diff --git a/Segment_Delaunay_graph_Linf_2/doc/Segment_Delaunay_graph_Linf_2/Segment_Delaunay_graph_Linf_2.txt b/Segment_Delaunay_graph_Linf_2/doc/Segment_Delaunay_graph_Linf_2/Segment_Delaunay_graph_Linf_2.txt index 8d44b16c019..b6ee6a9aec1 100644 --- a/Segment_Delaunay_graph_Linf_2/doc/Segment_Delaunay_graph_Linf_2/Segment_Delaunay_graph_Linf_2.txt +++ b/Segment_Delaunay_graph_Linf_2/doc/Segment_Delaunay_graph_Linf_2/Segment_Delaunay_graph_Linf_2.txt @@ -18,7 +18,7 @@ Delaunay graph algorithm and traits under the Euclidean (or \f$ L_{2} \f$) distance. Segment Voronoi diagrams in the \f$ L_{\infty} \f$ metric have applications -in VLSI design \cite pl-svdlinf-2001. +in VLSI design \cite pl-svdlinf-2001, \cite cdgp-icms-2014. In Section \ref secsdglinfdefinitions we give some definitions. In Section \ref secsdglinfdesign we explain the design of the @@ -53,7 +53,7 @@ the input sites are rational, then the coordinates of the vertices of the diagram are also rational, which is not true for the \f$ L_{2} \f$ diagram. For more details on \f$ L_{\infty} \f$ bisectors and the diagram, -see \cite pl-svdlinf-2001. +see \cite cdgp-icms-2014. \cgalFigureBegin{figbislinf,bislinf.svg} The \f$ L_{\infty} \f$ bisectors between two points and @@ -105,6 +105,7 @@ subclasses of corresponding \f$ L_{2} \f$ classes from the package \ref PkgSegmentDelaunayGraph2Summary. The names of the \f$ L_{\infty} \f$ classes contain an additional `_Linf` after `graph`, in comparison with the corresponding \f$ L_{2} \f$ classes. +For more details, see \cite cdgp-icms-2014. The order of complexity of the construction of the \f$ L_{\infty} \f$ diagram is the same as the one of the \f$ L_{2} \f$ diagram