diff --git a/Triangulation_3/doc/Triangulation_3/CGAL/Regular_triangulation_3.h b/Triangulation_3/doc/Triangulation_3/CGAL/Regular_triangulation_3.h index 4e9375397be..11513257a1f 100644 --- a/Triangulation_3/doc/Triangulation_3/CGAL/Regular_triangulation_3.h +++ b/Triangulation_3/doc/Triangulation_3/CGAL/Regular_triangulation_3.h @@ -5,8 +5,8 @@ namespace CGAL { \ingroup PkgTriangulation3TriangulationClasses Let \f$ {S}^{(w)}\f$ be a set of weighted points in \f$ \mathbb{R}^3\f$. Let -\f$ {p}^{(w)}=(p,w_p), p\in\R^3, w_p\in\R\f$ and -\f$ {z}^{(w)}=(z,w_z), z\in\R^3, w_z\in\R\f$ be two weighted points. +\f$ {p}^{(w)}=(p,w_p), p\in\mathbb{R}^3, w_p\in\mathbb{R}\f$ and +\f$ {z}^{(w)}=(z,w_z), z\in\mathbb{R}^3, w_z\in\mathbb{R}\f$ be two weighted points. A weighted point \f$ {p}^{(w)}=(p,w_p)\f$ can also be seen as a sphere of center \f$ p\f$ and radius \f$ \sqrt{w_p}\f$. diff --git a/Triangulation_3/doc/Triangulation_3/Concepts/RegularTriangulationTraits_3.h b/Triangulation_3/doc/Triangulation_3/Concepts/RegularTriangulationTraits_3.h index 2ecfcecbd27..e66478137ad 100644 --- a/Triangulation_3/doc/Triangulation_3/Concepts/RegularTriangulationTraits_3.h +++ b/Triangulation_3/doc/Triangulation_3/Concepts/RegularTriangulationTraits_3.h @@ -50,7 +50,7 @@ typedef unspecified_type Ray_3; /*! \name We use here the same notation as in Section \ref Triangulation3secclassRegulartriangulation. To simplify notation, \f$ -p\f$ will often denote in the sequel either the point \f$ p\in\R^3\f$ +p\f$ will often denote in the sequel either the point \f$ p\in\mathbb{R}^3\f$ or the weighted point \f$ {p}^{(w)}=(p,w_p)\f$. */ /// @{ diff --git a/Triangulation_3/doc/Triangulation_3/Triangulation_3.txt b/Triangulation_3/doc/Triangulation_3/Triangulation_3.txt index 3809efd3f66..4f6b6e3f536 100644 --- a/Triangulation_3/doc/Triangulation_3/Triangulation_3.txt +++ b/Triangulation_3/doc/Triangulation_3/Triangulation_3.txt @@ -143,8 +143,8 @@ The class `Regular_triangulation_3` implements incremental regular triangulations, also known as weighted Delaunay triangulations. Let \f$ {S}^{(w)}\f$ be a set of weighted points in \f$ \mathbb{R}^3\f$. Let -\f$ {p}^{(w)}=(p,w_p), p\in\R^3, w_p\in\R\f$ and -\f$ {z}^{(w)}=(z,w_z), z\in\R^3, w_z\in\R\f$ be two weighted points. +\f$ {p}^{(w)}=(p,w_p), p\in\mathbb{R}^3, w_p\in\mathbb{R}\f$ and +\f$ {z}^{(w)}=(z,w_z), z\in\mathbb{R}^3, w_z\in\mathbb{R}\f$ be two weighted points. A weighted point \f$ {p}^{(w)}=(p,w_p)\f$ can also be seen as a sphere of center \f$ p\f$ and radius \f$ \sqrt{w_p}\f$.