mirror of https://github.com/CGAL/cgal
Merge pull request #6466 from MaelRL/PMP-Hausdorff_more_bug_fixes-GF
PMP: more bounded Hausdorff fixes
This commit is contained in:
commit
2b9305698d
|
|
@ -1435,7 +1435,7 @@ bounded_error_squared_Hausdorff_distance_impl(const TriangleMesh1& tm1,
|
|||
const VPM2 vpm2,
|
||||
const TM1Tree& tm1_tree,
|
||||
const TM2Tree& tm2_tree,
|
||||
const typename Kernel::FT sq_error_bound,
|
||||
const typename Kernel::FT error_bound,
|
||||
const typename Kernel::FT sq_initial_bound,
|
||||
const typename Kernel::FT sq_distance_bound,
|
||||
const typename Kernel::FT infinity_value,
|
||||
|
|
@ -1445,6 +1445,14 @@ bounded_error_squared_Hausdorff_distance_impl(const TriangleMesh1& tm1,
|
|||
using Point_3 = typename Kernel::Point_3;
|
||||
using Triangle_3 = typename Kernel::Triangle_3;
|
||||
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG
|
||||
std::cout << " -- Bounded Hausdorff --" << std::endl;
|
||||
std::cout << "error bound: " << error_bound << std::endl;
|
||||
std::cout << "initial bound: " << sq_initial_bound << " (" << approximate_sqrt(sq_initial_bound) << ")" << std::endl;
|
||||
std::cout << "distance bound: " << sq_distance_bound << " (" << approximate_sqrt(sq_distance_bound) << ")" << std::endl;
|
||||
std::cout << "inf val: " << infinity_value << " (" << approximate_sqrt(infinity_value) << ")" << std::endl;
|
||||
#endif
|
||||
|
||||
using TM1_hd_traits = Hausdorff_primitive_traits_tm1<Point_3, Kernel, TriangleMesh1, TriangleMesh2, VPM1, VPM2>;
|
||||
using TM2_hd_traits = Hausdorff_primitive_traits_tm2<Triangle_3, Kernel, TriangleMesh1, TriangleMesh2, VPM2>;
|
||||
|
||||
|
|
@ -1453,8 +1461,8 @@ bounded_error_squared_Hausdorff_distance_impl(const TriangleMesh1& tm1,
|
|||
|
||||
using Candidate = Candidate_triangle<Kernel, Face_handle_1, Face_handle_2>;
|
||||
|
||||
CGAL_precondition(sq_initial_bound >= square(FT(error_bound)));
|
||||
CGAL_precondition(sq_distance_bound != FT(0)); // value is -1 if unused
|
||||
CGAL_precondition(sq_error_bound >= FT(0));
|
||||
CGAL_precondition(tm1_tree.size() > 0);
|
||||
CGAL_precondition(tm2_tree.size() > 0);
|
||||
|
||||
|
|
@ -1469,7 +1477,7 @@ bounded_error_squared_Hausdorff_distance_impl(const TriangleMesh1& tm1,
|
|||
|
||||
// Build traversal traits for tm1_tree.
|
||||
TM1_hd_traits traversal_traits_tm1(tm2_tree, tm1, tm2, vpm1, vpm2,
|
||||
sq_error_bound, infinity_value, sq_initial_bound, sq_distance_bound);
|
||||
infinity_value, sq_initial_bound, sq_distance_bound);
|
||||
|
||||
// Find candidate triangles in TM1, which might realise the Hausdorff bound.
|
||||
// We build a sorted structure while collecting the candidates.
|
||||
|
|
@ -1511,8 +1519,8 @@ bounded_error_squared_Hausdorff_distance_impl(const TriangleMesh1& tm1,
|
|||
// Second, we apply subdivision.
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG
|
||||
timer.reset();
|
||||
timer.start();
|
||||
std::cout << "- applying subdivision" << std::endl;
|
||||
timer.start();
|
||||
std::size_t explored_candidates_count = 0;
|
||||
#endif
|
||||
|
||||
|
|
@ -1523,15 +1531,22 @@ bounded_error_squared_Hausdorff_distance_impl(const TriangleMesh1& tm1,
|
|||
std::cout << "===" << std::endl;
|
||||
std::cout << candidate_triangles.size() << " candidates" << std::endl;
|
||||
std::cout << "- infinity_value: " << infinity_value << std::endl;
|
||||
std::cout << "- initial_bound: " << sq_initial_bound << std::endl;
|
||||
std::cout << "- distance_bound: " << sq_distance_bound << std::endl;
|
||||
std::cout << "- error_bound: " << error_bound << std::endl;
|
||||
std::cout << "- sq_initial_bound: " << sq_initial_bound << std::endl;
|
||||
std::cout << "- sq_distance_bound: " << sq_distance_bound << std::endl;
|
||||
std::cout << "- global_bounds.lower: " << global_bounds.lower << std::endl;
|
||||
std::cout << "- global_bounds.upper: " << global_bounds.upper << std::endl;
|
||||
std::cout << "- diff = " << (global_bounds.upper - global_bounds.lower) << ", below bound? "
|
||||
<< ((global_bounds.upper - global_bounds.lower) <= sq_error_bound) << std::endl;
|
||||
std::cout << "- diff = " << CGAL::approximate_sqrt(global_bounds.upper) -
|
||||
CGAL::approximate_sqrt(global_bounds.lower) << ", below bound? "
|
||||
<< ((CGAL::approximate_sqrt(global_bounds.upper) -
|
||||
CGAL::approximate_sqrt(global_bounds.lower)) <= error_bound) << std::endl;
|
||||
#endif
|
||||
|
||||
if((global_bounds.upper - global_bounds.lower <= sq_error_bound))
|
||||
CGAL_assertion(global_bounds.lower >= FT(0));
|
||||
CGAL_assertion(global_bounds.upper >= global_bounds.lower);
|
||||
|
||||
// @todo could cache those sqrts
|
||||
if(CGAL::approximate_sqrt(global_bounds.upper) - CGAL::approximate_sqrt(global_bounds.lower) <= error_bound)
|
||||
break;
|
||||
|
||||
// Check if we can early quit.
|
||||
|
|
@ -1563,6 +1578,10 @@ bounded_error_squared_Hausdorff_distance_impl(const TriangleMesh1& tm1,
|
|||
std::cout << triangle_and_bounds.triangle.vertex(2) << std::endl;
|
||||
std::cout << "triangle_bounds.lower: " << triangle_bounds.lower << std::endl;
|
||||
std::cout << "triangle_bounds.upper: " << triangle_bounds.upper << std::endl;
|
||||
std::cout << "- diff = " << CGAL::approximate_sqrt(triangle_bounds.upper) -
|
||||
CGAL::approximate_sqrt(triangle_bounds.lower) << ", below bound? "
|
||||
<< ((CGAL::approximate_sqrt(triangle_bounds.upper) -
|
||||
CGAL::approximate_sqrt(triangle_bounds.lower)) <= error_bound) << std::endl;
|
||||
#endif
|
||||
|
||||
CGAL_assertion(triangle_bounds.lower >= FT(0));
|
||||
|
|
@ -1572,9 +1591,14 @@ bounded_error_squared_Hausdorff_distance_impl(const TriangleMesh1& tm1,
|
|||
|
||||
// Might have been a good candidate when added to the queue, but rendered useless by later insertions
|
||||
if(triangle_bounds.upper < global_bounds.lower)
|
||||
{
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_PP
|
||||
std::cout << "Upper bound is lower than global.lower" << std::endl;
|
||||
#endif
|
||||
continue;
|
||||
}
|
||||
|
||||
if((triangle_bounds.upper - triangle_bounds.lower) <= sq_error_bound)
|
||||
if((CGAL::approximate_sqrt(triangle_bounds.upper) - CGAL::approximate_sqrt(triangle_bounds.lower)) <= error_bound)
|
||||
{
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_PP
|
||||
std::cout << "Candidate triangle bounds are tight enough: " << triangle_bounds.lower << " " << triangle_bounds.upper << std::endl;
|
||||
|
|
@ -1592,30 +1616,27 @@ bounded_error_squared_Hausdorff_distance_impl(const TriangleMesh1& tm1,
|
|||
const Point_3& v1 = triangle_for_subdivision.vertex(1);
|
||||
const Point_3& v2 = triangle_for_subdivision.vertex(2);
|
||||
|
||||
// Third stopping condition: all edge lengths of the triangle are smaller than the given error bound
|
||||
// @todo can we even be here considering it implies the triangle bounds are within the error bound,
|
||||
// and thus we would have already continue'd?
|
||||
if(CGAL::squared_distance(v0, v1) < sq_error_bound &&
|
||||
CGAL::squared_distance(v0, v2) < sq_error_bound &&
|
||||
CGAL::squared_distance(v1, v2) < sq_error_bound)
|
||||
// Stopping condition: All three vertices of the triangle are projected onto the same triangle in TM2.
|
||||
const auto closest_triangle_v0 = tm2_tree.closest_point_and_primitive(v0);
|
||||
const auto closest_triangle_v1 = tm2_tree.closest_point_and_primitive(v1);
|
||||
const auto closest_triangle_v2 = tm2_tree.closest_point_and_primitive(v2);
|
||||
CGAL_assertion(closest_triangle_v0.second != boost::graph_traits<TriangleMesh2>::null_face());
|
||||
CGAL_assertion(closest_triangle_v1.second != boost::graph_traits<TriangleMesh2>::null_face());
|
||||
CGAL_assertion(closest_triangle_v2.second != boost::graph_traits<TriangleMesh2>::null_face());
|
||||
|
||||
if((closest_triangle_v0.second == closest_triangle_v1.second) &&
|
||||
(closest_triangle_v1.second == closest_triangle_v2.second))
|
||||
{
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_PP
|
||||
std::cout << "Third stopping condition, small triangle" << std::endl;
|
||||
std::cout << "Projects onto the same TM2 face" << std::endl;
|
||||
#endif
|
||||
|
||||
// By definition, lower_bound(t1, TM2) is smaller than h(t1, TM2).
|
||||
// Let `v` is the vertex of t1 and `p_l` the point on TM2 realizing the lower bound, i.e.,
|
||||
// d(v, p_l) = max_{v in t1} min_{t2 in TM2) d(v, t2).
|
||||
// Let `p` be the pair of points resp. on t1 and TM2 realizing the Hausdorff distance, i.e.,
|
||||
// h(t1, TM2) = d(p.first, p.second),
|
||||
// Since we are here:
|
||||
// d(p.first, v) < error_bound (1)
|
||||
// From the lower bound
|
||||
// d(v, p_l) <= d(p.first, p.second)
|
||||
// Because d(p.first, p.second) is the min distance from p.first to TM2,
|
||||
// d(p.first, p.second) <= d(p.first, p_l)
|
||||
// And by triangular inequality
|
||||
// d(p.first, p.second) <= d(v, p_l) + d(p.first, v) <= d(v, p_l) + error_bound = lower_bound + epsilon
|
||||
// The upper bound of this triangle is the actual Hausdorff distance of
|
||||
// the triangle to the second mesh. Use it as new global lower bound.
|
||||
// Here, we update the reference to the realizing triangle as this is the best current guess.
|
||||
global_bounds.lower = triangle_bounds.upper;
|
||||
global_bounds.lpair.second = triangle_bounds.tm2_uface;
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
|
|
@ -1651,33 +1672,34 @@ bounded_error_squared_Hausdorff_distance_impl(const TriangleMesh1& tm1,
|
|||
// (We also have that error_bound is a lower bound.)
|
||||
const Bbox_3 sub_t1_bbox = sub_triangles[i].bbox();
|
||||
|
||||
// Because:
|
||||
// The lower bound is:
|
||||
// h_lower(t1, TM2) := max_{v in t1} min_{t2 in TM2} d(v, t2)
|
||||
// adding more vertices can only increase the max (and the lower bound).
|
||||
//
|
||||
|
||||
// The upper bound is:
|
||||
// h_upper(t1, TM2) := min_{t2 in TM2} max_{v in t1} d(v, t2)
|
||||
// If t2m is the face of TM2 realizing the minimum of max_{v in t1} d(v, t2),
|
||||
// then subdividing t1 can only decrease this upper bound: let v' be a new vertex v'
|
||||
// of a triangle subdividing t1 is such that
|
||||
// min_{t2 in TM2} d(v', t2) > h_upper(t1, TM2)
|
||||
// Because the maximum of the distance over t1 is necessarily reached at a vertex,
|
||||
// there must exist a vertex v1 in t1 such that d(v1, t2) > d(v', t2), which contradicts
|
||||
// the definition of v'.
|
||||
// Thus, subdivision can only decrease the upper bound.
|
||||
// @FIXME using 'triangle_bounds' actually create bugs?...
|
||||
Local_bounds<Kernel, Face_handle_1, Face_handle_2> bounds(infinity_value);
|
||||
// The value max_{p in t1} d(p, t2) is realized at a vertex of t1.
|
||||
// Thus, when splitting t1 into four subtriangles, the distance at the three new vertices
|
||||
// is smaller than max_{v in t1} d(v, t2)
|
||||
// Thus, subdivision can only decrease the min, and the upper bound.
|
||||
Local_bounds<Kernel, Face_handle_1, Face_handle_2> bounds(triangle_bounds.upper);
|
||||
|
||||
// Ensure 'uface' is initialized in case the upper bound is not changed by the subdivision
|
||||
bounds.tm2_uface = triangle_bounds.tm2_uface;
|
||||
|
||||
TM2_hd_traits traversal_traits_tm2(sub_t1_bbox, tm2, vpm2, bounds, global_bounds, infinity_value);
|
||||
tm2_tree.traversal_with_priority(sub_triangles[i], traversal_traits_tm2);
|
||||
|
||||
// Update global lower Hausdorff bound according to the obtained local bounds.
|
||||
const auto& sub_triangle_bounds = traversal_traits_tm2.get_local_bounds();
|
||||
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_PP
|
||||
std::cout << "Subdivided triangle bounds: " << sub_triangle_bounds.lower << " " << sub_triangle_bounds.upper << std::endl;
|
||||
#endif
|
||||
|
||||
CGAL_assertion(sub_triangle_bounds.lower >= FT(0));
|
||||
CGAL_assertion(sub_triangle_bounds.upper >= sub_triangle_bounds.lower);
|
||||
CGAL_assertion(sub_triangle_bounds.tm2_lface != boost::graph_traits<TriangleMesh2>::null_face());
|
||||
CGAL_assertion(sub_triangle_bounds.tm2_uface != boost::graph_traits<TriangleMesh2>::null_face());
|
||||
|
||||
// The global lower bound is the max of the per-face lower bounds
|
||||
if(sub_triangle_bounds.lower > global_bounds.lower)
|
||||
|
|
@ -1692,7 +1714,6 @@ bounded_error_squared_Hausdorff_distance_impl(const TriangleMesh1& tm1,
|
|||
// which can go down, so it is only recomputed once splitting is finished,
|
||||
// using the top value of the PQ
|
||||
|
||||
// Add the subtriangle to the candidate list.
|
||||
candidate_triangles.emplace(sub_triangles[i], sub_triangle_bounds, triangle_and_bounds.tm1_face);
|
||||
}
|
||||
|
||||
|
|
@ -1700,31 +1721,28 @@ bounded_error_squared_Hausdorff_distance_impl(const TriangleMesh1& tm1,
|
|||
const Candidate& top_candidate = candidate_triangles.top();
|
||||
const FT current_upmost = top_candidate.bounds.upper;
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_PP
|
||||
std::cout << "current candidates count: " << candidate_triangles.size() << std::endl;
|
||||
std::cout << "global_bounds.lower = " << global_bounds.lower << std::endl;
|
||||
std::cout << "global_bounds.upper = " << global_bounds.upper << std::endl;
|
||||
std::cout << "current upper bound = " << current_upmost << std::endl;
|
||||
#endif
|
||||
|
||||
CGAL_assertion(is_positive(current_upmost));
|
||||
|
||||
// Below can happen if the subtriangle returned something like [l;u],
|
||||
// with l and u both below the global error bound. The lowest bound will not have been updated
|
||||
// since it has been initialized with the error bound.
|
||||
if(current_upmost < global_bounds.lower)
|
||||
{
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_PP
|
||||
std::cout << "upmost is below lowest, end." << std::endl;
|
||||
std::cout << "Top of the queue is lower than the lowest!" << std::endl;
|
||||
#endif
|
||||
|
||||
global_bounds.upper = global_bounds.lower; // not really needed since lower is returned but doesn't hurt
|
||||
global_bounds.upair.first = global_bounds.lpair.first;
|
||||
global_bounds.upair.second = global_bounds.lpair.second;
|
||||
|
||||
// Current upmost being equal to the lower is fine, but if it's strictly below, it must
|
||||
// be because we crossed the error bound, or there is some issue...
|
||||
CGAL_assertion(global_bounds.lower == sq_error_bound);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
CGAL_assertion(current_upmost >= global_bounds.lower);
|
||||
|
||||
global_bounds.upper = current_upmost;
|
||||
global_bounds.upair.first = top_candidate.tm1_face;
|
||||
global_bounds.upair.second = top_candidate.bounds.tm2_uface;
|
||||
|
|
@ -1741,8 +1759,17 @@ bounded_error_squared_Hausdorff_distance_impl(const TriangleMesh1& tm1,
|
|||
timer.stop();
|
||||
std::cout << "* subdivision (sec.): " << timer.time() << std::endl;
|
||||
std::cout << "Explored " << explored_candidates_count << " candidates" << std::endl;
|
||||
std::cout << "Final global bounds: " << global_bounds.lower << " " << global_bounds.upper << std::endl;
|
||||
std::cout << "Final global bounds (sqrt): " << CGAL::approximate_sqrt(global_bounds.lower) << " "
|
||||
<< CGAL::approximate_sqrt(global_bounds.upper) << std::endl;
|
||||
std::cout << "Difference: " << CGAL::approximate_sqrt(global_bounds.upper) -
|
||||
CGAL::approximate_sqrt(global_bounds.lower) << std::endl;
|
||||
#endif
|
||||
|
||||
CGAL_assertion(global_bounds.lower >= FT(0));
|
||||
CGAL_assertion(global_bounds.upper >= global_bounds.lower);
|
||||
CGAL_assertion(CGAL::approximate_sqrt(global_bounds.upper) - CGAL::approximate_sqrt(global_bounds.lower) <= error_bound);
|
||||
|
||||
// Get realizing triangles.
|
||||
CGAL_assertion(global_bounds.lpair.first != boost::graph_traits<TriangleMesh1>::null_face());
|
||||
CGAL_assertion(global_bounds.lpair.second != boost::graph_traits<TriangleMesh2>::null_face());
|
||||
|
|
@ -1857,7 +1884,7 @@ struct Bounded_error_squared_distance_computation
|
|||
|
||||
const std::vector<TriangleMesh1>& tm1_parts;
|
||||
const TriangleMesh2& tm2;
|
||||
const FT sq_error_bound;
|
||||
const double error_bound;
|
||||
const VPM1 vpm1; const VPM2 vpm2;
|
||||
const FT infinity_value;
|
||||
const FT sq_initial_bound;
|
||||
|
|
@ -1868,14 +1895,14 @@ struct Bounded_error_squared_distance_computation
|
|||
// Constructor.
|
||||
Bounded_error_squared_distance_computation(const std::vector<TriangleMesh1>& tm1_parts,
|
||||
const TriangleMesh2& tm2,
|
||||
const FT sq_error_bound,
|
||||
const double error_bound,
|
||||
const VPM1 vpm1, const VPM2 vpm2,
|
||||
const FT infinity_value,
|
||||
const FT sq_initial_bound,
|
||||
const std::vector<TM1Tree>& tm1_trees,
|
||||
const TM2Tree& tm2_tree)
|
||||
: tm1_parts(tm1_parts), tm2(tm2),
|
||||
sq_error_bound(sq_error_bound),
|
||||
error_bound(error_bound),
|
||||
vpm1(vpm1), vpm2(vpm2),
|
||||
infinity_value(infinity_value), sq_initial_bound(sq_initial_bound),
|
||||
tm1_trees(tm1_trees), tm2_tree(tm2_tree),
|
||||
|
|
@ -1887,7 +1914,7 @@ struct Bounded_error_squared_distance_computation
|
|||
// Split constructor.
|
||||
Bounded_error_squared_distance_computation(Bounded_error_squared_distance_computation& s, tbb::split)
|
||||
: tm1_parts(s.tm1_parts), tm2(s.tm2),
|
||||
sq_error_bound(s.sq_error_bound),
|
||||
error_bound(s.error_bound),
|
||||
vpm1(s.vpm1), vpm2(s.vpm2),
|
||||
infinity_value(s.infinity_value), sq_initial_bound(s.sq_initial_bound),
|
||||
tm1_trees(s.tm1_trees), tm2_tree(s.tm2_tree),
|
||||
|
|
@ -1919,7 +1946,7 @@ struct Bounded_error_squared_distance_computation
|
|||
// for checking if two meshes are close.
|
||||
const FT sqd = bounded_error_squared_Hausdorff_distance_impl<Kernel>(
|
||||
tm1, tm2, vpm1, vpm2, tm1_tree, tm2_tree,
|
||||
sq_error_bound, sq_initial_bound, FT(-1) /*sq_distance_bound*/, infinity_value,
|
||||
error_bound, sq_initial_bound, FT(-1) /*sq_distance_bound*/, infinity_value,
|
||||
stub);
|
||||
if(sqd > sq_dist)
|
||||
sq_dist = sqd;
|
||||
|
|
@ -1954,7 +1981,7 @@ template <class Concurrency_tag,
|
|||
typename Kernel::FT
|
||||
bounded_error_squared_one_sided_Hausdorff_distance_impl(const TriangleMesh1& tm1,
|
||||
const TriangleMesh2& tm2,
|
||||
const typename Kernel::FT sq_error_bound,
|
||||
const typename Kernel::FT error_bound,
|
||||
const typename Kernel::FT sq_distance_bound,
|
||||
const bool compare_meshes,
|
||||
const VPM1 vpm1,
|
||||
|
|
@ -2165,9 +2192,9 @@ bounded_error_squared_one_sided_Hausdorff_distance_impl(const TriangleMesh1& tm1
|
|||
}
|
||||
|
||||
CGAL_assertion(infinity_value > FT(0));
|
||||
CGAL_assertion(sq_error_bound >= FT(0));
|
||||
CGAL_assertion(error_bound >= 0.);
|
||||
|
||||
const FT sq_initial_bound = sq_error_bound;
|
||||
const FT sq_initial_bound = square(FT(error_bound));
|
||||
FT sq_hdist = FT(-1);
|
||||
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG
|
||||
|
|
@ -2186,7 +2213,7 @@ bounded_error_squared_one_sided_Hausdorff_distance_impl(const TriangleMesh1& tm1
|
|||
|
||||
using Comp = Bounded_error_squared_distance_computation<TMF, TM2, VPM1, VPM2, TMF_tree, TM2_tree, Kernel>;
|
||||
|
||||
Comp bedc(tm1_parts, tm2, sq_error_bound, vpm1, vpm2,
|
||||
Comp bedc(tm1_parts, tm2, error_bound, vpm1, vpm2,
|
||||
infinity_value, sq_initial_bound, tm1_trees, tm2_tree);
|
||||
tbb::parallel_reduce(tbb::blocked_range<std::size_t>(0, tm1_parts.size()), bedc);
|
||||
|
||||
|
|
@ -2196,11 +2223,11 @@ bounded_error_squared_one_sided_Hausdorff_distance_impl(const TriangleMesh1& tm1
|
|||
#endif // defined(CGAL_LINKED_WITH_TBB) && defined(CGAL_METIS_ENABLED)
|
||||
{
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG
|
||||
std::cout << "* executing sequential version " << std::endl;
|
||||
std::cout << "* executing sequential version" << std::endl;
|
||||
#endif
|
||||
sq_hdist = bounded_error_squared_Hausdorff_distance_impl<Kernel>(
|
||||
tm1, tm2, vpm1, vpm2, tm1_tree, tm2_tree,
|
||||
sq_error_bound, sq_initial_bound, sq_distance_bound, infinity_value, out);
|
||||
error_bound, sq_initial_bound, sq_distance_bound, infinity_value, out);
|
||||
}
|
||||
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG
|
||||
|
|
@ -2228,7 +2255,7 @@ template <class Concurrency_tag,
|
|||
typename Kernel::FT
|
||||
bounded_error_squared_symmetric_Hausdorff_distance_impl(const TriangleMesh1& tm1,
|
||||
const TriangleMesh2& tm2,
|
||||
const typename Kernel::FT sq_error_bound,
|
||||
const typename Kernel::FT error_bound,
|
||||
const typename Kernel::FT sq_distance_bound,
|
||||
const bool compare_meshes,
|
||||
const VPM1 vpm1,
|
||||
|
|
@ -2264,6 +2291,7 @@ bounded_error_squared_symmetric_Hausdorff_distance_impl(const TriangleMesh1& tm1
|
|||
std::vector<Face_handle_1> tm1_only;
|
||||
std::vector<Face_handle_2> tm2_only;
|
||||
|
||||
const FT sq_error_bound = square(FT(error_bound));
|
||||
FT infinity_value = FT(-1);
|
||||
|
||||
// All trees below are built and/or accelerated lazily.
|
||||
|
|
@ -2289,6 +2317,7 @@ bounded_error_squared_symmetric_Hausdorff_distance_impl(const TriangleMesh1& tm1
|
|||
|
||||
return 0.; // TM1 and TM2 are equal so the distance is zero
|
||||
}
|
||||
|
||||
CGAL_assertion(is_positive(infinity_value));
|
||||
|
||||
// Compute the first one-sided distance.
|
||||
|
|
@ -2299,7 +2328,7 @@ bounded_error_squared_symmetric_Hausdorff_distance_impl(const TriangleMesh1& tm1
|
|||
{
|
||||
sq_dista = bounded_error_squared_Hausdorff_distance_impl<Kernel>(
|
||||
tm1, tm2, vpm1, vpm2, tm1_tree, tm2_tree,
|
||||
sq_error_bound, sq_initial_bound, sq_distance_bound, infinity_value, out1);
|
||||
error_bound, sq_initial_bound, sq_distance_bound, infinity_value, out1);
|
||||
}
|
||||
|
||||
// In case this is true, we need to rebuild trees in order to accelerate
|
||||
|
|
@ -2323,7 +2352,7 @@ bounded_error_squared_symmetric_Hausdorff_distance_impl(const TriangleMesh1& tm1
|
|||
{
|
||||
sq_distb = bounded_error_squared_Hausdorff_distance_impl<Kernel>(
|
||||
tm2, tm1, vpm2, vpm1, tm2_tree, tm1_tree,
|
||||
sq_error_bound, sq_initial_bound, sq_distance_bound, infinity_value, out2);
|
||||
error_bound, sq_initial_bound, sq_distance_bound, infinity_value, out2);
|
||||
}
|
||||
|
||||
return (CGAL::max)(sq_dista, sq_distb);
|
||||
|
|
@ -2496,10 +2525,9 @@ double bounded_error_Hausdorff_distance(const TriangleMesh1& tm1,
|
|||
CGAL::Emptyset_iterator());
|
||||
|
||||
CGAL_precondition(error_bound >= 0.);
|
||||
const FT sq_error_bound = square(FT(error_bound));
|
||||
|
||||
const FT sq_hdist = internal::bounded_error_squared_one_sided_Hausdorff_distance_impl<Concurrency_tag, Traits>(
|
||||
tm1, tm2, sq_error_bound, FT(-1) /*distance threshold*/, match_faces, vpm1, vpm2, np1, np2, out);
|
||||
tm1, tm2, error_bound, FT(-1) /*distance threshold*/, match_faces, vpm1, vpm2, np1, np2, out);
|
||||
|
||||
return to_double(approximate_sqrt(sq_hdist));
|
||||
}
|
||||
|
|
@ -2550,10 +2578,9 @@ double bounded_error_symmetric_Hausdorff_distance(const TriangleMesh1& tm1,
|
|||
CGAL::Emptyset_iterator());
|
||||
|
||||
CGAL_precondition(error_bound >= 0.);
|
||||
const FT sq_error_bound = square(FT(error_bound));
|
||||
|
||||
const FT sq_hdist = internal::bounded_error_squared_symmetric_Hausdorff_distance_impl<Concurrency_tag, Traits>(
|
||||
tm1, tm2, sq_error_bound, FT(-1) /*distance_threshold*/, match_faces, vpm1, vpm2, np1, np2, out1, out2);
|
||||
tm1, tm2, error_bound, FT(-1) /*distance_threshold*/, match_faces, vpm1, vpm2, np1, np2, out1, out2);
|
||||
|
||||
return to_double(approximate_sqrt(sq_hdist));
|
||||
}
|
||||
|
|
@ -2614,7 +2641,6 @@ bool is_Hausdorff_distance_larger(const TriangleMesh1& tm1,
|
|||
const bool use_one_sided = choose_parameter(get_parameter(np1, internal_np::use_one_sided_hausdorff), true);
|
||||
|
||||
CGAL_precondition(error_bound >= 0.);
|
||||
const FT sq_error_bound = square(FT(error_bound));
|
||||
CGAL_precondition(distance_bound > 0.);
|
||||
const FT sq_distance_bound = square(FT(distance_bound));
|
||||
|
||||
|
|
@ -2624,12 +2650,12 @@ bool is_Hausdorff_distance_larger(const TriangleMesh1& tm1,
|
|||
if(use_one_sided)
|
||||
{
|
||||
sq_hdist = internal::bounded_error_squared_one_sided_Hausdorff_distance_impl<Concurrency_tag, Traits>(
|
||||
tm1, tm2, sq_error_bound, sq_distance_bound, match_faces, vpm1, vpm2, np1, np2, stub);
|
||||
tm1, tm2, error_bound, sq_distance_bound, match_faces, vpm1, vpm2, np1, np2, stub);
|
||||
}
|
||||
else
|
||||
{
|
||||
sq_hdist = internal::bounded_error_squared_symmetric_Hausdorff_distance_impl<Concurrency_tag, Traits>(
|
||||
tm1, tm2, sq_error_bound, sq_distance_bound, match_faces, vpm1, vpm2, np1, np2, stub, stub);
|
||||
tm1, tm2, error_bound, sq_distance_bound, match_faces, vpm1, vpm2, np1, np2, stub, stub);
|
||||
}
|
||||
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG
|
||||
|
|
@ -2667,10 +2693,9 @@ double bounded_error_Hausdorff_distance_naive(const TriangleMesh1& tm1,
|
|||
get_const_property_map(vertex_point, tm2));
|
||||
|
||||
CGAL_precondition(error_bound >= 0.);
|
||||
const FT sq_error_bound = square(FT(error_bound));
|
||||
|
||||
const FT sq_hdist = internal::bounded_error_squared_Hausdorff_distance_naive_impl<Concurrency_tag, Traits>(
|
||||
tm1, tm2, sq_error_bound, vpm1, vpm2);
|
||||
tm1, tm2, error_bound, vpm1, vpm2);
|
||||
|
||||
return to_double(approximate_sqrt(sq_hdist));
|
||||
}
|
||||
|
|
|
|||
|
|
@ -25,12 +25,6 @@
|
|||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_PP
|
||||
#ifndef CGAL_HAUSDORFF_DEBUG
|
||||
#define CGAL_HAUSDORFF_DEBUG
|
||||
#endif
|
||||
#endif
|
||||
|
||||
namespace CGAL {
|
||||
namespace Polygon_mesh_processing {
|
||||
namespace internal {
|
||||
|
|
@ -188,11 +182,14 @@ public:
|
|||
if(m_early_exit)
|
||||
return;
|
||||
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_PP
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_TM2_TRAVERSAL
|
||||
std::cout << "Intersection with TM2's " << primitive.id() << std::endl;
|
||||
std::cout << "Initial local bounds " << m_local_bounds.lower << " " << m_local_bounds.upper << std::endl;
|
||||
#endif
|
||||
|
||||
CGAL_assertion(m_local_bounds.lower >= FT(0));
|
||||
CGAL_assertion(m_local_bounds.upper >= FT(0));
|
||||
|
||||
/* Have reached a single triangle, process it.
|
||||
/ Determine the upper distance according to
|
||||
/ min_{b \in primitive} ( max_{vertex in query} ( d(vertex, b) ) )
|
||||
|
|
@ -210,7 +207,7 @@ public:
|
|||
CGAL_assertion(primitive.id() != Face_handle_2());
|
||||
const Triangle_3 triangle = get(m_face_to_triangle_map, primitive.id());
|
||||
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_PP
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_TM2_TRAVERSAL
|
||||
std::cout << "Geometry: " << triangle << std::endl;
|
||||
#endif
|
||||
|
||||
|
|
@ -238,7 +235,7 @@ public:
|
|||
// h_lower_i(query, TM2) := max_{v in query} min_{1<=j<=i} d(v, primitive_j)
|
||||
const FT distance_lower = (CGAL::max)((CGAL::max)(m_v0_lower, m_v1_lower), m_v2_lower);
|
||||
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_PP
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_TM2_TRAVERSAL
|
||||
std::cout << "Distance from vertices of t1 to t2: " << v0_dist << " " << v1_dist << " " << v2_dist << std::endl;
|
||||
#endif
|
||||
|
||||
|
|
@ -247,10 +244,9 @@ public:
|
|||
|
||||
// With each new TM2 face, the min value m_v{k}_lower can become smaller,
|
||||
// and thus also the value max_{v in query} min_{1<=j<=i} d(v, primitive_j)
|
||||
CGAL_assertion(m_local_bounds.lower >= FT(0));
|
||||
if(distance_lower < m_local_bounds.lower)
|
||||
{
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_PP
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_TM2_TRAVERSAL
|
||||
std::cout << "new best lower (" << distance_lower << ") with TM2 face: " << triangle << std::endl;
|
||||
#endif
|
||||
m_local_bounds.lower = distance_lower;
|
||||
|
|
@ -259,20 +255,21 @@ public:
|
|||
|
||||
// This is the 'min_{1<=j<=i}' part in:
|
||||
// h_upper_i(query, TM2) = min_{1<=j<=i} max_{v in query} (v, primitive_j), Equation (10)
|
||||
CGAL_assertion(m_local_bounds.upper >= FT(0));
|
||||
if(distance_upper < m_local_bounds.upper)
|
||||
{
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_PP
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_TM2_TRAVERSAL
|
||||
std::cout << "new best upper (" << distance_upper << ") with TM2 face: " << triangle << std::endl;
|
||||
#endif
|
||||
m_local_bounds.upper = distance_upper;
|
||||
m_local_bounds.tm2_uface = primitive.id();
|
||||
}
|
||||
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_PP
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_TM2_TRAVERSAL
|
||||
std::cout << "Distance from vertices of t1 to t2: " << v0_dist << " " << v1_dist << " " << v2_dist << std::endl;
|
||||
std::cout << "Current local bounds " << m_local_bounds.lower << " " << m_local_bounds.upper << std::endl;
|
||||
#endif
|
||||
|
||||
CGAL_assertion(m_local_bounds.lower >= FT(0));
|
||||
CGAL_assertion(m_local_bounds.lower <= m_local_bounds.upper);
|
||||
|
||||
// #define CGAL_PMP_HDIST_NO_CULLING_DURING_TRAVERSAL
|
||||
|
|
@ -281,8 +278,8 @@ public:
|
|||
// whereas the rhs can only go up with every additional TM1 face
|
||||
if(m_local_bounds.upper < m_global_bounds.lower) // Section 4.1, first §
|
||||
{
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_PP
|
||||
std::cout << "Quitting early (TM2 traversal): " << m_global_bounds.lower << std::endl;
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_TM2_TRAVERSAL
|
||||
std::cout << "Quitting early (TM2 traversal), global lower " << m_global_bounds.lower << " greater than local upper " << m_local_bounds.upper << std::endl;
|
||||
#endif
|
||||
m_early_exit = true;
|
||||
}
|
||||
|
|
@ -298,7 +295,7 @@ public:
|
|||
if(m_early_exit)
|
||||
return std::make_pair(false, FT(0));
|
||||
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_PP
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_TM2_TRAVERSAL
|
||||
std::cout << "Do_intersect TM2 node with bbox: " << node.bbox() << std::endl;
|
||||
#endif
|
||||
|
||||
|
|
@ -333,8 +330,8 @@ public:
|
|||
// between the query and the TM2 primitives that are children of this node.
|
||||
// If this lower bound is greater than the current upper bound for this query,
|
||||
// then none of these primitives will reduce the Hausdorff distance between the query and TM2.
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_PP
|
||||
std::cout << "Culling TM1? dist vs local bound upper " << sq_dist << " " << m_local_bounds.upper << std::endl;
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_TM2_TRAVERSAL
|
||||
std::cout << "Culling TM2? dist vs local bound upper " << sq_dist << " " << m_local_bounds.upper << std::endl;
|
||||
#endif
|
||||
CGAL_assertion(m_local_bounds.upper >= FT(0));
|
||||
if(sq_dist > m_local_bounds.upper)
|
||||
|
|
@ -408,7 +405,6 @@ private:
|
|||
const TM1_face_to_triangle_map m_face_to_triangle_map;
|
||||
|
||||
// Internal bounds and values.
|
||||
const FT m_sq_error_bound;
|
||||
const FT m_sq_initial_bound;
|
||||
const FT m_sq_distance_bound;
|
||||
const FT m_infinity_value;
|
||||
|
|
@ -424,7 +420,6 @@ public:
|
|||
const TriangleMesh2& tm2,
|
||||
const VPM1 vpm1,
|
||||
const VPM2 vpm2,
|
||||
const FT sq_error_bound,
|
||||
const FT infinity_value,
|
||||
const FT sq_initial_bound,
|
||||
const FT sq_distance_bound)
|
||||
|
|
@ -432,20 +427,17 @@ public:
|
|||
m_vpm1(vpm1), m_vpm2(vpm2),
|
||||
m_tm2_tree(tree),
|
||||
m_face_to_triangle_map(&m_tm1, m_vpm1),
|
||||
m_sq_error_bound(sq_error_bound),
|
||||
m_sq_initial_bound(sq_initial_bound),
|
||||
m_sq_distance_bound(sq_distance_bound),
|
||||
m_infinity_value(infinity_value),
|
||||
m_global_bounds(m_infinity_value),
|
||||
m_early_exit(false)
|
||||
{
|
||||
CGAL_precondition(m_sq_error_bound >= FT(0));
|
||||
CGAL_precondition(m_infinity_value >= FT(0));
|
||||
CGAL_precondition(m_sq_initial_bound >= m_sq_error_bound);
|
||||
|
||||
// Bounds grow with every face of TM1 (Equation (6)).
|
||||
// If we initialize to zero here, then we are very slow even for big input error bounds!
|
||||
// Instead, we can use m_sq_error_bound as our initial guess to filter out all pairs
|
||||
// Instead, we can use the error bound as our initial guess to filter out all pairs
|
||||
// which are already within this bound. It makes the code faster for close meshes.
|
||||
m_global_bounds.lower = m_sq_initial_bound;
|
||||
m_global_bounds.upper = m_sq_initial_bound;
|
||||
|
|
@ -544,7 +536,7 @@ public:
|
|||
if(m_early_exit)
|
||||
return;
|
||||
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_PP
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_TM1_TRAVERSAL
|
||||
std::cout << "Intersection with TM1's " << primitive.id() << std::endl;
|
||||
std::cout << "Initial global bounds " << m_global_bounds.lower << " " << m_global_bounds.upper << std::endl;
|
||||
#endif
|
||||
|
|
@ -554,7 +546,7 @@ public:
|
|||
const Face_handle_1 tm1_face = primitive.id();
|
||||
const Triangle_3 triangle = get(m_face_to_triangle_map, tm1_face);
|
||||
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_PP
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_TM1_TRAVERSAL
|
||||
std::cout << "Geometry: " << triangle << std::endl;
|
||||
#endif
|
||||
|
||||
|
|
@ -566,12 +558,14 @@ public:
|
|||
|
||||
// Post traversal, we have computed h_lower(query, TM2) and h_upper(query, TM2)
|
||||
const auto& local_bounds = traversal_traits_tm2.get_local_bounds();
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_PP
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_TM1_TRAVERSAL
|
||||
std::cout << "Bounds for TM1 primitive: " << local_bounds.lower << " " << local_bounds.upper << std::endl;
|
||||
#endif
|
||||
|
||||
CGAL_assertion(local_bounds.lower >= FT(0));
|
||||
CGAL_assertion(local_bounds.upper >= local_bounds.lower);
|
||||
CGAL_assertion(local_bounds.tm2_lface != boost::graph_traits<TriangleMesh2>::null_face());
|
||||
CGAL_assertion(local_bounds.tm2_uface != boost::graph_traits<TriangleMesh2>::null_face());
|
||||
|
||||
// Update global Hausdorff bounds according to the obtained local bounds.
|
||||
// h_lower(TM1, TM2) = max_{query in TM1} h_lower(query, TM2)
|
||||
|
|
@ -617,7 +611,7 @@ public:
|
|||
if(m_early_exit)
|
||||
return std::make_pair(false, FT(0));
|
||||
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_PP
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_TM1_TRAVERSAL
|
||||
std::cout << "Do_intersect TM1 node with bbox " << node.bbox() << std::endl;
|
||||
#endif
|
||||
|
||||
|
|
@ -640,7 +634,7 @@ public:
|
|||
// If the upper bound is smaller than the current global lower bound,
|
||||
// it is pointless to visit this node (and its children) because a larger distance
|
||||
// has been found somewhere else.
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_PP
|
||||
#ifdef CGAL_HAUSDORFF_DEBUG_TM1_TRAVERSAL
|
||||
std::cout << "Culling TM1? dist & global lower bound: " << sq_dist << " " << m_global_bounds.lower << std::endl;
|
||||
#endif
|
||||
CGAL_assertion(m_global_bounds.lower >= FT(0));
|
||||
|
|
|
|||
|
|
@ -280,9 +280,9 @@ void run(const std::pair<TriangleMesh, std::string>& input)
|
|||
|
||||
time_all_policies(input.first, out);
|
||||
|
||||
// std::array<double, 10> range {{ 0.15 }};
|
||||
std::array<double, 1> range {{ 0.15 }};
|
||||
// std::array<double, 10> range {{ 0.7, 0.6, 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15 }};
|
||||
// hausdorff_errors(input.first, out, range.begin(), range.end());
|
||||
hausdorff_errors(input.first, out, range.begin(), range.end());
|
||||
|
||||
gather_face_aspect_ratio(input.first, out);
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue