More replacement in the doc of \R by \mathbb{R}

This commit is contained in:
Clement Jamin 2013-07-10 19:40:29 +02:00
parent d4d9bc212b
commit 2ddd815832
3 changed files with 5 additions and 5 deletions

View File

@ -5,8 +5,8 @@ namespace CGAL {
\ingroup PkgTriangulation3TriangulationClasses
Let \f$ {S}^{(w)}\f$ be a set of weighted points in \f$ \mathbb{R}^3\f$. Let
\f$ {p}^{(w)}=(p,w_p), p\in\R^3, w_p\in\R\f$ and
\f$ {z}^{(w)}=(z,w_z), z\in\R^3, w_z\in\R\f$ be two weighted points.
\f$ {p}^{(w)}=(p,w_p), p\in\mathbb{R}^3, w_p\in\mathbb{R}\f$ and
\f$ {z}^{(w)}=(z,w_z), z\in\mathbb{R}^3, w_z\in\mathbb{R}\f$ be two weighted points.
A weighted point
\f$ {p}^{(w)}=(p,w_p)\f$ can also be seen as a sphere of center \f$ p\f$ and
radius \f$ \sqrt{w_p}\f$.

View File

@ -50,7 +50,7 @@ typedef unspecified_type Ray_3;
/*! \name
We use here the same notation as in Section \ref
Triangulation3secclassRegulartriangulation. To simplify notation, \f$
p\f$ will often denote in the sequel either the point \f$ p\in\R^3\f$
p\f$ will often denote in the sequel either the point \f$ p\in\mathbb{R}^3\f$
or the weighted point \f$ {p}^{(w)}=(p,w_p)\f$.
*/
/// @{

View File

@ -143,8 +143,8 @@ The class `Regular_triangulation_3` implements incremental regular
triangulations, also known as weighted Delaunay triangulations.
Let \f$ {S}^{(w)}\f$ be a set of weighted points in \f$ \mathbb{R}^3\f$. Let
\f$ {p}^{(w)}=(p,w_p), p\in\R^3, w_p\in\R\f$ and
\f$ {z}^{(w)}=(z,w_z), z\in\R^3, w_z\in\R\f$ be two weighted points.
\f$ {p}^{(w)}=(p,w_p), p\in\mathbb{R}^3, w_p\in\mathbb{R}\f$ and
\f$ {z}^{(w)}=(z,w_z), z\in\mathbb{R}^3, w_z\in\mathbb{R}\f$ be two weighted points.
A weighted point
\f$ {p}^{(w)}=(p,w_p)\f$ can also be seen as a sphere of center \f$ p\f$ and
radius \f$ \sqrt{w_p}\f$.