issue #7231 Improvement of layout of refines relations.

- Adjusted cgalRefines according to reviews
- Implemented it in all files
This commit is contained in:
albert-github 2023-03-14 17:37:50 +01:00
parent 19c97b031e
commit 2d60f46985
442 changed files with 527 additions and 766 deletions

View File

@ -9,7 +9,7 @@ and compute intersections between query objects and the primitives stored in the
In addition, it contains predicates and constructors to compute distances between a point query
and the primitives stored in the AABB tree.
\cgalRefines `SearchGeomTraits_3`
\cgalRefines{SearchGeomTraits_3}
\cgalHasModel All models of the concept `Kernel`

View File

@ -7,7 +7,7 @@ concept `AABBGeomTraits`. In addition to the types required by
`AABBGeomTraits` it also requires types and functors necessary to
define the Intersection_distance functor.
\cgalRefines `AABBGeomTraits`
\cgalRefines{AABBGeomTraits}
\cgalHasModel All models of the concept `Kernel`

View File

@ -7,7 +7,7 @@ The concept `AABBTraits` provides the geometric primitive types and methods for
\cgalHasModel `CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>`
\cgalRefines `SearchGeomTraits_3`
\cgalRefines{SearchGeomTraits_3}
\sa `CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>`
\sa `CGAL::AABB_tree<AABBTraits>`

View File

@ -9,7 +9,7 @@ used in the class `CGAL::Advancing_front_surface_reconstruction`.
It defines the geometric objects (points, segments...) forming the triangulation
together with a few geometric predicates and constructions on these objects.
\cgalRefines `DelaunayTriangulationTraits_3`
\cgalRefines{DelaunayTriangulationTraits_3}
\cgalHasModel All models of `Kernel`.
*/

View File

@ -8,7 +8,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableBinaryFunction` computes the integral quotient of division
with remainder.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicStructureTraits`
\sa `AlgebraicStructureTraits_::Mod`
@ -58,4 +58,4 @@ template <class NT1, class NT2> result_type operator()(NT1 x, NT2 y);
}; /* end Div */
}
}

View File

@ -189,7 +189,7 @@ r
</TABLE>
\cgalRefines `AdaptableFunctor`
\cgalRefines{AdaptableFunctor}
\sa `AlgebraicStructureTraits`
\sa `AlgebraicStructureTraits_::Mod`

View File

@ -16,7 +16,7 @@ This functor is required to provide two operators. The first operator takes two
arguments and returns true if the first argument divides the second argument.
The second operator returns \f$ c\f$ via the additional third argument.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicStructureTraits`
\sa `AlgebraicStructureTraits_::IntegralDivision`

View File

@ -17,7 +17,7 @@ unit-normal (i.e.\ have unit part 1).
to the partial order of divisibility. This is because an element \f$ a \in R\f$ is said to divide \f$ b \in R\f$, iff \f$ \exists r \in R\f$ such that \f$ a \cdot r = b\f$.
Thus, \f$ 0\f$ is divided by every element of the Ring, in particular by itself.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicStructureTraits`

View File

@ -13,7 +13,7 @@ exists (i.e.\ if \f$ x\f$ is divisible by \f$ y\f$). Otherwise the effect of inv
this operation is undefined. Since the ring represented is an integral domain,
\f$ z\f$ is uniquely defined if it exists.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicStructureTraits`
\sa `AlgebraicStructureTraits_::Divides`

View File

@ -8,7 +8,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableUnaryFunction` providing the inverse element with
respect to multiplication of a `Field`.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicStructureTraits`

View File

@ -8,7 +8,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableUnaryFunction`,
returns true in case the argument is the one of the ring.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicStructureTraits`

View File

@ -13,7 +13,7 @@ A ring element \f$ x\f$ is said to be a square iff there exists a ring element \
that \f$ x= y*y\f$. In case the ring is a `UniqueFactorizationDomain`,
\f$ y\f$ is uniquely defined up to multiplication by units.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicStructureTraits`

View File

@ -7,7 +7,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableUnaryFunction`, returns true in case the argument is the zero element of the ring.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicStructureTraits`
\sa `RealEmbeddableTraits_::IsZero`

View File

@ -7,7 +7,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableBinaryFunction` providing the k-th root.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `FieldWithRootOf`
\sa `AlgebraicStructureTraits`

View File

@ -7,7 +7,7 @@ namespace AlgebraicStructureTraits_ {
`AdaptableBinaryFunction` computes the remainder of division with remainder.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicStructureTraits`
\sa `AlgebraicStructureTraits_::Div`

View File

@ -8,7 +8,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableFunctor` computes a real root of a square-free univariate
polynomial.
\cgalRefines `AdaptableFunctor`
\cgalRefines{AdaptableFunctor}
\sa `FieldWithRootOf`
\sa `AlgebraicStructureTraits`

View File

@ -7,7 +7,7 @@ namespace AlgebraicStructureTraits_{
This `AdaptableUnaryFunction` may simplify a given object.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicStructureTraits`

View File

@ -7,7 +7,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableUnaryFunction` providing the square root.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicStructureTraits`

View File

@ -7,7 +7,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableUnaryFunction`, computing the square of the argument.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicStructureTraits`

View File

@ -21,7 +21,7 @@ hence the unit-part of a non-zero integer is its sign. For a `Field`, every
non-zero element is a unit and is its own unit part, its unit normal
associate being one. The unit part of zero is, by convention, one.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicStructureTraits`

View File

@ -25,7 +25,7 @@ The most prominent example of a Euclidean ring are the integers.
Whenever both \f$ x\f$ and \f$ y\f$ are positive, then it is conventional to choose
the smallest positive remainder \f$ r\f$.
\cgalRefines `UniqueFactorizationDomain`
\cgalRefines{UniqueFactorizationDomain}
\sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain`

View File

@ -16,7 +16,7 @@ Moreover, `CGAL::Algebraic_structure_traits< Field >` is a model of
- \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< Field >::Algebraic_category` \endlink derived from `CGAL::Field_tag`
- \link AlgebraicStructureTraits::Inverse `CGAL::Algebraic_structure_traits< FieldWithSqrt >::Inverse` \endlink which is a model of `AlgebraicStructureTraits_::Inverse`
\cgalRefines `IntegralDomain`
\cgalRefines{IntegralDomain}
\sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain`

View File

@ -7,8 +7,7 @@ The concept `FieldNumberType` combines the requirements of the concepts
A model of `FieldNumberType` can be used as a template parameter
for Cartesian kernels.
\cgalRefines `Field`
\cgalRefines `RealEmbeddable`
\cgalRefines{Field,RealEmbeddable}
\cgalHasModel float
\cgalHasModel double

View File

@ -10,7 +10,7 @@ Moreover, `CGAL::Algebraic_structure_traits< FieldWithKthRoot >` is a model of `
- \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< FieldWithKthRoot >::Algebraic_category` \endlink derived from `CGAL::Field_with_kth_root_tag`
- \link AlgebraicStructureTraits::Kth_root `CGAL::Algebraic_structure_traits< FieldWithKthRoot >::Kth_root` \endlink which is a model of `AlgebraicStructureTraits_::KthRoot`
\cgalRefines `FieldWithSqrt`
\cgalRefines{FieldWithSqrt}
\sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain`

View File

@ -11,7 +11,7 @@ Moreover, `CGAL::Algebraic_structure_traits< FieldWithRootOf >` is a model of `A
- \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< FieldWithRootOf >::Algebraic_category` \endlink derived from `CGAL::Field_with_kth_root_tag`
- \link AlgebraicStructureTraits::Root_of `CGAL::Algebraic_structure_traits< FieldWithRootOf >::Root_of` \endlink which is a model of `AlgebraicStructureTraits_::RootOf`
\cgalRefines `FieldWithKthRoot`
\cgalRefines{FieldWithKthRoot}
\sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain`

View File

@ -10,7 +10,7 @@ Moreover, `CGAL::Algebraic_structure_traits< FieldWithSqrt >` is a model of `Alg
- \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< FieldWithSqrt >::Algebraic_category` \endlink derived from `CGAL::Field_with_sqrt_tag`
- \link AlgebraicStructureTraits::Sqrt `CGAL::Algebraic_structure_traits< FieldWithSqrt >::Sqrt` \endlink which is a model of `AlgebraicStructureTraits_::Sqrt`
\cgalRefines `Field`
\cgalRefines{Field}
\sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain`

View File

@ -113,7 +113,7 @@ FractionTraits::Denominator_type & d);
`AdaptableBinaryFunction`, returns the fraction of its arguments.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `Fraction`
\sa `FractionTraits`
@ -168,7 +168,7 @@ This can be considered as a relaxed version of `AlgebraicStructureTraits_::Gcd`,
this is needed because it is not guaranteed that `FractionTraits::Denominator_type` is a model of
`UniqueFactorizationDomain`.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `Fraction`
\sa `FractionTraits`

View File

@ -16,7 +16,7 @@ In this case
\link CGAL::Coercion_traits::Are_implicit_interoperable `CGAL::Coercion_traits<A,B>::Are_implicit_interoperable`\endlink
is `CGAL::Tag_true`.
\cgalRefines `ExplicitInteroperable`
\cgalRefines{ExplicitInteroperable}
\sa `CGAL::Coercion_traits<A,B>`
\sa `ExplicitInteroperable`

View File

@ -16,7 +16,7 @@ Moreover, `CGAL::Algebraic_structure_traits< IntegralDomain >` is a model of
- \link AlgebraicStructureTraits::Integral_division `CGAL::Algebraic_structure_traits< IntegralDomain >::Integral_division` \endlink which is a model of `AlgebraicStructureTraits_::IntegralDivision`
- \link AlgebraicStructureTraits::Divides `CGAL::Algebraic_structure_traits< IntegralDomain >::Divides` \endlink which is a model of `AlgebraicStructureTraits_::Divides`
\cgalRefines `IntegralDomainWithoutDivision`
\cgalRefines{IntegralDomainWithoutDivision}
\sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain`

View File

@ -29,11 +29,7 @@ Moreover, `CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >` is
- \link AlgebraicStructureTraits::Simplify `CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Simplify` \endlink which is a model of `AlgebraicStructureTraits_::Simplify`
- \link AlgebraicStructureTraits::Unit_part `CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Unit_part` \endlink which is a model of `AlgebraicStructureTraits_::UnitPart`
\cgalRefines `Assignable`
\cgalRefines `CopyConstructible`
\cgalRefines `DefaultConstructible`
\cgalRefines `EqualityComparable`
\cgalRefines `FromIntConstructible`
\cgalRefines{Assignable,CopyConstructible,DefaultConstructible,EqualityComparable,FromIntConstructible}
\sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain`

View File

@ -38,8 +38,7 @@ If a number type is a model of both `IntegralDomainWithoutDivision` and
`RealEmbeddable`, it follows that the ring represented by such a number type
is a sub-ring of the real numbers and hence has characteristic zero.
\cgalRefines `EqualityComparable`
\cgalRefines `LessThanComparable`
\cgalRefines{EqualityComparable,LessThanComparable}
\sa `RealEmbeddableTraits`

View File

@ -7,7 +7,7 @@ namespace RealEmbeddableTraits_ {
`AdaptableUnaryFunction` computes the absolute value of a number.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `RealEmbeddableTraits`

View File

@ -7,7 +7,7 @@ namespace RealEmbeddableTraits_ {
`AdaptableBinaryFunction` compares two real embeddable numbers.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `RealEmbeddableTraits`

View File

@ -7,7 +7,7 @@ namespace RealEmbeddableTraits_ {
`AdaptableUnaryFunction`, returns true in case the argument is negative.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `RealEmbeddableTraits`

View File

@ -7,7 +7,7 @@ namespace RealEmbeddableTraits_ {
`AdaptableUnaryFunction`, returns true in case the argument is positive.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `RealEmbeddableTraits`

View File

@ -7,7 +7,7 @@ namespace RealEmbeddableTraits_ {
`AdaptableUnaryFunction`, returns true in case the argument is 0.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `RealEmbeddableTraits`
\sa `AlgebraicStructureTraits_::IsZero`

View File

@ -7,7 +7,7 @@ namespace RealEmbeddableTraits_ {
This `AdaptableUnaryFunction` computes the sign of a real embeddable number.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `RealEmbeddableTraits`

View File

@ -11,7 +11,7 @@ embeddable number.
Remark: In order to control the quality of approximation one has to resort
to methods that are specific to NT. There are no general guarantees whatsoever.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `RealEmbeddableTraits`

View File

@ -9,7 +9,7 @@ namespace RealEmbeddableTraits_ {
number \f$ x\f$ a double interval containing \f$ x\f$.
This interval is represented by `std::pair<double,double>`.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `RealEmbeddableTraits`

View File

@ -8,8 +8,7 @@ The concept `RingNumberType` combines the requirements of the concepts
A model of `RingNumberType` can be used as a template parameter
for Homogeneous kernels.
\cgalRefines `IntegralDomainWithoutDivision`
\cgalRefines `RealEmbeddable`
\cgalRefines{IntegralDomainWithoutDivision,RealEmbeddable}
\cgalHasModel \cpp built-in number types
\cgalHasModel `CGAL::Gmpq`

View File

@ -23,7 +23,7 @@ is a model of `AlgebraicStructureTraits` providing:
derived from `CGAL::Unique_factorization_domain_tag`
- \link AlgebraicStructureTraits::Gcd `CGAL::Algebraic_structure_traits< UniqueFactorizationDomain >::Gcd` \endlink which is a model of `AlgebraicStructureTraits_::Gcd`
\cgalRefines `IntegralDomain`
\cgalRefines{IntegralDomain}
\sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain`

View File

@ -7,7 +7,7 @@ A model of `AlgebraicKernel_d_1::ApproximateAbsolute_1` is an `AdaptableBinaryFu
approximation of an `AlgebraicKernel_d_1::Algebraic_real_1` value with
respect to a given absolute precision.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_1::ApproximateRelative_1`

View File

@ -7,7 +7,7 @@ A model of `AlgebraicKernel_d_1::ApproximateRelative_1` is an `AdaptableBinaryFu
approximation of an `AlgebraicKernel_d_1::Algebraic_real_1` value with
respect to a given relative precision.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_1::ApproximateAbsolute_1`

View File

@ -7,7 +7,7 @@ Computes a number of type
`AlgebraicKernel_d_1::Bound` in-between two
`AlgebraicKernel_d_1::Algebraic_real_1` values.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
*/

View File

@ -5,7 +5,7 @@
Compares `AlgebraicKernel_d_1::Algebraic_real_1` values.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
*/
class AlgebraicKernel_d_1::Compare_1 {

View File

@ -6,7 +6,7 @@
Computes a square free univariate polynomial \f$ p\f$, such that the given
`AlgebraicKernel_d_1::Algebraic_real_1` is a root of \f$ p\f$.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_1::Isolate_1`

View File

@ -5,7 +5,7 @@
Constructs `AlgebraicKernel_d_1::Algebraic_real_1`.
\cgalRefines `AdaptableFunctor`
\cgalRefines{AdaptableFunctor}
\sa `AlgebraicKernel_d_2::ConstructAlgebraicReal_2`

View File

@ -6,7 +6,7 @@
Determines whether a given pair of univariate polynomials \f$ p_1, p_2\f$ is coprime,
namely if \f$ \deg({\rm gcd}(p_1 ,p_2)) = 0\f$.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_1::MakeCoprime_1`

View File

@ -5,7 +5,7 @@
Computes whether the given univariate polynomial is square free.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_1::MakeSquareFree_1`
\sa `AlgebraicKernel_d_1::SquareFreeFactorize_1`

View File

@ -6,7 +6,7 @@
Computes whether an `AlgebraicKernel_d_1::Polynomial_1`
is zero at a given `AlgebraicKernel_d_1::Algebraic_real_1`.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_1::SignAt_1`

View File

@ -6,7 +6,7 @@
Computes an open isolating interval for an `AlgebraicKernel_d_1::Algebraic_real_1`
with respect to the real roots of a given univariate polynomial.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_1::ComputePolynomial_1`

View File

@ -16,7 +16,7 @@ such that \f$ q_1\f$ and \f$ q_2\f$ are coprime.
It returns true if \f$ p_1\f$ and \f$ p_2\f$ are already coprime.
\cgalRefines `AdaptableFunctor` with five arguments
\cgalRefines{AdaptableFunctor (with five arguments)}
\sa `AlgebraicKernel_d_1::IsCoprime_1`

View File

@ -5,7 +5,7 @@
Returns a square free part of a univariate polynomial.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_1::IsSquareFree_1`
\sa `AlgebraicKernel_d_1::SquareFreeFactorize_1`

View File

@ -5,7 +5,7 @@
Computes the number of real solutions of the given univariate polynomial.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_1::ConstructAlgebraicReal_1`

View File

@ -7,7 +7,7 @@ Computes the sign of a univariate polynomial
`AlgebraicKernel_d_1::Polynomial_1` at a real value of type
`AlgebraicKernel_d_1::Algebraic_real_1`.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_1::IsZeroAt_1`

View File

@ -5,8 +5,7 @@
Computes the real roots of a univariate polynomial.
\cgalRefines `Assignable`
\cgalRefines `CopyConstructible`
\cgalRefines{Assignable,CopyConstructible}
*/

View File

@ -14,8 +14,7 @@ and a constant factor \f$ c\f$, such that
The factor multiplicity pairs \f$ <q_i,m_i>\f$ are written to the
given output iterator. The constant factor \f$ c\f$ is not computed.
\cgalRefines `Assignable`
\cgalRefines `CopyConstructible`
\cgalRefines{Assignable,CopyConstructible}
\sa `AlgebraicKernel_d_1::IsSquareFree_1`
\sa `AlgebraicKernel_d_1::MakeSquareFree_1`

View File

@ -6,8 +6,7 @@
A model of the `AlgebraicKernel_d_1` concept is meant to provide the
algebraic functionalities on univariate polynomials of general degree \f$ d\f$.
\cgalRefines `CopyConstructible`
\cgalRefines `Assignable`
\cgalRefines{CopyConstructible,Assignable}
\cgalHasModel `CGAL::Algebraic_kernel_rs_gmpz_d_1`
\cgalHasModel `CGAL::Algebraic_kernel_rs_gmpq_d_1`

View File

@ -7,7 +7,7 @@ A model of `AlgebraicKernel_d_2::ApproximateAbsoluteX_2` is an `AdaptableBinaryF
approximation of the \f$ x\f$-coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2` value
with respect to a given absolute precision.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::ApproximateRelativeX_2`
\sa `AlgebraicKernel_d_1::ApproximateAbsolute_1`

View File

@ -7,7 +7,7 @@ A model of `AlgebraicKernel_d_2::ApproximateAbsoluteY_2` is an `AdaptableBinaryF
approximation of the \f$ y\f$-coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2` value
with respect to a given absolute precision.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::ApproximateRelativeY_2`
\sa `AlgebraicKernel_d_1::ApproximateAbsolute_1`

View File

@ -7,7 +7,7 @@ A model of `AlgebraicKernel_d_2::ApproximateRelativeX_2` is an `AdaptableBinaryF
approximation of the \f$ x\f$-coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2` value
with respect to a given relative precision.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::ApproximateAbsoluteY_2`
\sa `AlgebraicKernel_d_1::ApproximateAbsolute_1`

View File

@ -7,7 +7,7 @@ A model of `AlgebraicKernel_d_2::ApproximateRelativeY_2` is an `AdaptableBinaryF
approximation of the \f$ y\f$-coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2` value
with respect to a given relative precision.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::ApproximateAbsoluteY_2`
\sa `AlgebraicKernel_d_1::ApproximateAbsolute_1`

View File

@ -7,7 +7,7 @@ Computes a number of type
`AlgebraicKernel_d_1::Bound` in-between the first coordinates of two
`AlgebraicKernel_d_2::AlgebraicReal_2`.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::BoundBetweenY_2`

View File

@ -7,7 +7,7 @@ Computes a number of type
`AlgebraicKernel_d_1::Bound` in-between the second coordinates of two
`AlgebraicKernel_d_2::AlgebraicReal_2`.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::BoundBetweenX_2`

View File

@ -5,7 +5,7 @@
Compares `AlgebraicKernel_d_2::Algebraic_real_2`s lexicographically.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::CompareX_2`
\sa `AlgebraicKernel_d_2::CompareY_2`

View File

@ -5,7 +5,7 @@
Compares the first coordinates of `AlgebraicKernel_d_2::Algebraic_real_2`s.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::CompareY_2`
\sa `AlgebraicKernel_d_2::CompareXY_2`

View File

@ -5,7 +5,7 @@
Compares the second coordinated of `AlgebraicKernel_d_2::Algebraic_real_2`s.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::CompareX_2`
\sa `AlgebraicKernel_d_2::CompareXY_2`

View File

@ -6,7 +6,7 @@
Computes a univariate square free polynomial \f$ p\f$, such that the first coordinate of
a given `AlgebraicKernel_d_2::Algebraic_real_2` is a real root of \f$ p\f$.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_2::ComputePolynomialY_2`

View File

@ -6,7 +6,7 @@
Computes a univariate square free polynomial \f$ p\f$, such that the second coordinate of
a given `AlgebraicKernel_d_2::Algebraic_real_2` is a real root of \f$ p\f$.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_2::ComputePolynomialX_2`

View File

@ -6,7 +6,7 @@
Computes the first coordinate of an
`AlgebraicKernel_d_2::AlgebraicReal_2`.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_2::ComputeY_2`

View File

@ -6,7 +6,7 @@
Computes the second coordinate of an
`AlgebraicKernel_d_2::AlgebraicReal_2`.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_2::ComputeY_2`

View File

@ -5,7 +5,7 @@
Constructs an `AlgebraicKernel_d_2::Algebraic_real_2`.
\cgalRefines `AdaptableFunctor`
\cgalRefines{AdaptableFunctor}
\sa `AlgebraicKernel_d_1::ConstructAlgebraicReal_1`

View File

@ -5,7 +5,7 @@
Computes whether a given pair of bivariate polynomials is coprime.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::MakeCoprime_2`

View File

@ -5,7 +5,7 @@
Computes whether the given bivariate polynomial is square free.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_2::MakeSquareFree_2`
\sa `AlgebraicKernel_d_2::SquareFreeFactorize_2`

View File

@ -6,7 +6,7 @@
Computes whether an `AlgebraicKernel_d_2::Polynomial_2`
is zero at a given `AlgebraicKernel_d_2::Algebraic_real_2`.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::SignAt_2`
\sa `AlgebraicKernel_d_1::IsZeroAt_1`

View File

@ -6,7 +6,7 @@
Computes an isolating interval for the first coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2`
with respect to the real roots of a univariate polynomial.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::IsolateY_2`
\sa `AlgebraicKernel_d_2::ComputePolynomialX_2`

View File

@ -6,7 +6,7 @@
Computes an isolating interval for the second coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2`
with respect to the real roots of a univariate polynomial.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::IsolateX_2`
\sa `AlgebraicKernel_d_2::ComputePolynomialX_2`

View File

@ -5,7 +5,7 @@
Computes an isolating box for a given `AlgebraicKernel_d_2::Algebraic_real_2`.
\cgalRefines `AdaptableFunctor`
\cgalRefines{AdaptableFunctor}
\sa `AlgebraicKernel_d_2::IsolateX_2`
\sa `AlgebraicKernel_d_2::IsolateY_2`

View File

@ -13,7 +13,7 @@ That is, it computes \f$ g, q_1, q_2\f$ such that:
\f$ c_2 \cdot p_2 = g \cdot q_2\f$ for some constant \f$ c_2\f$,
such that \f$ q_1\f$ and \f$ q_2\f$ are coprime.
\cgalRefines `AdaptableFunctor` with five arguments
\cgalRefines{AdaptableFunctor} with five arguments
\sa `AlgebraicKernel_d_2::IsCoprime_2`

View File

@ -5,7 +5,7 @@
Returns a square free part of a bivariate polynomial.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_2::IsSquareFree_2`
\sa `AlgebraicKernel_d_2::SquareFreeFactorize_2`

View File

@ -5,7 +5,7 @@
Computes the number of real solutions of the given bivariate polynomial system.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::ConstructAlgebraicReal_2`

View File

@ -7,7 +7,7 @@ Computes the sign of a bivariate polynomial
`AlgebraicKernel_d_2::Polynomial_2` at a value of type
`AlgebraicKernel_d_2::Algebraic_real_2`.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::IsZeroAt_2`
\sa `AlgebraicKernel_d_1::SignAt_1`

View File

@ -6,8 +6,7 @@
Computes the real zero-dimensional solutions of a bivariate polynomial system.
The multiplicity stored in the output iterator is the multiplicity in the system.
\cgalRefines `Assignable`
\cgalRefines `CopyConstructible`
\cgalRefines{Assignable,CopyConstructible}
*/
class AlgebraicKernel_d_2::Solve_2 {
public:

View File

@ -14,8 +14,7 @@ and a constant factor \f$ c\f$, such that
The factor multiplicity pairs \f$ <q_i,m_i>\f$ are written to the
given output iterator. The constant factor \f$ c\f$ is not computed.
\cgalRefines `Assignable`
\cgalRefines `CopyConstructible`
\cgalRefines{Assignable,CopyConstructible}
\sa `AlgebraicKernel_d_2::IsSquareFree_2`
\sa `AlgebraicKernel_d_2::MakeSquareFree_2`

View File

@ -6,9 +6,7 @@
A model of the `AlgebraicKernel_d_2` concept gathers necessary tools
for solving and handling bivariate polynomial systems of general degree \f$ d\f$.
\cgalRefines `AlgebraicKernel_d_1`
\cgalRefines `CopyConstructible`
\cgalRefines `Assignable`
\cgalRefines{AlgebraicKernel_d_1,CopyConstructible,Assignable}
\sa `AlgebraicKernel_d_1`

View File

@ -5,9 +5,9 @@
The concept `AlphaShapeFace_2` describes the requirements for the base face of an alpha shape.
\cgalRefines `TriangulationFaceBase_2`, if the underlying triangulation of the alpha shape is a Delaunay triangulation.
\cgalRefines `RegularTriangulationFaceBase_2`, if the underlying triangulation of the alpha shape is a regular triangulation.
\cgalRefines `Periodic_2TriangulationFaceBase_2`, if the underlying triangulation of the alpha shape is a periodic triangulation.
\cgalRefines{TriangulationFaceBase_2 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
RegularTriangulationFaceBase_2 if the underlying triangulation of the alpha shape is a regular triangulation,
Periodic_2TriangulationFaceBase_2 if the underlying triangulation of the alpha shape is a periodic triangulation}
\cgalHasModel `CGAL::Alpha_shape_face_base_2` (templated with the appropriate triangulation face base class).

View File

@ -6,8 +6,8 @@
The concept `AlphaShapeTraits_2` describes the requirements for the geometric traits
class of the underlying Delaunay triangulation of a basic alpha shape.
\cgalRefines `DelaunayTriangulationTraits_2`, if the underlying triangulation of the alpha shape is a Delaunay triangulation.
\cgalRefines `Periodic_2DelaunayTriangulationTraits_2`, if the underlying triangulation of the alpha shape is a periodic Delaunay triangulation.
\cgalRefines{DelaunayTriangulationTraits_2 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
Periodic_2DelaunayTriangulationTraits_2 if the underlying triangulation of the alpha shape is a periodic Delaunay triangulation}
\cgalHasModel All models of `Kernel`.
\cgalHasModel Projection traits such as `CGAL::Projection_traits_xy_3<K>`.

View File

@ -5,9 +5,9 @@
The concept `AlphaShapeVertex_2` describes the requirements for the base vertex of an alpha shape.
\cgalRefines `TriangulationVertexBase_2`, if the underlying triangulation of the alpha shape is a Delaunay triangulation.
\cgalRefines `RegularTriangulationVertexBase_2`, if the underlying triangulation of the alpha shape is a regular triangulation.
\cgalRefines `Periodic_2TriangulationVertexBase_2`, if the underlying triangulation of the alpha shape is a periodic triangulation.
\cgalRefines{TriangulationVertexBase_2 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
RegularTriangulationVertexBase_2 if the underlying triangulation of the alpha shape is a regular triangulation,
Periodic_2TriangulationVertexBase_2 if the underlying triangulation of the alpha shape is a periodic triangulation}
\cgalHasModel `CGAL::Alpha_shape_vertex_base_2` (templated with the appropriate triangulation vertex base class).
*/

View File

@ -7,7 +7,7 @@ The concept `WeightedAlphaShapeTraits_2` describes the requirements
for the geometric traits class
of the underlying regular triangulation of a weighted alpha shape.
\cgalRefines `RegularTriangulationTraits_2`, if the underlying triangulation of the alpha shape is a regular triangulation.
\cgalRefines{RegularTriangulationTraits_2} if the underlying triangulation of the alpha shape is a regular triangulation.}
\cgalHasModel All models of `Kernel`.
\cgalHasModel Projection traits such as `CGAL::Projection_traits_xy_3<K>`.

View File

@ -5,9 +5,9 @@
The concept `AlphaShapeCell_3` describes the requirements for the base cell of an alpha shape.
\cgalRefines `DelaunayTriangulationCellBase_3`, if the underlying triangulation of the alpha shape is a Delaunay triangulation.
\cgalRefines `RegularTriangulationCellBase_3`, if the underlying triangulation of the alpha shape is a regular triangulation.
\cgalRefines `Periodic_3TriangulationDSCellBase_3`, if the underlying triangulation of the alpha shape is a periodic triangulation.
\cgalRefines{DelaunayTriangulationCellBase_3 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
RegularTriangulationCellBase_3 if the underlying triangulation of the alpha shape is a regular triangulation,
Periodic_3TriangulationDSCellBase_3 if the underlying triangulation of the alpha shape is a periodic triangulation}
\cgalHasModel `CGAL::Alpha_shape_cell_base_3` (templated with the appropriate triangulation cell base class).

View File

@ -7,8 +7,8 @@ The concept `AlphaShapeTraits_3` describes the requirements
for the geometric traits class
of the underlying Delaunay triangulation of a basic alpha shape.
\cgalRefines `DelaunayTriangulationTraits_3`, if the underlying triangulation of the alpha shape is a Delaunay triangulation.
\cgalRefines `Periodic_3DelaunayTriangulationTraits_3`, if the underlying triangulation of the alpha shape is a periodic Delaunay triangulation.
\cgalRefines{DelaunayTriangulationTraits_3 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
Periodic_3DelaunayTriangulationTraits_3 if the underlying triangulation of the alpha shape is a periodic Delaunay triangulation}
\cgalHasModel All models of `Kernel`.

View File

@ -5,9 +5,9 @@
The concept `AlphaShapeVertex_3` describes the requirements for the base vertex of an alpha shape.
\cgalRefines `TriangulationVertexBase_3`, if the underlying triangulation of the alpha shape is a Delaunay triangulation.
\cgalRefines `RegularTriangulationVertexBase_3`, if the underlying triangulation of the alpha shape is a regular triangulation.
\cgalRefines `Periodic_3TriangulationDSVertexBase_3`, if the underlying triangulation of the alpha shape is a periodic triangulation.
\cgalRefines{TriangulationVertexBase_3 if the underlying triangulation of the alpha shape is a Delaunay triangulation.
RegularTriangulationVertexBase_3 if the underlying triangulation of the alpha shape is a regular triangulation.
Periodic_3TriangulationDSVertexBase_3 if the underlying triangulation of the alpha shape is a periodic triangulation}
\cgalHasModel `CGAL::Alpha_shape_vertex_base_3` (templated with the appropriate triangulation vertex base class).

View File

@ -5,9 +5,9 @@
The concept `FixedAlphaShapeCell_3` describes the requirements for the base cell of a alpha shape with a fixed value alpha.
\cgalRefines `DelaunayTriangulationCellBase_3`, if the underlying triangulation of the alpha shape is a Delaunay triangulation.
\cgalRefines `RegularTriangulationCellBase_3`, if the underlying triangulation of the alpha shape is a regular triangulation.
\cgalRefines `Periodic_3TriangulationDSCellBase_3`, if the underlying triangulation of the alpha shape is a periodic triangulation.
\cgalRefines{DelaunayTriangulationCellBase_3 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
RegularTriangulationCellBase_3 if the underlying triangulation of the alpha shape is a regular triangulation,
Periodic_3TriangulationDSCellBase_3 if the underlying triangulation of the alpha shape is a periodic triangulation}
\cgalHasModel `CGAL::Fixed_alpha_shape_cell_base_3` (templated with the appropriate triangulation cell base class).
*/

View File

@ -7,8 +7,8 @@ The concept `FixedAlphaShapeTraits_3` describes the requirements
for the geometric traits class
of the underlying Delaunay triangulation of a basic alpha shape with a fixed value alpha.
\cgalRefines `DelaunayTriangulationTraits_3`, if the underlying triangulation of the alpha shape is a Delaunay triangulation.
\cgalRefines `Periodic_3DelaunayTriangulationTraits_3`, if the underlying triangulation of the alpha shape is a periodic Delaunay triangulation.
\cgalRefines{DelaunayTriangulationTraits_3 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
Periodic_3DelaunayTriangulationTraits_3 if the underlying triangulation of the alpha shape is a periodic Delaunay triangulation}
\cgalHasModel All models of `Kernel`.

View File

@ -5,9 +5,9 @@
The concept `FixedAlphaShapeVertex_3` describes the requirements for the base vertex of a alpha shape with a fixed value alpha.
\cgalRefines `TriangulationVertexBase_3`, if the underlying triangulation of the alpha shape is a Delaunay triangulation.
\cgalRefines `RegularTriangulationVertexBase_3`, if the underlying triangulation of the alpha shape is a regular triangulation.
\cgalRefines `Periodic_3TriangulationDSVertexBase_3`, if the underlying triangulation of the alpha shape is a periodic triangulation.
\cgalRefines{TriangulationVertexBase_3 if the underlying triangulation of the alpha shape is a Delaunay triangulation,
RegularTriangulationVertexBase_3 if the underlying triangulation of the alpha shape is a regular triangulation,
Periodic_3TriangulationDSVertexBase_3 if the underlying triangulation of the alpha shape is a periodic triangulation}
\cgalHasModel `CGAL::Fixed_alpha_shape_vertex_base_3` (templated with the appropriate triangulation vertex base class).
*/

View File

@ -6,8 +6,8 @@
The concept `FixedWeightedAlphaShapeTraits_3` describes the requirements
for the geometric traits class of the underlying regular triangulation of a weighted alpha shape with fixed alpha value.
\cgalRefines `RegularTriangulationTraits_3`, if the underlying triangulation of the alpha shape is a regular triangulation.
\cgalRefines `Periodic_3RegularTriangulationTraits_3`, if the underlying triangulation of the alpha shape is a periodic regular triangulation.
\cgalRefines{RegularTriangulationTraits_3 if the underlying triangulation of the alpha shape is a regular triangulation,
Periodic_3RegularTriangulationTraits_3 if the underlying triangulation of the alpha shape is a periodic regular triangulation}
\cgalHasModel All models of `Kernel`.

View File

@ -7,8 +7,8 @@ The concept `WeightedAlphaShapeTraits_3` describes the requirements
for the geometric traits class
of the underlying regular triangulation of a weighted alpha shape.
\cgalRefines `RegularTriangulationTraits_3`, if the underlying triangulation of the alpha shape is a regular triangulation.
\cgalRefines `Periodic_3RegularTriangulationTraits_3`, if the underlying triangulation of the alpha shape is a periodic regular triangulation.
\cgalRefines{RegularTriangulationTraits_3 if the underlying triangulation of the alpha shape is a regular triangulation,
Periodic_3RegularTriangulationTraits_3 if the underlying triangulation of the alpha shape is a periodic regular triangulation}
\cgalHasModel All models of `Kernel`.

View File

@ -25,7 +25,7 @@ merged. </b></center>
We only describe the additional requirements with respect to the
`TriangulationDataStructure_2` concept.
\cgalRefines `TriangulationDataStructure_2`
\cgalRefines{TriangulationDataStructure_2}
\cgalHasModel `CGAL::Triangulation_data_structure_2<Vb,Fb>`

View File

@ -12,7 +12,7 @@ refines the concept `ApolloniusGraphVertexBase_2`, by
adding two vertex handles to the corresponding vertices for the
next and previous level graphs.
\cgalRefines `ApolloniusGraphVertexBase_2`
\cgalRefines{ApolloniusGraphVertexBase_2}
\cgalHeading{Types}

View File

@ -3,7 +3,7 @@
\ingroup PkgApolloniusGraph2Concepts
\cgalConcept
\cgalRefines `TriangulationTraits_2`
\cgalRefines{TriangulationTraits_2}
The concept `ApolloniusGraphTraits_2` provides the traits
requirements for the `Apollonius_graph_2` class. In particular,

Some files were not shown because too many files have changed in this diff Show More