mirror of https://github.com/CGAL/cgal
Epick_d doc
This commit is contained in:
parent
7daca6fb9b
commit
2eaf86ec1a
|
|
@ -132,6 +132,12 @@ circumvented. With \ccc{Homogeneous_d<RingNumberType>},
|
|||
\ccc{Homogeneous_d<RingNumberType,LinearAlgebra>::LA} is mapped to the
|
||||
type \ccc{LinearAlgebra}.
|
||||
|
||||
\subsection{Epick Kernel}
|
||||
|
||||
The kernel \ccc{Epick_d<dim>}, short for Exact Predicates Inexact Constructions Kernel is an experimental kernel useful when the dimension of the space is known at compile-time. It uses a Cartesian representation and supports construction of points from \ccc{double} coordinates. It provides exact geometric predicates, but inexact geometric constructions.
|
||||
|
||||
Note that it is a rather strict model of the \ccc{Kernel_d} concept. The type of a point is \ccc{Epick_d<dim>::Point_d}, \emph{not} \ccc{Point_d<Epick_d<dim>>}.
|
||||
|
||||
\subsection{Naming conventions}
|
||||
|
||||
The use of representation classes not only avoids problems, it also
|
||||
|
|
|
|||
|
|
@ -0,0 +1,29 @@
|
|||
\begin{ccRefClass}{Epick_d<dimension>}
|
||||
|
||||
\ccInclude{CGAL/Epick_d.h}
|
||||
|
||||
\ccDefinition
|
||||
A model for \ccc{Kernel_d} and \ccc{DelaunayTriangulationTraits} that
|
||||
uses Cartesian coordinates to represent the geometric objects. The
|
||||
integer parameter \ccc{dimension} is the dimension of the ambient
|
||||
Euclidean space. It supports construction of points from \ccc{double}
|
||||
Cartesian coordinates. It provides exact geometric predicates, but
|
||||
inexact geometric constructions.
|
||||
|
||||
Note that this kernel does not completely conform to the \ccc{Kernel_d}
|
||||
concept: it is missing the constructions \ccc{Lift_to_paraboloid_d} and
|
||||
\ccc{Project_along_d_axis_d} which do not make sense with a fixed
|
||||
dimension.
|
||||
|
||||
\ccIsModel
|
||||
\ccRefConceptPage{Kernel_d}
|
||||
|
||||
\ccRefConceptPage{DelaunayTriangulationTraits}
|
||||
|
||||
\ccSeeAlso
|
||||
\ccRefIdfierPage{CGAL::Cartesian_d<FieldNumberType>}
|
||||
|
||||
\ccRefIdfierPage{CGAL::Homogeneous_d<RingNumberType>}
|
||||
|
||||
|
||||
\end{ccRefClass}
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
\begin{ccRefClass}{Homogeneous<RingNumberType>}
|
||||
\begin{ccRefClass}{Homogeneous_d<RingNumberType>}
|
||||
\ccInclude{CGAL/Homogeneous_d.h}
|
||||
|
||||
\ccDefinition
|
||||
|
|
@ -16,6 +16,6 @@ the kernel is only an approximation of Euclidean geometry.
|
|||
\ccRefConceptPage{Kernel_d}
|
||||
|
||||
\ccSeeAlso
|
||||
\ccRefIdfierPage{CGAL::Cartesian_d<FieldumberType>}
|
||||
\ccRefIdfierPage{CGAL::Cartesian_d<FieldNumberType>}
|
||||
|
||||
\end{ccRefClass}
|
||||
|
|
|
|||
|
|
@ -166,6 +166,6 @@ corresponding functions are:
|
|||
|
||||
\ccHasModels
|
||||
|
||||
\ccc{Cartesian_d<FieldNumberType>}, \ccc{Homogeneous_d<RingNumberType>}
|
||||
\ccc{Cartesian_d<FieldNumberType>}, \ccc{Homogeneous_d<RingNumberType>}, \ccc{Epick_d<dimension>}
|
||||
|
||||
\end{ccRefConcept}
|
||||
|
|
|
|||
|
|
@ -20,6 +20,7 @@
|
|||
\input{Kernel_d_ref/Cartesian_d.tex}
|
||||
\gdef\ccRefPageBreak{\ccTrue}
|
||||
\input{Kernel_d_ref/Homogeneous_d.tex}
|
||||
\input{Kernel_d_ref/Epick_d.tex}
|
||||
|
||||
\clearpage
|
||||
\section{Kernel Objects}
|
||||
|
|
@ -36,6 +37,7 @@
|
|||
\input{Kernel_d_ref/Sphere_d.tex}
|
||||
\input{Kernel_d_ref/Iso_box_d.tex}
|
||||
\input{Kernel_d_ref/Aff_transformation_d.tex}
|
||||
\input{Kernel_d_ref/Epick_d_Point_d.tex}
|
||||
|
||||
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue