diff --git a/Triangulation_3/doc/Triangulation_3/CGAL/Regular_triangulation_3.h b/Triangulation_3/doc/Triangulation_3/CGAL/Regular_triangulation_3.h index d18a34fd251..5139a97e263 100644 --- a/Triangulation_3/doc/Triangulation_3/CGAL/Regular_triangulation_3.h +++ b/Triangulation_3/doc/Triangulation_3/CGAL/Regular_triangulation_3.h @@ -17,7 +17,7 @@ defined as where \f$ \|{p-z}\|\f$ is the Euclidean distance between \f$ p\f$ and \f$ z\f$. \f$ {p}^{(w)}\f$ and \f$ {z}^{(w)}\f$ are said to be orthogonal if \f$ \Pi{({p}^{(w)}-{z}^{(w)})} -= 0\f$ (see Figure \ref Triangulation3figortho). += 0\f$ (see Figure \cgalFigureRef{Triangulation3figortho}). Four weighted points have a unique common orthogonal weighted point called the power sphere. A sphere \f$ {z}^{(w)}\f$ is said to be diff --git a/Triangulation_3/doc/Triangulation_3/Triangulation_3.txt b/Triangulation_3/doc/Triangulation_3/Triangulation_3.txt index 4e88b199144..584fff76009 100644 --- a/Triangulation_3/doc/Triangulation_3/Triangulation_3.txt +++ b/Triangulation_3/doc/Triangulation_3/Triangulation_3.txt @@ -47,8 +47,9 @@ of the underlying Euclidean space \f$ \R^3\f$ (see indexed with 0, 1, 2, 3 in such a way that the neighbor indexed by \f$ i\f$ is opposite to the vertex with the same index. -\anchor Triangulation3figorient -\image html orient.gif "Orientation of a cell (3-dimensional case)." +\cgalFigureBegin{Triangulation3figorient,orient.gif} +Orientation of a cell (3-dimensional case). +\cgalFigureEnd As in the underlying combinatorial triangulation (see Chapter \ref chapterTDS3 "3D Triangulation Data Structure"), @@ -545,6 +546,7 @@ version 4.3.2, under Linux (Fedora 10 distribution), with the compilation option -O3 -DCGAL_NDEBUG. The computer used was equipped with a 64bit Intel Xeon 3GHz processor and 32GB of RAM (a recent desktop machine as of 2009). +\cgalFigureAnchor{Triangulation3figbenchmarks}

@@ -718,10 +720,10 @@ Vertex removal 1.38e-04

-
-CAPTION Running times in seconds for algorithms on 3D triangulations. -\anchor Triangulation3figbenchmarks +\cgalFigureCaptionBegin{Triangulation3figbenchmarks} +Running times in seconds for algorithms on 3D triangulations. +\cgalFigureCaptionEnd More benchmarks comparing \cgal to other software can be found in \cite msri52:liu-snoeyink-05. @@ -752,6 +754,7 @@ internal bookkeeping is otherwise on the order of \f$ O(\sqrt{n})\f$. points, as measured empirically using `Memory_sizer` for large triangulations (\f$ 10^6\f$ random points). +\cgalFigureAnchor{Triangulation3figmemory}

@@ -803,10 +806,10 @@ points, as measured empirically using `Memory_sizer` for large triangulations 527

-
-CAPTION Memory usage in bytes per point for large data sets. -\anchor Triangulation3figmemory +\cgalFigureCaptionBegin{Triangulation3figmemory} +Memory usage in bytes per point for large data sets. +\cgalFigureCaptionEnd \subsection Triangulation_3VariabilityDependingonthe Variability Depending on the Data Sets and the Kernel @@ -855,7 +858,7 @@ triangulation. General introductory information about these robustness issues can be found in \cite cgta-kmpsy-08. More benchmarks around this issue can also be found in \cite cgal:dp-eegpd-03. -\anchor Triangulation3figkernelsanddatasets +\cgalFigureAnchor{Triangulation3figkernelsanddatasets}

@@ -956,8 +959,10 @@ Number of points 75.2

-Running times (seconds) for various kernels and data sets.
+\cgalFigureCaptionBegin{Triangulation3figkernelsanddatasets} +Running times (seconds) for various kernels and data sets. +\cgalFigureCaptionEnd \cgalFigureBegin{Triangulation3figdatasets,api1_01.gif,b35-1.gif,HD.gif}