH] fixed: introduction --- .../doc_tex/Optimisation/main.tex | 33 ++++++++----------- .../doc_tex/basic/Optimisation/main.tex | 33 ++++++++----------- 2 files changed, 28 insertions(+), 38 deletions(-) diff --git a/Packages/Optimisation_doc/doc_tex/Optimisation/main.tex b/Packages/Optimisation_doc/doc_tex/Optimisation/main.tex index 478b2365bb5..b09451fe64f 100644 --- a/Packages/Optimisation_doc/doc_tex/Optimisation/main.tex +++ b/Packages/Optimisation_doc/doc_tex/Optimisation/main.tex @@ -28,32 +28,27 @@ This chapter describes routines for solving geometric optimisation problems. The first two sections contain algorithms for computing and updating the -smallest enclosing circle (Section~\ref{sec:smallest_enclosing_circles}) -resp.\ ellipse (Section~\ref{sec:smallest_enclosing_ellipses}) of a finite -point set. Formally, the `smallest enclosing circle' is the boundary of the -closed disk of minimum area covering the point set. It is known that this -disk is unique. We usually identify the disk with its bounding circle, -allowing us to talk about points being on the boundary of the circle, etc. -The same holds for the smallest enclosing ellipse. These algorithms work in -an incremental manner. They are implemented as semi-dynamic data structures, -thus allowing to insert points while maintaining the smallest enclosing -circle resp.\ ellipse. - -The remaining sections describe algorithms for searching in matrices with -specific properties and some applications. In particular, there are -general implementations of \begin{itemize} - \item monotone matrix search (see Section~\ref{secMonotoneMatrixSearch}), + \item smallest enclosing circle + (Section~\ref{sec:smallest_enclosing_circles}) and the + \item smallest enclosing ellipse + (Section~\ref{sec:smallest_enclosing_ellipses}), respectively, +\end{itemize} +of a finite point set. The remaining sections describe algorithms for +searching in matrices with specific properties and some applications. +In particular, there are general implementations of +\begin{itemize} + \item monotone matrix search (Section~\ref{secMonotoneMatrixSearch}), which can be applied to compute \begin{itemize} \item extremal polygons of a convex polygon - (see Section~\ref{secComputingExtremalPolygons}) \textit{or} + (Section~\ref{secComputingExtremalPolygons}) \textit{or} \item all furthest neighbors for the vertices of a convex polygon - (see Section~\ref{secAllFurthestNeighbors}), + (Section~\ref{secAllFurthestNeighbors}), \end{itemize} - \item and sorted matrix search (see Section~\ref{secSortedMatrixSearch}), + \item and sorted matrix search (Section~\ref{secSortedMatrixSearch}), which can be used to compute the $p$-centers of a planar point set - (see Section~\ref{sec_RectangularPCenters}). + (Section~\ref{sec_RectangularPCenters}). \end{itemize} \subsubsection*{Traits Class} diff --git a/Packages/Optimisation_doc/doc_tex/basic/Optimisation/main.tex b/Packages/Optimisation_doc/doc_tex/basic/Optimisation/main.tex index 478b2365bb5..b09451fe64f 100644 --- a/Packages/Optimisation_doc/doc_tex/basic/Optimisation/main.tex +++ b/Packages/Optimisation_doc/doc_tex/basic/Optimisation/main.tex @@ -28,32 +28,27 @@ This chapter describes routines for solving geometric optimisation problems. The first two sections contain algorithms for computing and updating the -smallest enclosing circle (Section~\ref{sec:smallest_enclosing_circles}) -resp.\ ellipse (Section~\ref{sec:smallest_enclosing_ellipses}) of a finite -point set. Formally, the `smallest enclosing circle' is the boundary of the -closed disk of minimum area covering the point set. It is known that this -disk is unique. We usually identify the disk with its bounding circle, -allowing us to talk about points being on the boundary of the circle, etc. -The same holds for the smallest enclosing ellipse. These algorithms work in -an incremental manner. They are implemented as semi-dynamic data structures, -thus allowing to insert points while maintaining the smallest enclosing -circle resp.\ ellipse. - -The remaining sections describe algorithms for searching in matrices with -specific properties and some applications. In particular, there are -general implementations of \begin{itemize} - \item monotone matrix search (see Section~\ref{secMonotoneMatrixSearch}), + \item smallest enclosing circle + (Section~\ref{sec:smallest_enclosing_circles}) and the + \item smallest enclosing ellipse + (Section~\ref{sec:smallest_enclosing_ellipses}), respectively, +\end{itemize} +of a finite point set. The remaining sections describe algorithms for +searching in matrices with specific properties and some applications. +In particular, there are general implementations of +\begin{itemize} + \item monotone matrix search (Section~\ref{secMonotoneMatrixSearch}), which can be applied to compute \begin{itemize} \item extremal polygons of a convex polygon - (see Section~\ref{secComputingExtremalPolygons}) \textit{or} + (Section~\ref{secComputingExtremalPolygons}) \textit{or} \item all furthest neighbors for the vertices of a convex polygon - (see Section~\ref{secAllFurthestNeighbors}), + (Section~\ref{secAllFurthestNeighbors}), \end{itemize} - \item and sorted matrix search (see Section~\ref{secSortedMatrixSearch}), + \item and sorted matrix search (Section~\ref{secSortedMatrixSearch}), which can be used to compute the $p$-centers of a planar point set - (see Section~\ref{sec_RectangularPCenters}). + (Section~\ref{sec_RectangularPCenters}). \end{itemize} \subsubsection*{Traits Class}