mirror of https://github.com/CGAL/cgal
fixed: introduction
This commit is contained in:
parent
523db58064
commit
28cba8cfed
|
|
@ -28,32 +28,27 @@
|
||||||
|
|
||||||
This chapter describes routines for solving geometric optimisation problems.
|
This chapter describes routines for solving geometric optimisation problems.
|
||||||
The first two sections contain algorithms for computing and updating the
|
The first two sections contain algorithms for computing and updating the
|
||||||
smallest enclosing circle (Section~\ref{sec:smallest_enclosing_circles})
|
|
||||||
resp.\ ellipse (Section~\ref{sec:smallest_enclosing_ellipses}) of a finite
|
|
||||||
point set. Formally, the `smallest enclosing circle' is the boundary of the
|
|
||||||
closed disk of minimum area covering the point set. It is known that this
|
|
||||||
disk is unique. We usually identify the disk with its bounding circle,
|
|
||||||
allowing us to talk about points being on the boundary of the circle, etc.
|
|
||||||
The same holds for the smallest enclosing ellipse. These algorithms work in
|
|
||||||
an incremental manner. They are implemented as semi-dynamic data structures,
|
|
||||||
thus allowing to insert points while maintaining the smallest enclosing
|
|
||||||
circle resp.\ ellipse.
|
|
||||||
|
|
||||||
The remaining sections describe algorithms for searching in matrices with
|
|
||||||
specific properties and some applications. In particular, there are
|
|
||||||
general implementations of
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item monotone matrix search (see Section~\ref{secMonotoneMatrixSearch}),
|
\item smallest enclosing circle
|
||||||
|
(Section~\ref{sec:smallest_enclosing_circles}) and the
|
||||||
|
\item smallest enclosing ellipse
|
||||||
|
(Section~\ref{sec:smallest_enclosing_ellipses}), respectively,
|
||||||
|
\end{itemize}
|
||||||
|
of a finite point set. The remaining sections describe algorithms for
|
||||||
|
searching in matrices with specific properties and some applications.
|
||||||
|
In particular, there are general implementations of
|
||||||
|
\begin{itemize}
|
||||||
|
\item monotone matrix search (Section~\ref{secMonotoneMatrixSearch}),
|
||||||
which can be applied to compute
|
which can be applied to compute
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item extremal polygons of a convex polygon
|
\item extremal polygons of a convex polygon
|
||||||
(see Section~\ref{secComputingExtremalPolygons}) \textit{or}
|
(Section~\ref{secComputingExtremalPolygons}) \textit{or}
|
||||||
\item all furthest neighbors for the vertices of a convex polygon
|
\item all furthest neighbors for the vertices of a convex polygon
|
||||||
(see Section~\ref{secAllFurthestNeighbors}),
|
(Section~\ref{secAllFurthestNeighbors}),
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\item and sorted matrix search (see Section~\ref{secSortedMatrixSearch}),
|
\item and sorted matrix search (Section~\ref{secSortedMatrixSearch}),
|
||||||
which can be used to compute the $p$-centers of a planar point set
|
which can be used to compute the $p$-centers of a planar point set
|
||||||
(see Section~\ref{sec_RectangularPCenters}).
|
(Section~\ref{sec_RectangularPCenters}).
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\subsubsection*{Traits Class}
|
\subsubsection*{Traits Class}
|
||||||
|
|
|
||||||
|
|
@ -28,32 +28,27 @@
|
||||||
|
|
||||||
This chapter describes routines for solving geometric optimisation problems.
|
This chapter describes routines for solving geometric optimisation problems.
|
||||||
The first two sections contain algorithms for computing and updating the
|
The first two sections contain algorithms for computing and updating the
|
||||||
smallest enclosing circle (Section~\ref{sec:smallest_enclosing_circles})
|
|
||||||
resp.\ ellipse (Section~\ref{sec:smallest_enclosing_ellipses}) of a finite
|
|
||||||
point set. Formally, the `smallest enclosing circle' is the boundary of the
|
|
||||||
closed disk of minimum area covering the point set. It is known that this
|
|
||||||
disk is unique. We usually identify the disk with its bounding circle,
|
|
||||||
allowing us to talk about points being on the boundary of the circle, etc.
|
|
||||||
The same holds for the smallest enclosing ellipse. These algorithms work in
|
|
||||||
an incremental manner. They are implemented as semi-dynamic data structures,
|
|
||||||
thus allowing to insert points while maintaining the smallest enclosing
|
|
||||||
circle resp.\ ellipse.
|
|
||||||
|
|
||||||
The remaining sections describe algorithms for searching in matrices with
|
|
||||||
specific properties and some applications. In particular, there are
|
|
||||||
general implementations of
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item monotone matrix search (see Section~\ref{secMonotoneMatrixSearch}),
|
\item smallest enclosing circle
|
||||||
|
(Section~\ref{sec:smallest_enclosing_circles}) and the
|
||||||
|
\item smallest enclosing ellipse
|
||||||
|
(Section~\ref{sec:smallest_enclosing_ellipses}), respectively,
|
||||||
|
\end{itemize}
|
||||||
|
of a finite point set. The remaining sections describe algorithms for
|
||||||
|
searching in matrices with specific properties and some applications.
|
||||||
|
In particular, there are general implementations of
|
||||||
|
\begin{itemize}
|
||||||
|
\item monotone matrix search (Section~\ref{secMonotoneMatrixSearch}),
|
||||||
which can be applied to compute
|
which can be applied to compute
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item extremal polygons of a convex polygon
|
\item extremal polygons of a convex polygon
|
||||||
(see Section~\ref{secComputingExtremalPolygons}) \textit{or}
|
(Section~\ref{secComputingExtremalPolygons}) \textit{or}
|
||||||
\item all furthest neighbors for the vertices of a convex polygon
|
\item all furthest neighbors for the vertices of a convex polygon
|
||||||
(see Section~\ref{secAllFurthestNeighbors}),
|
(Section~\ref{secAllFurthestNeighbors}),
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\item and sorted matrix search (see Section~\ref{secSortedMatrixSearch}),
|
\item and sorted matrix search (Section~\ref{secSortedMatrixSearch}),
|
||||||
which can be used to compute the $p$-centers of a planar point set
|
which can be used to compute the $p$-centers of a planar point set
|
||||||
(see Section~\ref{sec_RectangularPCenters}).
|
(Section~\ref{sec_RectangularPCenters}).
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\subsubsection*{Traits Class}
|
\subsubsection*{Traits Class}
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue