mirror of https://github.com/CGAL/cgal
Doc changes
This commit is contained in:
parent
fe8f36bcac
commit
2d3daa5f58
|
|
@ -10,12 +10,12 @@ as outer approximation a sphere with radius \f$ r+\epsilon\f$.
|
|||
|
||||
\attention The fuzziness of a `Fuzzy_sphere` is specified by a parameter \f$ \epsilon\f$
|
||||
denoting a maximal allowed distance to the boundary of a sphere.
|
||||
If the distance to the boundary is at least \f$ \epsilon\f$, points inside the
|
||||
If the distance to the boundary is greater than \f$ \epsilon\f$, points inside the
|
||||
object are always reported and points outside the sphere are never reported.
|
||||
Points within distance \f$ \epsilon\f$ to the boundary may be or may be not reported.
|
||||
Subsequently, points on the inner and outer spheres may or may not be reported
|
||||
by a search query. Specifically when \f$ \epsilon = 0\f$, points on the sphere
|
||||
of radius \f$ r\f$ may or may not be reported.
|
||||
Points whose distance to the boundary is less than or equal to \f$ \epsilon\f$
|
||||
may or may not be reported. Subsequently, points on the inner and outer spheres
|
||||
may or may not be reported. Specifically when \f$ \epsilon = 0\f$, points
|
||||
on the sphere of radius \f$ r\f$ may or may not be reported.
|
||||
|
||||
\tparam Traits must be a model of the concept
|
||||
`SearchTraits`, for example `CGAL::Cartesian_d<double>`.
|
||||
|
|
@ -90,7 +90,7 @@ bool inner_range_intersects(const Kd_tree_rectangle<FT,D>& rectangle) const;
|
|||
/*!
|
||||
Test whether the outer sphere encloses the rectangle associated with a node of a tree.
|
||||
|
||||
That is, whether the minimal distance between the center of the fuzzy sphere and
|
||||
That is, whether the maximal distance between the center of the fuzzy sphere and
|
||||
`rectangle` is less than \f$ r+\epsilon\f$.
|
||||
*/
|
||||
bool outer_range_contains(const Kd_tree_rectangle<FT,D>& rectangle) const;
|
||||
|
|
|
|||
|
|
@ -59,9 +59,7 @@ namespace CGAL {
|
|||
}
|
||||
|
||||
bool contains(const typename SearchTraits::Point_d& p) const {
|
||||
// test whether the squared distance
|
||||
// between P and c
|
||||
// is at most the squared_radius
|
||||
// test whether the distance between c and p is less than the radius
|
||||
FT squared_radius = r*r;
|
||||
FT distance=FT(0);
|
||||
typename SearchTraits::Construct_cartesian_const_iterator_d construct_it=
|
||||
|
|
@ -70,7 +68,7 @@ namespace CGAL {
|
|||
pit = construct_it(p),
|
||||
end = construct_it(c, 0);
|
||||
for (; cit != end
|
||||
&& (distance <= squared_radius); ++cit, ++pit) {
|
||||
&& (distance < squared_radius); ++cit, ++pit) {
|
||||
distance +=
|
||||
((*cit)-(*pit))*((*cit)-(*pit));
|
||||
}
|
||||
|
|
@ -78,14 +76,13 @@ namespace CGAL {
|
|||
return (distance < squared_radius);
|
||||
}
|
||||
|
||||
|
||||
bool inner_range_intersects(const Kd_tree_rectangle<FT,Dimension>& rectangle) const {
|
||||
// test whether the interior of a sphere
|
||||
// with radius (r-eps) intersects r, i.e.
|
||||
// if the minimal distance of r to c is less than r-eps
|
||||
FT distance = FT(0);
|
||||
FT squared_radius = (r-eps)*(r-eps);
|
||||
typename SearchTraits::Construct_cartesian_const_iterator_d construct_it=
|
||||
bool inner_range_intersects(const Kd_tree_rectangle<FT,Dimension>& rectangle) const {
|
||||
// test whether the interior of a sphere
|
||||
// with radius (r-eps) intersects 'rectangle', i.e.
|
||||
// if the minimal distance of c to 'rectangle' is less than r-eps
|
||||
FT distance = FT(0);
|
||||
FT squared_radius = (r-eps)*(r-eps);
|
||||
typename SearchTraits::Construct_cartesian_const_iterator_d construct_it=
|
||||
traits.construct_cartesian_const_iterator_d_object();
|
||||
typename SearchTraits::Cartesian_const_iterator_d cit = construct_it(c),
|
||||
end = construct_it(c, 0);
|
||||
|
|
@ -102,17 +99,17 @@ namespace CGAL {
|
|||
}
|
||||
|
||||
|
||||
bool outer_range_contains(const Kd_tree_rectangle<FT,Dimension>& rectangle) const {
|
||||
// test whether the interior of a sphere
|
||||
// with radius (r+eps) is contained by r, i.e.
|
||||
// if the minimal distance of the boundary of r
|
||||
// to c is less than r+eps
|
||||
FT distance=FT(0);
|
||||
FT squared_radius = (r+eps)*(r+eps);
|
||||
typename SearchTraits::Construct_cartesian_const_iterator_d construct_it=
|
||||
bool outer_range_contains(const Kd_tree_rectangle<FT,Dimension>& rectangle) const {
|
||||
// test whether the interior of a sphere
|
||||
// with radius (r+eps) is contained by 'rectangle', i.e.
|
||||
// if the maximal distance of c to the boundary of 'rectangle'
|
||||
// is less than r+eps
|
||||
FT distance=FT(0);
|
||||
FT squared_radius = (r+eps)*(r+eps);
|
||||
typename SearchTraits::Construct_cartesian_const_iterator_d construct_it=
|
||||
traits.construct_cartesian_const_iterator_d_object();
|
||||
typename SearchTraits::Cartesian_const_iterator_d cit = construct_it(c),
|
||||
end = construct_it(c, 0);
|
||||
typename SearchTraits::Cartesian_const_iterator_d cit = construct_it(c),
|
||||
end = construct_it(c, 0);
|
||||
for (int i = 0; cit != end && (distance < squared_radius) ; ++cit,++i) {
|
||||
if ((*cit) <= (rectangle.min_coord(i)+rectangle.max_coord(i))/FT(2))
|
||||
distance +=
|
||||
|
|
|
|||
Loading…
Reference in New Issue