Add tests for deprecated functions of PSP

This commit is contained in:
Simon Giraudot 2017-12-14 14:19:35 +01:00
parent 4e497f1c15
commit 2dc3f84478
22 changed files with 2240 additions and 0 deletions

View File

@ -42,6 +42,16 @@ if ( CGAL_FOUND )
create_single_source_cgal_program( "edge_aware_upsample_test.cpp" )
create_single_source_cgal_program( "structuring_test.cpp" )
# Deprecated tests
create_single_source_cgal_program( "deprecated_read_test.cpp" )
create_single_source_cgal_program( "deprecated_read_test_with_different_pmaps.cpp" )
create_single_source_cgal_program( "deprecated_analysis_test.cpp" )
create_single_source_cgal_program( "deprecated_remove_outliers_test.cpp" )
create_single_source_cgal_program( "deprecated_wlop_simplify_and_regularize_test.cpp" )
create_single_source_cgal_program( "deprecated_bilateral_smoothing_test.cpp" )
create_single_source_cgal_program( "deprecated_edge_aware_upsample_test.cpp" )
create_single_source_cgal_program( "deprecated_structuring_test.cpp" )
# Use Eigen or BLAS and LAPACK (optional)
find_package(Eigen3 3.1.0) #(requires 3.1.0 or greater)
if (NOT EIGEN3_FOUND)
@ -63,6 +73,14 @@ if ( CGAL_FOUND )
create_single_source_cgal_program( "vcm_all_test.cpp" )
create_single_source_cgal_program( "jet_pointer_as_property_map.cpp" )
# Deprecated tests
create_single_source_cgal_program( "deprecated_normal_estimation_test.cpp" )
create_single_source_cgal_program( "deprecated_hierarchy_simplification_test.cpp" )
create_single_source_cgal_program( "deprecated_smoothing_test.cpp" )
create_single_source_cgal_program( "deprecated_vcm_plane_test.cpp" )
create_single_source_cgal_program( "deprecated_vcm_all_test.cpp" )
create_single_source_cgal_program( "deprecated_jet_pointer_as_property_map.cpp" )
else(EIGEN3_FOUND OR LAPACK_FOUND)
message(STATUS "NOTICE: This program requires either Eigen 3.1 (or greater) or LAPACK, and will not be compiled.")

View File

@ -0,0 +1,139 @@
#define CGAL_NO_DEPRECATION_WARNINGS
// analysis_test.cpp
//----------------------------------------------------------
// Test the analysis methods:
// For each input point set, compute the average spacing.
// Input format is .xyz.
// No output.
//----------------------------------------------------------
// analysis_test points1.xyz points2.xyz...
// CGAL
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Timer.h>
#include <CGAL/Memory_sizer.h>
// This package
#include <CGAL/compute_average_spacing.h>
#include <CGAL/IO/read_xyz_points.h>
#include <deque>
#include <cstdlib>
#include <fstream>
// ----------------------------------------------------------------------------
// Types
// ----------------------------------------------------------------------------
// kernel
typedef CGAL::Simple_cartesian<float> Kernel;
// Simple geometric types
typedef Kernel::FT FT;
typedef Kernel::Point_3 Point;
// Concurrency
#ifdef CGAL_LINKED_WITH_TBB
typedef CGAL::Parallel_tag Concurrency_tag;
#else
typedef CGAL::Sequential_tag Concurrency_tag;
#endif
// ----------------------------------------------------------------------------
// Tests
// ----------------------------------------------------------------------------
// Computes average spacing.
void test_average_spacing(std::deque<Point>& points, // input point set
unsigned int nb_neighbors) // number of neighbors
{
std::cerr << "Computes average spacing to k nearest neighbors (k="<< nb_neighbors << ")... ";
CGAL::Timer task_timer; task_timer.start();
FT average_spacing = CGAL::compute_average_spacing<Concurrency_tag>(points.begin(), points.end(), nb_neighbors);
std::cout << average_spacing << std::endl;
std::size_t memory = CGAL::Memory_sizer().virtual_size();
std::cerr << "ok: " << task_timer.time() << " seconds, "
<< (memory>>20) << " Mb allocated"
<< std::endl;
}
// ----------------------------------------------------------------------------
// main()
// ----------------------------------------------------------------------------
int main(int argc, char * argv[])
{
std::cerr << "Analysis test" << std::endl;
//***************************************
// decode parameters
//***************************************
// usage
if(argc < 2)
{
std::cerr << "For each input point set, compute the average spacing.\n";
std::cerr << "\n";
std::cerr << "Usage: " << argv[0] << " file1.xyz file2.xyz..." << std::endl;
std::cerr << "Input file format is .xyz.\n";
std::cerr << "No output" << std::endl;
return EXIT_FAILURE;
}
// Average Spacing options
const unsigned int nb_neighbors = 6; // K-nearest neighbors = 1 ring (average spacing)
// Accumulated errors
int accumulated_fatal_err = EXIT_SUCCESS;
// Process each input file
for(int i=1; i<argc; i++)
{
std::cerr << std::endl;
//***************************************
// Loads point set
//***************************************
// File name is:
std::string input_filename = argv[i];
// Reads the point set file in points[].
std::deque<Point> points;
std::cerr << "Open " << input_filename << " for reading..." << std::endl;
// If XYZ file format:
std::ifstream stream(input_filename.c_str());
if(stream &&
CGAL::read_xyz_points(stream, std::back_inserter(points)))
{
std::cerr << "ok (" << points.size() << " points)" << std::endl;
}
else
{
std::cerr << "Error: cannot read file " << input_filename << std::endl;
accumulated_fatal_err = EXIT_FAILURE;
continue;
}
//***************************************
// Test
//***************************************
test_average_spacing(points, nb_neighbors);
} // for each input file
std::cerr << std::endl;
// Returns accumulated fatal error
std::cerr << "Tool returned " << accumulated_fatal_err << std::endl;
return accumulated_fatal_err;
}

View File

@ -0,0 +1 @@
data/fin90_with_PCA_normals.xyz

View File

@ -0,0 +1,157 @@
#define CGAL_NO_DEPRECATION_WARNINGS
// bilateral_smoothing_test.cpp
//----------------------------------------------------------
// Test the smoothing methods:
// For each input point set, smooth it.
// Input format is .xyz.
// No output.
//----------------------------------------------------------
// bilateral_smoothing_test points1.xyz points2.xyz...
// CGAL
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Real_timer.h>
#include <CGAL/Memory_sizer.h>
// This package
#include <CGAL/bilateral_smooth_point_set.h>
#include <CGAL/IO/read_xyz_points.h>
#include <deque>
#include <cstdlib>
#include <fstream>
// ----------------------------------------------------------------------------
// Types
// ----------------------------------------------------------------------------
// kernel
typedef CGAL::Simple_cartesian<double> Kernel;
// Simple geometric types
typedef Kernel::FT FT;
typedef Kernel::Point_3 Point;
typedef Kernel::Vector_3 Vector;
// Point with normal vector stored in a std::pair.
typedef std::pair<Point, Vector> PointVectorPair;
// ----------------------------------------------------------------------------
// Tests
// ----------------------------------------------------------------------------
template<typename Concurrency_tag>
void test_bilateral_smoothing(std::deque<PointVectorPair>& points,// input point set
unsigned int nb_neighbors, // number of neighbors
double sharpness_sigma)
{
CGAL::Real_timer task_timer; task_timer.start();
for (int i = 0; i < 3; i++)
{
CGAL::bilateral_smooth_point_set <Concurrency_tag>(
points.begin(),
points.end(),
CGAL::First_of_pair_property_map<PointVectorPair>(),
CGAL::Second_of_pair_property_map<PointVectorPair>(),
nb_neighbors,
sharpness_sigma);
}
std::size_t memory = CGAL::Memory_sizer().virtual_size();
std::cerr << "ok: " << task_timer.time() << " seconds, "
<< (memory>>20) << " Mb allocated"
<< std::endl;
}
// ----------------------------------------------------------------------------
// main()
// ----------------------------------------------------------------------------
int main(int argc, char * argv[])
{
std::cerr << "Bilateral smoothing test" << std::endl;
//***************************************
// decode parameters
//***************************************
// usage
if(argc < 2)
{
std::cerr << "For each input point set, smooth it.\n";
std::cerr << "\n";
std::cerr << "Usage: " << argv[0] << " file1.xyz file2.xyz..." << std::endl;
std::cerr << "Input file format is .xyz.\n";
std::cerr << "No output" << std::endl;
return EXIT_FAILURE;
}
// Smoothing options
const unsigned int nb_neighbors = 50; // K-nearest neighbors
const double sharpness_sigma = 25; // control sharpness
// Accumulated errors
int accumulated_fatal_err = EXIT_SUCCESS;
// Process each input file
for(int i=1; i<argc; i++)
{
std::cerr << std::endl;
//***************************************
// Loads point set
//***************************************
// File name is:
std::string input_filename = argv[i];
// Reads the point set file in points[].
std::deque<PointVectorPair> points;
std::cerr << "Opening " << input_filename << " for reading..." << std::endl;
// If XYZ file format:
std::ifstream stream(input_filename.c_str());
if(stream &&
CGAL::read_xyz_points_and_normals(stream,
std::back_inserter(points),
CGAL::First_of_pair_property_map<PointVectorPair>(),
CGAL::Second_of_pair_property_map<PointVectorPair>()))
{
std::cerr << "ok (" << points.size() << " points)" << std::endl;
}
else
{
std::cerr << "Error: cannot read file " << input_filename << std::endl;
accumulated_fatal_err = EXIT_FAILURE;
continue;
}
//***************************************
// Test
//***************************************
#ifdef CGAL_LINKED_WITH_TBB
std::deque<PointVectorPair> points2(points);
#endif // CGAL_LINKED_WITH_TBB
test_bilateral_smoothing<CGAL::Sequential_tag>(
points, nb_neighbors, sharpness_sigma);
#ifdef CGAL_LINKED_WITH_TBB
test_bilateral_smoothing<CGAL::Parallel_tag>(
points2, nb_neighbors, sharpness_sigma);
#endif // CGAL_LINKED_WITH_TBB
} // for each input file
std::cerr << std::endl;
// Returns accumulated fatal error
std::cerr << "Tool returned " << accumulated_fatal_err << std::endl;
return accumulated_fatal_err;
}

View File

@ -0,0 +1 @@
data/before_upsample.xyz

View File

@ -0,0 +1,168 @@
#define CGAL_NO_DEPRECATION_WARNINGS
// edge_aware_upsample_test.cpp
//----------------------------------------------------------
// Test the edge aware up-sample test method:
// Input format is .xyz.
// No output.
//----------------------------------------------------------
// edge_aware_upsample_test points1.xyz points2.xyz...
// CGAL
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Real_timer.h>
#include <CGAL/Memory_sizer.h>
// This package
#include <CGAL/edge_aware_upsample_point_set.h>
#include <CGAL/IO/read_xyz_points.h>
#include <cstdlib>
#include <fstream>
// ----------------------------------------------------------------------------
// Types
// ----------------------------------------------------------------------------
// kernel
typedef CGAL::Simple_cartesian<float> Kernel;
// Simple geometric types
typedef Kernel::FT FT;
typedef Kernel::Point_3 Point;
typedef Kernel::Vector_3 Vector;
// Point with normal vector stored in a std::pair.
typedef std::pair<Point, Vector> PointVectorPair;
// Concurrency
#ifdef CGAL_LINKED_WITH_TBB
typedef CGAL::Parallel_tag Concurrency_tag;
#else
typedef CGAL::Sequential_tag Concurrency_tag;
#endif
// ----------------------------------------------------------------------------
// Tests
// ----------------------------------------------------------------------------
void test_edge_aware_upsample(std::vector<PointVectorPair>& points, // input point set
double sharpness_sigma, //control sharpness
double edge_sensitivity,// more points will up-sample on edge
double neighbor_radius, // initial neighbors size.
unsigned int times_of_output_points)
{
CGAL::Real_timer task_timer; task_timer.start();
std::cerr << "Running edge aware up-sample, (sharpness_sigma: "
<< sharpness_sigma << "%, number_of_output_points="
<< points.size() * times_of_output_points << ")...\n";
//Run algorithm
CGAL::edge_aware_upsample_point_set<Concurrency_tag>(
points.begin(),
points.end(),
std::back_inserter(points),
CGAL::First_of_pair_property_map<PointVectorPair>(),
CGAL::Second_of_pair_property_map<PointVectorPair>(),
sharpness_sigma,
edge_sensitivity,
neighbor_radius,
points.size() * times_of_output_points);
std::size_t memory = CGAL::Memory_sizer().virtual_size();
std::cerr << "ok: " << task_timer.time() << " seconds, "
<< (memory>>20) << " Mb allocated"
<< std::endl;
}
// ----------------------------------------------------------------------------
// main()
// ----------------------------------------------------------------------------
int main(int argc, char * argv[])
{
std::cerr << "Edge aware up-sample" << std::endl;
//***************************************
// decode parameters
//***************************************
// usage
if(argc < 2)
{
std::cerr << "Upsample each input point set.\n";
std::cerr << "\n";
std::cerr << "Usage: " << argv[0] << " file1.xyz file2.xyz..." << std::endl;
std::cerr << "Input file format is .xyz.\n";
std::cerr << "No output" << std::endl;
return EXIT_FAILURE;
}
//Algorithm parameters
const double sharpness_sigma = 25; //control sharpness of the result.
const double edge_sensitivity = 0; // more points will up-sample on edge.
const double neighbor_radius = 0.2; // initial neighbors size.
const unsigned int times_of_output_points = 4;
// Accumulated errors
int accumulated_fatal_err = EXIT_SUCCESS;
// Process each input file
for(int i=1; i<argc; i++)
{
std::cerr << std::endl;
//***************************************
// Loads point set
//***************************************
// File name is:
std::string input_filename = argv[i];
// Reads the point set file in points[].
std::vector<PointVectorPair> points;
std::cerr << "Opening " << input_filename << " for reading..." << std::endl;
// If XYZ file format:
std::ifstream stream(input_filename.c_str());
if(stream &&
CGAL::read_xyz_points_and_normals
(stream,
std::back_inserter(points),
CGAL::First_of_pair_property_map<PointVectorPair>(),
CGAL::Second_of_pair_property_map<PointVectorPair>()))
{
std::cerr << "ok (" << points.size() << " points)" << std::endl;
}
else
{
std::cerr << "Error: cannot read file " << input_filename << std::endl;
accumulated_fatal_err = EXIT_FAILURE;
continue;
}
//***************************************
// Test
//***************************************
test_edge_aware_upsample(points,
sharpness_sigma,
edge_sensitivity,
neighbor_radius,
times_of_output_points);
} // for each input file
std::cerr << std::endl;
// Returns accumulated fatal error
std::cerr << "Tool returned " << accumulated_fatal_err << std::endl;
return accumulated_fatal_err;
}

View File

@ -0,0 +1,87 @@
#define CGAL_NO_DEPRECATION_WARNINGS
#include <limits>
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/hierarchy_simplify_point_set.h>
#include <vector>
// types
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::Point_3 Point;
typedef Kernel::FT FT;
void test (std::vector<Point>& input,
std::ptrdiff_t result0 = 1, int result1 = 1, int result2 = 1, int result3 = 1, int result4 = 1)
{
std::vector<Point>::iterator it =
CGAL::hierarchy_simplify_point_set (input.begin (), input.end (), 1);
if (result0 > 0 && std::distance (input.begin (), it) != result0)
exit (EXIT_FAILURE);
it = CGAL::hierarchy_simplify_point_set (input.begin (), input.end ());
if (result1 > 0 && std::distance (input.begin (), it) != result1)
exit (EXIT_FAILURE);
it = CGAL::hierarchy_simplify_point_set (input.begin (), input.end (), 100);
if (result2 > 0 && std::distance (input.begin (), it) != result2)
exit (EXIT_FAILURE);
it = CGAL::hierarchy_simplify_point_set (input.begin (), input.end (), 1000, 0.1);
if (result3 > 0 && std::distance (input.begin (), it) != result3)
exit (EXIT_FAILURE);
it = CGAL::hierarchy_simplify_point_set (input.begin (), input.end (),
CGAL::Identity_property_map<Point>(),
(std::numeric_limits<unsigned int>::max)(),
0.0001);
if (result4 > 0 && std::distance (input.begin (), it) != result4)
exit (EXIT_FAILURE);
input.clear ();
}
int main(void)
{
std::vector<Point> input;
// Test 1 point
input.push_back (Point (0., 0., 0.));
test (input);
// Test twice the same point
input.push_back (Point (0., 0., 0.));
input.push_back (Point (0., 0., 0.));
test (input);
// Test 2 points
input.push_back (Point (0., 0., 0.));
input.push_back (Point (1., 0., 0.));
test (input, 2);
// Test line
for (std::size_t i = 0; i < 1000; ++ i)
input.push_back (Point (0., 0., (double)i));
test (input, input.size (), 128, 16, 1, 1);
// Test plane
for (std::size_t i = 0; i < 128; ++ i)
for (std::size_t j = 0; j < 128; ++ j)
input.push_back (Point (0., (double)j, (double)i));
test (input, input.size (), 2048, 256, 32, 1);
// Test random
for (std::size_t i = 0; i < 10000; ++ i)
input.push_back (Point (rand() / (FT)RAND_MAX,
rand() / (FT)RAND_MAX,
rand() / (FT)RAND_MAX));
test (input, input.size (), -1, -1, -1, -1);
return EXIT_SUCCESS;
}

View File

@ -0,0 +1,48 @@
#define CGAL_NO_DEPRECATION_WARNINGS
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/jet_estimate_normals.h>
#include <vector>
#include <iostream>
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
// Simple geometric types
typedef Kernel::FT FT;
typedef Kernel::Point_3 Point_3;
typedef Kernel::Vector_3 Vector_3;
int main()
{
std::vector<Point_3> points;
std::vector<size_t> indices(100);
for(int i=0; i < 100; i++){
indices[i] = i;
}
std::vector<Vector_3> normals(100);
for(int i=0; i <10; i++){
for(int j=0; j <10; j++){
points.push_back(Point_3(i,j,0));
}
}
CGAL::jet_estimate_normals<CGAL::Sequential_tag>(indices.begin(), indices.end(),
CGAL::make_property_map(points),
CGAL::make_property_map(normals),
12);
return 0;
}

View File

@ -0,0 +1 @@
data/sphere926.pwn data/sphere_1k.xyz

View File

@ -0,0 +1,407 @@
#define CGAL_NO_DEPRECATION_WARNINGS
// normal_estimation_test.cpp
//----------------------------------------------------------
// Test the normal estimation methods:
// For each input point set, compute and orient its normals.
// If an input mesh has normals, print the normal deviation.
// Input file formats are .off, .xyz and .pwn.
// No output.
//----------------------------------------------------------
// normal_estimation_test points1.xyz points2.xyz...
// With iterator debugging this testsuite takes to long and the process gets killed
//#define _HAS_ITERATOR_DEBUGGING 0
// CGAL
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Timer.h>
#include <CGAL/Memory_sizer.h>
// This package
#include <CGAL/pca_estimate_normals.h>
#include <CGAL/jet_estimate_normals.h>
#include <CGAL/mst_orient_normals.h>
#include <CGAL/Point_with_normal_3.h>
#include <CGAL/property_map.h>
#include <CGAL/IO/read_off_points.h>
#include <CGAL/IO/read_xyz_points.h>
#include <vector>
#include <string>
#include <fstream>
#include <cassert>
#include <cmath>
// ----------------------------------------------------------------------------
// Types
// ----------------------------------------------------------------------------
// kernel
typedef CGAL::Simple_cartesian<double> Kernel;
// Simple geometric types
typedef Kernel::FT FT;
typedef Kernel::Point_3 Point;
typedef Kernel::Vector_3 Vector;
typedef CGAL::Point_with_normal_3<Kernel> Point_with_normal; // position + normal vector
typedef std::vector<Point_with_normal> PointList;
// Concurrency
#ifdef CGAL_LINKED_WITH_TBB
typedef CGAL::Parallel_tag Concurrency_tag;
#else
typedef CGAL::Sequential_tag Concurrency_tag;
#endif
// ----------------------------------------------------------------------------
// Tests
// ----------------------------------------------------------------------------
// Check the accuracy of normals direction estimation.
// If original normals are available, compare with them and count normals with large deviation.
// @return true on success.
bool verify_normal_direction(const PointList& points, // input points + computed normals
const std::vector<Vector>& original_normals) // may be empty
{
bool success = true;
bool points_have_original_normals = ! original_normals.empty();
if (points_have_original_normals)
{
assert(points.size() == original_normals.size());
std::cerr << "Compare with original normals:" << std::endl;
double min_normal_deviation = DBL_MAX; // deviation / original normal
double max_normal_deviation = DBL_MIN;
double avg_normal_deviation = 0;
int invalid_normals = 0; // #normals with large deviation
PointList::const_iterator p;
std::vector<Vector>::const_iterator n;
for (p = points.begin(), n = original_normals.begin(); p != points.end(); p++, n++)
{
// Computes normal deviation.
Vector v1 = *n; // original normal
double norm1 = std::sqrt( v1*v1 );
assert(norm1 != 0.0);
Vector v2 = p->normal(); // computed normal
double norm2 = std::sqrt( v2*v2 );
assert(norm2 != 0.0);
double cos_normal_deviation = (v1*v2)/(norm1*norm2);
if (cos_normal_deviation < 0)
{
cos_normal_deviation = -cos_normal_deviation;
}
double normal_deviation = std::acos(cos_normal_deviation);
// statistics about normals deviation
min_normal_deviation = (std::min)(min_normal_deviation, normal_deviation);
max_normal_deviation = (std::max)(max_normal_deviation, normal_deviation);
avg_normal_deviation += normal_deviation;
// count normal if large deviation
bool valid = (normal_deviation <= CGAL_PI/3.); // valid if deviation <= 60 degrees
if ( ! valid )
{
invalid_normals++;
}
}
avg_normal_deviation /= double(points.size());
std::cerr << " Min normal deviation=" << min_normal_deviation*180.0/CGAL_PI << " degrees\n";
std::cerr << " Max normal deviation=" << max_normal_deviation*180.0/CGAL_PI << " degrees\n";
std::cerr << " Avg normal deviation=" << avg_normal_deviation*180.0/CGAL_PI << " degrees\n";
if (invalid_normals > 0)
{
std::cerr << " Error: " << invalid_normals << " normals have a deviation > 60 degrees\n";
success = false;
}
}
return success;
}
// Computes normals direction by Principal Component Analysis
// @return true on success.
bool run_pca_estimate_normals(PointList& points, // input points + output normals
unsigned int nb_neighbors_pca_normals, // number of neighbors
const std::vector<Vector>& original_normals) // may be empty
{
CGAL::Timer task_timer; task_timer.start();
std::cerr << "Estimates Normals Direction by PCA (k="
<< nb_neighbors_pca_normals << ")...\n";
CGAL::pca_estimate_normals<Concurrency_tag>(points.begin(), points.end(),
CGAL::make_normal_of_point_with_normal_map(PointList::value_type()),
nb_neighbors_pca_normals);
std::size_t memory = CGAL::Memory_sizer().virtual_size();
std::cerr << "done: " << task_timer.time() << " seconds, "
<< (memory>>20) << " Mb allocated"
<< std::endl;
// Check the accuracy of normals direction estimation.
// If original normals are available, compare with them.
return verify_normal_direction(points, original_normals);
}
// Computes normals direction by Jet Fitting
// @return true on success.
bool run_jet_estimate_normals(PointList& points, // input points + output normals
unsigned int nb_neighbors_jet_fitting_normals, // number of neighbors
const std::vector<Vector>& original_normals) // may be empty
{
CGAL::Timer task_timer; task_timer.start();
std::cerr << "Estimates Normals Direction by Jet Fitting (k="
<< nb_neighbors_jet_fitting_normals << ")...\n";
CGAL::jet_estimate_normals<Concurrency_tag>(points.begin(), points.end(),
CGAL::make_normal_of_point_with_normal_map(PointList::value_type()),
nb_neighbors_jet_fitting_normals);
std::size_t memory = CGAL::Memory_sizer().virtual_size();
std::cerr << "done: " << task_timer.time() << " seconds, "
<< (memory>>20) << " Mb allocated"
<< std::endl;
// Check the accuracy of normals direction estimation.
// If original normals are available, compare with them.
return verify_normal_direction(points, original_normals);
}
// Check the accuracy of normal orientation.
// Count non-oriented normals.
// If original normals are available, compare with them and count flipped normals.
bool verify_normal_orientation(const PointList& points, // input points + computed normals
PointList::const_iterator unoriented_points_begin, // first pt w/ unoriented normal
const std::vector<Vector>& original_normals) // may be empty
{
bool success = true;
// Count non-oriented normals
int unoriented_normals = 0;
for (PointList::const_iterator p = unoriented_points_begin ; p != points.end(); p++)
{
unoriented_normals++;
}
if (unoriented_normals > 0)
{
std::cerr << "Error: " << unoriented_normals << " normals are unoriented\n";
success = false;
}
// Compare oriented normals with original ones and count flipped normals
bool points_have_original_normals = ! original_normals.empty();
if (points_have_original_normals)
{
assert(points.size() == original_normals.size());
std::cerr << "Compare with original normals:" << std::endl;
int flipped_normals = 0; // #normals with wrong orientation
PointList::const_iterator p;
std::vector<Vector>::const_iterator n;
for (p = points.begin(), n = original_normals.begin(); p != unoriented_points_begin; p++, n++)
{
Vector v1 = *n; // original normal
double norm1 = std::sqrt( v1*v1 );
assert(norm1 != 0.0);
Vector v2 = p->normal(); // computed normal
double norm2 = std::sqrt( v2*v2 );
assert(norm2 != 0.0);
double cos_normal_deviation = (v1*v2)/(norm1*norm2);
if (cos_normal_deviation < 0) // if flipped
{
flipped_normals++;
}
}
if (flipped_normals == 0)
std::cerr << " ok\n";
else
std::cerr << " Error: " << flipped_normals << " normal(s) are flipped\n";
}
return success;
}
// Hoppe92 normal orientation using a Minimum Spanning Tree.
// @return true on success.
bool run_mst_orient_normals(PointList& points, // input points + input/output normals
unsigned int nb_neighbors_mst, // number of neighbors
const std::vector<Vector>& original_normals) // may be empty
{
#if (BOOST_VERSION / 100) == 1054
std::cerr <<
"In run_mst_orient_normals():\n"
"NOTICE: This function is incompatible with Boost 1.54, "
"and will not be tested. See the following bug:\n"
" https://svn.boost.org/trac/boost/ticket/9012\n";
return true;
#endif // Boost version is 1.54
std::cerr << "Orients Normals with a Minimum Spanning Tree (k="<< nb_neighbors_mst << ")...\n";
CGAL::Timer task_timer; task_timer.start();
PointList::iterator unoriented_points_begin =
CGAL::mst_orient_normals(points.begin(), points.end(),
CGAL::make_normal_of_point_with_normal_map(PointList::value_type()),
nb_neighbors_mst);
std::size_t memory = CGAL::Memory_sizer().virtual_size();
std::cerr << "done: " << task_timer.time() << " seconds, "
<< (memory>>20) << " Mb allocated"
<< std::endl;
// Note: we do *not* delete points with unoriented normals in this test.
// Instead, we check the accuracy of normal orientation and,
// if original normals are available, compare with them.
return verify_normal_orientation(points, unoriented_points_begin, original_normals);
}
// ----------------------------------------------------------------------------
// main()
// ----------------------------------------------------------------------------
int main(int argc, char * argv[])
{
std::cerr << "Normal estimation test" << std::endl;
//***************************************
// decode parameters
//***************************************
// usage
if(argc < 2)
{
std::cerr << "For each input point set, compute and orient its normals.\n";
std::cerr << "If an input mesh has normals, print the normals deviation.\n";
std::cerr << "\n";
std::cerr << "Usage: " << argv[0] << " file1.xyz file2.xyz..." << std::endl;
std::cerr << "Input file formats are .off, .xyz and .pwn.\n";
std::cerr << "No output" << std::endl;
return EXIT_FAILURE;
}
// Normals Computing options
unsigned int nb_neighbors_pca_normals = 18; // K-nearest neighbors = 3 rings (estimate normals by PCA)
unsigned int nb_neighbors_jet_fitting_normals = 18; // K-nearest neighbors (estimate normals by Jet Fitting)
unsigned int nb_neighbors_mst = 18; // K-nearest neighbors (orient normals by MST)
// Accumulated errors
int accumulated_fatal_err = EXIT_SUCCESS;
// Process each input file
for(int i=1; i<argc; i++)
{
std::cerr << std::endl;
//***************************************
// Loads point set
//***************************************
// File name is:
std::string input_filename = argv[i];
// Reads the point set file in points[].
PointList points;
std::cerr << "Open " << input_filename << " for reading..." << std::endl;
// If OFF file format
bool success = false;
std::string extension = input_filename.substr(input_filename.find_last_of('.'));
if (extension == ".off" || extension == ".OFF")
{
std::ifstream stream(input_filename.c_str());
success = stream &&
CGAL::read_off_points_and_normals(stream,
std::back_inserter(points),
CGAL::make_normal_of_point_with_normal_map(PointList::value_type())
);
}
// If XYZ file format
else if (extension == ".xyz" || extension == ".XYZ" ||
extension == ".pwn" || extension == ".PWN")
{
std::ifstream stream(input_filename.c_str());
success = stream &&
CGAL::read_xyz_points_and_normals(stream,
std::back_inserter(points),
CGAL::make_normal_of_point_with_normal_map(PointList::value_type())
);
}
if (success)
{
std::cerr << "ok (" << points.size() << " points)" << std::endl;
}
else
{
std::cerr << "Error: cannot read file " << input_filename << std::endl;
accumulated_fatal_err = EXIT_FAILURE;
continue;
}
//***************************************
// Check requirements
//***************************************
if (points.size() == 0)
{
std::cerr << "Error: empty file" << std::endl;
accumulated_fatal_err = EXIT_FAILURE;
continue;
}
//***************************************
// Copy original normals
//***************************************
std::vector<Vector> original_normals;
bool points_have_original_normals = (points.begin()->normal() != CGAL::NULL_VECTOR);
if ( points_have_original_normals )
{
for (PointList::iterator p = points.begin() ; p != points.end(); p++)
original_normals.push_back(p->normal());
}
//***************************************
// Computes normals (PCA + MST)
//***************************************
// Estimates normals direction.
success = run_pca_estimate_normals(points, nb_neighbors_pca_normals, original_normals);
if ( ! success )
accumulated_fatal_err = EXIT_FAILURE; // set error and continue
// Orients normals.
success = run_mst_orient_normals(points, nb_neighbors_mst, original_normals);
if ( ! success )
accumulated_fatal_err = EXIT_FAILURE; // set error and continue
//***************************************
// Computes normals (jet fitting + MST)
//***************************************
// Estimates normals direction
success = run_jet_estimate_normals(points, nb_neighbors_jet_fitting_normals, original_normals);
if ( ! success )
accumulated_fatal_err = EXIT_FAILURE; // set error and continue
// Orients normals
success = run_mst_orient_normals(points, nb_neighbors_mst, original_normals);
if ( ! success )
accumulated_fatal_err = EXIT_FAILURE; // set error and continue
} // for each input file
std::cerr << std::endl;
// Returns accumulated fatal error
std::cerr << "Tool returned " << accumulated_fatal_err << std::endl;
return accumulated_fatal_err;
}

View File

@ -0,0 +1,121 @@
#define CGAL_NO_DEPRECATION_WARNINGS
#include <CGAL/Simple_cartesian.h>
#include <CGAL/property_map.h>
#include <CGAL/IO/read_off_points.h>
#include <CGAL/IO/read_xyz_points.h>
#include <CGAL/config.h>
#ifdef CGAL_CXX11
#include <CGAL/IO/read_ply_points.h>
#endif
#include <vector>
#include <cassert>
#include <string>
#include <fstream>
typedef CGAL::Simple_cartesian<double> Kernel;
typedef Kernel::Point_3 Point_3;
typedef Kernel::Vector_3 Vector_3;
typedef std::pair<Point_3, Vector_3> PointVectorPair;
bool read(std::string s)
{
std::ifstream fs(s.c_str());
std::vector<PointVectorPair> pv_pairs;
return CGAL::read_xyz_points_and_normals(fs,
back_inserter(pv_pairs),
CGAL::First_of_pair_property_map<PointVectorPair>(),
CGAL::Second_of_pair_property_map<PointVectorPair>());
}
bool read(std::string s,
std::vector<PointVectorPair>& pv_pairs)
{
std::ifstream fs(s.c_str());
return CGAL::read_xyz_points_and_normals(fs,
back_inserter(pv_pairs),
CGAL::First_of_pair_property_map<PointVectorPair>(),
CGAL::Second_of_pair_property_map<PointVectorPair>());
}
bool read_off(std::string s,
std::vector<PointVectorPair>& pv_pairs)
{
std::ifstream fs(s.c_str());
return CGAL::read_off_points_and_normals(fs,
back_inserter(pv_pairs),
CGAL::First_of_pair_property_map<PointVectorPair>(),
CGAL::Second_of_pair_property_map<PointVectorPair>());
}
#ifdef CGAL_CXX11
bool read_ply (std::string s,
std::vector<PointVectorPair>& pv_pairs)
{
std::ifstream fs(s.c_str());
return CGAL::read_ply_points_and_normals (fs,
back_inserter(pv_pairs),
CGAL::First_of_pair_property_map<PointVectorPair>(),
CGAL::Second_of_pair_property_map<PointVectorPair>());
}
#endif
int main()
{
std::cerr << "### There should be three errors following this line...\n";
assert(! read("data/read_test/bug_1.xyz"));
assert(! read("data/read_test/bug_2.xyz"));
assert(! read("data/read_test/bug_3.xyz"));
std::cerr << "### ... Done. Now, there should not be any error.\n";
assert(read("data/read_test/ok_1.xyz"));
assert(read("data/read_test/ok_2.xyz"));
assert(read("data/read_test/ok_3.xyz"));
std::vector<PointVectorPair> pv_pairs;
read("data/read_test/ok_2.xyz", pv_pairs);
assert(pv_pairs.size() == 4);
assert(pv_pairs[0] == std::make_pair(Point_3(2,3,4), Vector_3(4,4,2)));
assert(pv_pairs[1] == std::make_pair(Point_3(3,4,6), Vector_3(0,0,0)));
assert(pv_pairs[2] == std::make_pair(Point_3(3,6,7), Vector_3(3,5,6)));
assert(pv_pairs[3] == std::make_pair(Point_3(1,3,4), Vector_3(4,6,8)));
pv_pairs.clear();
assert(read_off("data/read_test/ok_1.off", pv_pairs));
assert(pv_pairs.size() == 4);
assert(pv_pairs[0] == std::make_pair(Point_3(3,2,0), Vector_3(1,2,3)));
assert(pv_pairs[1] == std::make_pair(Point_3(1,2,3), Vector_3(0,0,0)));
assert(pv_pairs[2] == std::make_pair(Point_3(4,5,6), Vector_3(0,0,0)));
assert(pv_pairs[3] == std::make_pair(Point_3(7,8,9), Vector_3(0,0,0)));
#ifdef CGAL_CXX11
pv_pairs.clear ();
assert(read_ply("data/read_test/simple.ply", pv_pairs));
assert(pv_pairs[0] == std::make_pair(Point_3(1,1,1), Vector_3(2,2,2)));
assert(pv_pairs[1] == std::make_pair(Point_3(3,3,3), Vector_3(4,4,4)));
assert(pv_pairs[2] == std::make_pair(Point_3(5,5,5), Vector_3(6,6,6)));
pv_pairs.clear ();
assert(read_ply("data/read_test/simple_ascii.ply", pv_pairs));
assert(pv_pairs[0] == std::make_pair(Point_3(1,1,1), Vector_3(2,2,2)));
assert(pv_pairs[1] == std::make_pair(Point_3(3,3,3), Vector_3(4,4,4)));
assert(pv_pairs[2] == std::make_pair(Point_3(5,5,5), Vector_3(6,6,6)));
pv_pairs.clear ();
assert(read_ply("data/read_test/simple_with_flag.ply", pv_pairs));
assert(pv_pairs[0] == std::make_pair(Point_3(1,1,1), Vector_3(2,2,2)));
assert(pv_pairs[1] == std::make_pair(Point_3(3,3,3), Vector_3(4,4,4)));
assert(pv_pairs[2] == std::make_pair(Point_3(5,5,5), Vector_3(6,6,6)));
#endif
return 0;
}

View File

@ -0,0 +1,340 @@
#define CGAL_NO_DEPRECATION_WARNINGS
#include <CGAL/Simple_cartesian.h>
#include <CGAL/property_map.h>
#include <CGAL/IO/read_off_points.h>
#include <CGAL/IO/read_xyz_points.h>
#include <CGAL/property_map.h>
#include <vector>
#include <deque>
#include <iostream>
#include <fstream>
typedef CGAL::Simple_cartesian<double> Kernel;
typedef Kernel::Point_3 Point_3;
typedef Kernel::Vector_3 Vector_3;
typedef std::pair<Point_3, Vector_3> PointVectorPair;
// this is going to be custom OutputIterator value_type
struct dummy_counter {
static std::size_t counter;
dummy_counter() { ++counter; }
operator std::size_t() { return counter-1; }
};
std::size_t dummy_counter::counter = 0;
bool check_points_and_vectors(
const boost::vector_property_map<Point_3>& points,
const boost::vector_property_map<Vector_3>& normals,
const std::vector<PointVectorPair>& pv_pairs,
const std::vector<std::size_t>& indices)
{
if(pv_pairs.size() != indices.size()) {
std::cerr << "Error: inconsistency between point / normal size." << std::endl;
return false;
}
for(std::size_t i = 0; i < pv_pairs.size(); ++i ) {
if(pv_pairs[i].first != points[i]) {
std::cerr << "Error: points are not equal." << std::endl;
return false;
}
if(pv_pairs[i].second != normals[i]) {
std::cerr << "Error: normals are not equal." << std::endl;
return false;
}
}
return true;
}
bool check_points(
const boost::vector_property_map<Point_3>& points_1,
const std::vector<Point_3>& points_2,
const std::vector<std::size_t>& indices)
{
if(points_2.size() != indices.size()) {
std::cerr << "Error: inconsistency between point / normal size." << std::endl;
return false;
}
for(std::size_t i = 0; i < points_2.size(); ++i ) {
if(points_2[i] != points_1[i]) {
std::cerr << "Error: points are not equal." << std::endl;
return false;
}
}
return true;
}
bool test_no_deduction_points_and_normals_xyz(const char* file_name)
{
boost::vector_property_map<Point_3> points;
boost::vector_property_map<Vector_3> normals;
std::vector<std::size_t> indices;
std::vector<PointVectorPair> pv_pairs;
// read with custom output iterator type
dummy_counter::counter = 0;
std::ifstream input(file_name);
CGAL::read_xyz_points_and_normals<dummy_counter>(
input, back_inserter(indices), points, normals, Kernel());
// read with ordinary pmaps
input.clear();
input.close();
input.open(file_name);
CGAL::read_xyz_points_and_normals(
input, back_inserter(pv_pairs),
CGAL::First_of_pair_property_map<PointVectorPair>(),
CGAL::Second_of_pair_property_map<PointVectorPair>(),
Kernel());
return check_points_and_vectors(points, normals, pv_pairs, indices);
}
bool test_no_deduction_points_and_normals_off(const char* file_name)
{
boost::vector_property_map<Point_3> points;
boost::vector_property_map<Vector_3> normals;
std::vector<std::size_t> indices;
std::vector<PointVectorPair> pv_pairs;
// read with custom output iterator type
dummy_counter::counter = 0;
std::ifstream input(file_name);
CGAL::read_off_points_and_normals<dummy_counter>(
input, back_inserter(indices), points, normals, Kernel());
// read with ordinary pmaps
input.clear();
input.close();
input.open(file_name);
CGAL::read_off_points_and_normals(
input, back_inserter(pv_pairs),
CGAL::First_of_pair_property_map<PointVectorPair>(),
CGAL::Second_of_pair_property_map<PointVectorPair>(),
Kernel());
return check_points_and_vectors(points, normals, pv_pairs, indices);
}
bool test_no_deduction_points_xyz(const char* file_name)
{
boost::vector_property_map<Point_3> points_1; \
std::vector<std::size_t> indices;
std::vector<Point_3> points_2;
// read with custom output iterator type
dummy_counter::counter = 0;
std::ifstream input(file_name);
CGAL::read_xyz_points<dummy_counter>(
input, back_inserter(indices), points_1, Kernel());
// read with ordinary pmaps
input.clear();
input.close();
input.open(file_name);
CGAL::read_xyz_points(
input, back_inserter(points_2),
CGAL::Identity_property_map<Point_3>(),
Kernel());
return check_points(points_1, points_2, indices);
}
bool test_no_deduction_points_off(const char* file_name)
{
boost::vector_property_map<Point_3> points_1;
std::vector<std::size_t> indices;
std::vector<Point_3> points_2;
// read with custom output iterator type
dummy_counter::counter = 0;
std::ifstream input(file_name);
CGAL::read_off_points<dummy_counter>(
input, back_inserter(indices), points_1, Kernel());
// read with ordinary pmaps
input.clear();
input.close();
input.open(file_name);
CGAL::read_off_points(
input, back_inserter(points_2),
CGAL::Identity_property_map<Point_3>(),
Kernel());
return check_points(points_1, points_2, indices);
}
void compile_test() {
std::deque<Point_3> points;
std::deque<Vector_3> normals;
std::deque<PointVectorPair> pv_pairs;
std::ifstream input;
input.open("data/read_test/simple.xyz");
CGAL::read_xyz_points(
input,
std::front_inserter(points));
input.clear();
input.close();
input.open("data/read_test/simple.xyz");
CGAL::read_xyz_points(
input,
std::front_inserter(points),
CGAL::Identity_property_map<Point_3>());
input.clear();
input.close();
input.open("data/read_test/simple.xyz");
CGAL::read_xyz_points(
input,
std::front_inserter(points),
CGAL::Identity_property_map<Point_3>(),
Kernel());
input.clear();
input.close();
// this will span all OutputIteratorValueType versions
input.open("data/read_test/simple.xyz");
CGAL::read_xyz_points<Point_3>(
input,
std::front_inserter(points));
input.clear();
input.close();
//-----------------------------------------------------------------------
input.open("data/read_test/simple.off");
CGAL::read_off_points(
input,
std::front_inserter(points));
input.clear();
input.close();
input.open("data/read_test/simple.off");
CGAL::read_off_points(
input,
std::front_inserter(points),
CGAL::Identity_property_map<Point_3>());
input.clear();
input.close();
input.open("data/read_test/simple.off");
CGAL::read_off_points(
input,
std::front_inserter(points),
CGAL::Identity_property_map<Point_3>(),
Kernel());
input.clear();
input.close();
// this will span all OutputIteratorValueType versions
input.open("data/read_test/simple.off");
CGAL::read_off_points<Point_3>(
input,
std::front_inserter(points));
input.clear();
input.close();
//-----------------------------------------------------------------------
input.open("data/read_test/simple.xyz");
CGAL::read_xyz_points_and_normals(
input,
std::front_inserter(points),
boost::dummy_property_map());
input.clear();
input.close();
input.open("data/read_test/simple.xyz");
CGAL::read_xyz_points_and_normals(
input,
std::front_inserter(pv_pairs),
CGAL::First_of_pair_property_map<PointVectorPair>(),
CGAL::Second_of_pair_property_map<PointVectorPair>());
input.clear();
input.close();
input.open("data/read_test/simple.xyz");
CGAL::read_xyz_points_and_normals(
input,
std::front_inserter(pv_pairs),
CGAL::First_of_pair_property_map<PointVectorPair>(),
CGAL::Second_of_pair_property_map<PointVectorPair>(),
Kernel());
input.clear();
input.close();
input.open("data/read_test/simple.xyz");
CGAL::read_xyz_points_and_normals<Point_3>(
input,
std::front_inserter(points),
boost::dummy_property_map());
input.clear();
input.close();
//-----------------------------------------------------------------------
input.open("data/read_test/simple.off");
CGAL::read_off_points_and_normals(
input,
std::front_inserter(points),
boost::dummy_property_map());
input.clear();
input.close();
input.open("data/read_test/simple.off");
CGAL::read_off_points_and_normals(
input,
std::front_inserter(pv_pairs),
CGAL::First_of_pair_property_map<PointVectorPair>(),
CGAL::Second_of_pair_property_map<PointVectorPair>());
input.clear();
input.close();
input.open("data/read_test/simple.off");
CGAL::read_off_points_and_normals(
input,
std::front_inserter(pv_pairs),
CGAL::First_of_pair_property_map<PointVectorPair>(),
CGAL::Second_of_pair_property_map<PointVectorPair>(),
Kernel());
input.clear();
input.close();
input.open("data/read_test/simple.off");
CGAL::read_off_points_and_normals<Point_3>(
input,
std::front_inserter(points),
boost::dummy_property_map());
input.clear();
input.close();
}
int main() {
if(!test_no_deduction_points_and_normals_xyz("data/read_test/simple.xyz")) {
return EXIT_FAILURE;
}
std::cerr << "test_no_deduction_points_and_normals_xyz OK." << std::endl;
if(!test_no_deduction_points_and_normals_off("data/read_test/simple.off")) {
return EXIT_FAILURE;
}
std::cerr << "test_no_deduction_points_and_normals_off OK." << std::endl;
if(!test_no_deduction_points_xyz("data/read_test/simple.xyz")) {
return EXIT_FAILURE;
}
std::cerr << "test_no_deduction_points_xyz OK." << std::endl;
if(!test_no_deduction_points_off("data/read_test/simple.off")) {
return EXIT_FAILURE;
}
std::cerr << "test_no_deduction_points_off OK." << std::endl;
compile_test();
return EXIT_SUCCESS;
}

View File

@ -0,0 +1,144 @@
#define CGAL_NO_DEPRECATION_WARNINGS
// remove_outliers_test.cpp
//----------------------------------------------------------
// Test the outlier removal methods:
// For each input point set, remove outliers.
// Input format is .xyz.
// No output.
//----------------------------------------------------------
// remove_outliers_test points1.xyz points2.xyz...
// CGAL
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Timer.h>
#include <CGAL/Memory_sizer.h>
// This package
#include <CGAL/remove_outliers.h>
#include <CGAL/IO/read_xyz_points.h>
#include <deque>
#include <string>
#include <fstream>
#include <cassert>
// ----------------------------------------------------------------------------
// Types
// ----------------------------------------------------------------------------
// kernel
typedef CGAL::Simple_cartesian<float> Kernel;
// Simple geometric types
typedef Kernel::FT FT;
typedef Kernel::Point_3 Point;
// ----------------------------------------------------------------------------
// Tests
// ----------------------------------------------------------------------------
// Removes outliers
void test_avg_knn_sq_distance(std::deque<Point>& points, // input point set
unsigned int nb_neighbors_remove_outliers, // K-nearest neighbors
double removed_percentage) // percentage of points to remove
{
CGAL::Timer task_timer; task_timer.start();
std::cerr << "Removes outliers wrt average squared distance to k nearest neighbors (remove "
<< removed_percentage << "%, k="
<< nb_neighbors_remove_outliers << ")...\n";
// Removes outliers using erase-remove idiom
points.erase(CGAL::remove_outliers(points.begin(), points.end(),
nb_neighbors_remove_outliers, removed_percentage),
points.end());
// Optional: after erase(), use Scott Meyer's "swap trick" to trim excess capacity
std::deque<Point>(points).swap(points);
std::size_t memory = CGAL::Memory_sizer().virtual_size();
std::cerr << "ok: " << task_timer.time() << " seconds, "
<< (memory>>20) << " Mb allocated"
<< std::endl;
}
// ----------------------------------------------------------------------------
// main()
// ----------------------------------------------------------------------------
int main(int argc, char * argv[])
{
std::cerr << "Outlier removal test" << std::endl;
//***************************************
// decode parameters
//***************************************
// usage
if(argc < 2)
{
std::cerr << "For each input point set, remove outliers.\n";
std::cerr << "\n";
std::cerr << "Usage: " << argv[0] << " file1.xyz file2.xyz..." << std::endl;
std::cerr << "Input file format is .xyz.\n";
std::cerr << "No output" << std::endl;
return EXIT_FAILURE;
}
// Outlier Removal options
const double removed_percentage = 5.0 /* % */; // percentage of outliers to remove
const unsigned int nb_neighbors_remove_outliers = 24; // K-nearest neighbors
// Accumulated errors
int accumulated_fatal_err = EXIT_SUCCESS;
// Process each input file
for(int i=1; i<argc; i++)
{
std::cerr << std::endl;
//***************************************
// Loads point set
//***************************************
// File name is:
std::string input_filename = argv[i];
// Reads the point set file in points[].
std::deque<Point> points;
std::cerr << "Open " << input_filename << " for reading..." << std::endl;
// If XYZ file format:
std::ifstream stream(input_filename.c_str());
if(stream &&
CGAL::read_xyz_points(stream, std::back_inserter(points)))
{
std::cerr << "ok (" << points.size() << " points)" << std::endl;
}
else
{
std::cerr << "Error: cannot read file " << input_filename << std::endl;
accumulated_fatal_err = EXIT_FAILURE;
continue;
}
//***************************************
// Test
//***************************************
test_avg_knn_sq_distance(points, nb_neighbors_remove_outliers, removed_percentage);
} // for each input file
std::cerr << std::endl;
// Returns accumulated fatal error
std::cerr << "Tool returned " << accumulated_fatal_err << std::endl;
return accumulated_fatal_err;
}

View File

@ -0,0 +1,140 @@
#define CGAL_NO_DEPRECATION_WARNINGS
// smoothing_test.cpp
//----------------------------------------------------------
// Test the smoothing methods:
// For each input point set, smooth it.
// Input format is .xyz.
// No output.
//----------------------------------------------------------
// smoothing_test points1.xyz points2.xyz...
// CGAL
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Timer.h>
#include <CGAL/Memory_sizer.h>
// This package
#include <CGAL/jet_smooth_point_set.h>
#include <CGAL/IO/read_xyz_points.h>
#include <deque>
#include <string>
#include <fstream>
#include <cassert>
// ----------------------------------------------------------------------------
// Types
// ----------------------------------------------------------------------------
// kernel
typedef CGAL::Simple_cartesian<double> Kernel;
// Simple geometric types
typedef Kernel::FT FT;
typedef Kernel::Point_3 Point;
typedef Kernel::Vector_3 Vector;
// Concurrency
#ifdef CGAL_LINKED_WITH_TBB
typedef CGAL::Parallel_tag Concurrency_tag;
#else
typedef CGAL::Sequential_tag Concurrency_tag;
#endif
// ----------------------------------------------------------------------------
// Tests
// ----------------------------------------------------------------------------
void test_smooth_jet_fitting(std::deque<Point>& points,// input point set
unsigned int nb_neighbors_smooth_jet_fitting) // number of neighbors
{
CGAL::Timer task_timer; task_timer.start();
std::cerr << "Smoothes Point Set (k=" << nb_neighbors_smooth_jet_fitting << ")...\n";
CGAL::jet_smooth_point_set<Concurrency_tag>(points.begin(), points.end(),
nb_neighbors_smooth_jet_fitting);
std::size_t memory = CGAL::Memory_sizer().virtual_size();
std::cerr << "ok: " << task_timer.time() << " seconds, "
<< (memory>>20) << " Mb allocated"
<< std::endl;
}
// ----------------------------------------------------------------------------
// main()
// ----------------------------------------------------------------------------
int main(int argc, char * argv[])
{
std::cerr << "Smoothing test" << std::endl;
//***************************************
// decode parameters
//***************************************
// usage
if(argc < 2)
{
std::cerr << "For each input point set, smooth it.\n";
std::cerr << "\n";
std::cerr << "Usage: " << argv[0] << " file1.xyz file2.xyz..." << std::endl;
std::cerr << "Input file format is .xyz.\n";
std::cerr << "No output" << std::endl;
return EXIT_FAILURE;
}
// Smoothing options
const unsigned int nb_neighbors_smooth_jet_fitting = 24; // K-nearest neighbors (smooth points by Jet Fitting)
// Accumulated errors
int accumulated_fatal_err = EXIT_SUCCESS;
// Process each input file
for(int i=1; i<argc; i++)
{
std::cerr << std::endl;
//***************************************
// Loads point set
//***************************************
// File name is:
std::string input_filename = argv[i];
// Reads the point set file in points[].
std::deque<Point> points;
std::cerr << "Open " << input_filename << " for reading..." << std::endl;
// If XYZ file format:
std::ifstream stream(input_filename.c_str());
if(stream &&
CGAL::read_xyz_points(stream, std::back_inserter(points)))
{
std::cerr << "ok (" << points.size() << " points)" << std::endl;
}
else
{
std::cerr << "Error: cannot read file " << input_filename << std::endl;
accumulated_fatal_err = EXIT_FAILURE;
continue;
}
//***************************************
// Test
//***************************************
test_smooth_jet_fitting(points, nb_neighbors_smooth_jet_fitting);
} // for each input file
std::cerr << std::endl;
// Returns accumulated fatal error
std::cerr << "Tool returned " << accumulated_fatal_err << std::endl;
return accumulated_fatal_err;
}

View File

@ -0,0 +1,146 @@
#define CGAL_NO_DEPRECATION_WARNINGS
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Point_with_normal_3.h>
#include <CGAL/property_map.h>
#include <CGAL/Shape_detection_3.h>
#include <CGAL/structure_point_set.h>
#include <CGAL/Random.h>
#include <iostream>
#include <fstream>
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::Point_3 Point;
typedef Kernel::Vector_3 Vector;
typedef Kernel::Plane_3 Plane;
typedef std::pair<Point, Vector> Point_with_normal;
typedef std::vector<Point_with_normal> Pwn_vector;
typedef CGAL::First_of_pair_property_map<Point_with_normal> Point_map;
typedef CGAL::Second_of_pair_property_map<Point_with_normal> Normal_map;
typedef CGAL::Shape_detection_3::Shape_detection_traits
<Kernel, Pwn_vector, Point_map, Normal_map> Traits;
typedef CGAL::Shape_detection_3::Efficient_RANSAC<Traits> Efficient_ransac;
typedef CGAL::Point_set_with_structure<Kernel> Points_with_structure;
template <typename OutputIterator>
void generate_random_points (const Point& origin, const Vector& base1, const Vector& base2,
std::size_t nb_pts, OutputIterator output)
{
Vector normal = CGAL::cross_product (base1, base2);
normal = normal / std::sqrt (normal * normal);
for (std::size_t i = 0; i < nb_pts; ++ i)
{
Point point = origin
+ CGAL::get_default_random().get_double() * base1
+ CGAL::get_default_random().get_double() * base2;
*(output ++) = std::make_pair (point, normal);
}
}
int main()
{
Vector vx (1., 0., 0.),
vy (0., 1., 0.),
vz (0., 0., 1.);
Efficient_ransac ransac;
ransac.add_shape_factory<CGAL::Shape_detection_3::Plane<Traits> >();
const std::size_t nb_pts = 1000;
Efficient_ransac::Parameters op;
op.probability = 0.05;
op.min_points = nb_pts / 2;
op.epsilon = 0.02;
op.cluster_epsilon = 0.05;
op.normal_threshold = 0.8;
Pwn_vector points;
generate_random_points (Point (0., 0., 0.), vx, vy,
5000, std::back_inserter (points));
generate_random_points (Point (0., 0., 0.), vx, vz,
5000, std::back_inserter (points));
generate_random_points (Point (0., 0., 0.), vy, vz,
5000, std::back_inserter (points));
generate_random_points (Point (0., 0., 1.), vx, vy,
5000, std::back_inserter (points));
generate_random_points (Point (0., 1., 0.), vx, vz,
5000, std::back_inserter (points));
generate_random_points (Point (1., 0., 0.), vy, vz,
5000, std::back_inserter (points));
ransac.set_input(points);
ransac.detect(op);
Efficient_ransac::Plane_range planes = ransac.planes();
Points_with_structure pss (points, Point_map(), Normal_map(),
planes,
CGAL::Shape_detection_3::Plane_map<Traits>(),
CGAL::Shape_detection_3::Point_to_shape_index_map<Traits>(points, planes),
op.cluster_epsilon);
std::vector<Point> vertices;
for (std::size_t i = 0; i < pss.size(); ++ i)
{
std::vector<Plane> planes;
pss.adjacency (i, std::back_inserter (planes));
if (planes.size () == 3)
vertices.push_back (pss.point (i));
}
if (vertices.size () != 8)
{
std::cerr << "Error: 8 point should have been structural vertices." << std::endl;
return EXIT_FAILURE;
}
std::vector<Point> ground_truth;
ground_truth.push_back (Point (0., 0., 0.));
ground_truth.push_back (Point (0., 0., 1.));
ground_truth.push_back (Point (0., 1., 0.));
ground_truth.push_back (Point (0., 1., 1.));
ground_truth.push_back (Point (1., 0., 0.));
ground_truth.push_back (Point (1., 0., 1.));
ground_truth.push_back (Point (1., 1., 0.));
ground_truth.push_back (Point (1., 1., 1.));
std::vector<bool> found (ground_truth.size(), false);
std::size_t nb_found = 0;
for (std::size_t i = 0; i < vertices.size(); ++ i)
for (std::size_t j = 0; j < ground_truth.size(); ++ j)
{
if (found[j])
continue;
if (CGAL::squared_distance (ground_truth[j], vertices[i]) < 1e-6)
{
found[j] = true;
++ nb_found;
break;
}
}
if (nb_found != ground_truth.size())
{
std::cerr << "Error: the following vert(ex/ices) was/were not found:" << std::endl;
for (std::size_t i = 0; i < ground_truth.size(); ++ i)
if (!(found[i]))
std::cerr << " * " << ground_truth[i] << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,44 @@
#define CGAL_NO_DEPRECATION_WARNINGS
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/vcm_estimate_normals.h>
#include <cassert>
#include <vector>
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef CGAL::Point_3<Kernel> Point_3;
typedef CGAL::Vector_3<Kernel> Vector_3;
typedef std::pair<Point_3, Vector_3> PointWithNormal;
int main (void) {
// Generate points on a plane
int k = 100;
double r = 10;
std::vector<PointWithNormal> points;
points.push_back(std::make_pair(Point_3(0, 0, 0), Vector_3(0, 0, 0)));
for (int i = 0; i < k; ++i) {
double theta = 2 * i * CGAL_PI / k;
points.push_back(std::make_pair(Point_3(r * cos(theta), r * sin(theta), 0),
Vector_3(0, 0, 0)));
}
// Estimate the normals using VCM
double R = 20;
vcm_estimate_normals(points.begin(), points.end(),
CGAL::First_of_pair_property_map<PointWithNormal>(),
CGAL::Second_of_pair_property_map<PointWithNormal>(),
R, 0.0);
std::cout << "Normal is " << points[0].second << std::endl;
// The normal at the origin should be (0, 0, 1)
double epsilon=2e-5;
assert(points[0].second.x() < epsilon && points[0].second.x() > -epsilon);
assert(points[0].second.y() < epsilon && points[0].second.y() > -epsilon);
assert(points[0].second.z() < 0 || (points[0].second.z() < 1+epsilon && points[0].second.z() > 1-epsilon));
assert(points[0].second.z() > 0 || (points[0].second.z() < -1+epsilon && points[0].second.z() > -1-epsilon));
return 0;
}

View File

@ -0,0 +1,170 @@
#define CGAL_NO_DEPRECATION_WARNINGS
// wlop_simplify_and_regularize_test.cpp
//----------------------------------------------------------
// Test the wlop simplify and regularize method:
// Input format is .xyz.
// No output.
//----------------------------------------------------------
// wlop_simplify_and_regularize_test points1.xyz points2.xyz...
// CGAL
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Real_timer.h>
#include <CGAL/Memory_sizer.h>
#include <CGAL/tags.h>
// This package
#include <CGAL/wlop_simplify_and_regularize_point_set.h>
#include <CGAL/IO/read_xyz_points.h>
#include <vector>
#include <string>
#include <fstream>
#include <cassert>
// ----------------------------------------------------------------------------
// Types
// ----------------------------------------------------------------------------
// kernel
typedef CGAL::Simple_cartesian<double> Kernel;
// Simple geometric types
typedef Kernel::FT FT;
typedef Kernel::Point_3 Point;
// ----------------------------------------------------------------------------
// Tests
// ----------------------------------------------------------------------------
// Removes outliers
template<typename Concurrency_tag>
void test_wlop_simplify_and_regularize(
std::vector<Point>& points, // input point set
std::vector<Point>& output,
double retain_percentage, // percentage of points to remove
double neighbor_radius, // neighborhood size
unsigned int iter_number, // iteration number
bool need_compute_density)
{
CGAL::Real_timer task_timer; task_timer.start();
std::cerr << "Running WLOP simplify and regularize, (retain_percentage: "
<< retain_percentage << "%, neighbor_radius="
<< neighbor_radius << ")...\n";
// Make room for sample points
std::vector<Point> points_sampled;
points_sampled.resize(static_cast<std::size_t>(points.size() * (retain_percentage / 100.)));
output.clear();
// Run algorithm
CGAL::wlop_simplify_and_regularize_point_set<Concurrency_tag>(
points.begin(),
points.end(),
std::back_inserter(output),
retain_percentage,
neighbor_radius,
iter_number,
need_compute_density);
output.clear();
std::size_t memory = CGAL::Memory_sizer().virtual_size();
std::cerr << "ok: " << task_timer.time() << " seconds, "
<< (memory>>20) << " Mb allocated"
<< std::endl;
}
// ----------------------------------------------------------------------------
// main()
// ----------------------------------------------------------------------------
int main(int argc, char * argv[])
{
std::cerr << "WLOP simplify and regularize" << std::endl;
//***************************************
// decode parameters
//***************************************
// usage
if(argc < 2)
{
std::cerr << "For each input point set, apply WLOP algorithm.\n";
std::cerr << "\n";
std::cerr << "Usage: " << argv[0] << " file1.xyz file2.xyz..." << std::endl;
std::cerr << "Input file format is .xyz.\n";
std::cerr << "No output" << std::endl;
return EXIT_FAILURE;
}
//Algorithm parameters
const double retain_percentage = 2; // percentage of points to retain.
const double neighbor_radius = 0.5; // neighbors size.
const unsigned int iter_number = 25; // number of iterations.
const bool need_compute_density = false; // if needed to compute density.
// Accumulated errors
int accumulated_fatal_err = EXIT_SUCCESS;
// Process each input file
for(int i=1; i<argc; i++)
{
std::cerr << std::endl;
//***************************************
// Loads point set
//***************************************
// File name is:
std::string input_filename = argv[i];
// Reads the point set file in points[].
std::vector<Point> points;
std::cerr << "Opening " << input_filename << " for reading..." << std::endl;
// If XYZ file format:
std::ifstream stream(input_filename.c_str());
if(stream &&
CGAL::read_xyz_points(stream, std::back_inserter(points)))
{
std::cerr << "ok (" << points.size() << " points)" << std::endl;
}
else
{
std::cerr << "Error: cannot read file " << input_filename << std::endl;
accumulated_fatal_err = EXIT_FAILURE;
continue;
}
//***************************************
// Test
//***************************************
#ifdef CGAL_LINKED_WITH_TBB
std::vector<Point> points2(points);
#endif
std::vector<Point> output;
test_wlop_simplify_and_regularize<CGAL::Sequential_tag>(
points, output, retain_percentage, neighbor_radius,
iter_number, need_compute_density);
#ifdef CGAL_LINKED_WITH_TBB
output.clear();
test_wlop_simplify_and_regularize<CGAL::Parallel_tag>(
points2, output, retain_percentage, neighbor_radius,
iter_number, need_compute_density);
#endif // CGAL_LINKED_WITH_TBB
} // for each input file
std::cerr << std::endl;
// Returns accumulated fatal error
std::cerr << "Tool returned " << accumulated_fatal_err << std::endl;
return accumulated_fatal_err;
}