Epick_d doc

This commit is contained in:
Marc Glisse 2012-09-20 13:49:34 +00:00
parent 7daca6fb9b
commit 2eaf86ec1a
5 changed files with 40 additions and 3 deletions

View File

@ -132,6 +132,12 @@ circumvented. With \ccc{Homogeneous_d<RingNumberType>},
\ccc{Homogeneous_d<RingNumberType,LinearAlgebra>::LA} is mapped to the
type \ccc{LinearAlgebra}.
\subsection{Epick Kernel}
The kernel \ccc{Epick_d<dim>}, short for Exact Predicates Inexact Constructions Kernel is an experimental kernel useful when the dimension of the space is known at compile-time. It uses a Cartesian representation and supports construction of points from \ccc{double} coordinates. It provides exact geometric predicates, but inexact geometric constructions.
Note that it is a rather strict model of the \ccc{Kernel_d} concept. The type of a point is \ccc{Epick_d<dim>::Point_d}, \emph{not} \ccc{Point_d<Epick_d<dim>>}.
\subsection{Naming conventions}
The use of representation classes not only avoids problems, it also

View File

@ -0,0 +1,29 @@
\begin{ccRefClass}{Epick_d<dimension>}
\ccInclude{CGAL/Epick_d.h}
\ccDefinition
A model for \ccc{Kernel_d} and \ccc{DelaunayTriangulationTraits} that
uses Cartesian coordinates to represent the geometric objects. The
integer parameter \ccc{dimension} is the dimension of the ambient
Euclidean space. It supports construction of points from \ccc{double}
Cartesian coordinates. It provides exact geometric predicates, but
inexact geometric constructions.
Note that this kernel does not completely conform to the \ccc{Kernel_d}
concept: it is missing the constructions \ccc{Lift_to_paraboloid_d} and
\ccc{Project_along_d_axis_d} which do not make sense with a fixed
dimension.
\ccIsModel
\ccRefConceptPage{Kernel_d}
\ccRefConceptPage{DelaunayTriangulationTraits}
\ccSeeAlso
\ccRefIdfierPage{CGAL::Cartesian_d<FieldNumberType>}
\ccRefIdfierPage{CGAL::Homogeneous_d<RingNumberType>}
\end{ccRefClass}

View File

@ -1,4 +1,4 @@
\begin{ccRefClass}{Homogeneous<RingNumberType>}
\begin{ccRefClass}{Homogeneous_d<RingNumberType>}
\ccInclude{CGAL/Homogeneous_d.h}
\ccDefinition
@ -16,6 +16,6 @@ the kernel is only an approximation of Euclidean geometry.
\ccRefConceptPage{Kernel_d}
\ccSeeAlso
\ccRefIdfierPage{CGAL::Cartesian_d<FieldumberType>}
\ccRefIdfierPage{CGAL::Cartesian_d<FieldNumberType>}
\end{ccRefClass}

View File

@ -166,6 +166,6 @@ corresponding functions are:
\ccHasModels
\ccc{Cartesian_d<FieldNumberType>}, \ccc{Homogeneous_d<RingNumberType>}
\ccc{Cartesian_d<FieldNumberType>}, \ccc{Homogeneous_d<RingNumberType>}, \ccc{Epick_d<dimension>}
\end{ccRefConcept}

View File

@ -20,6 +20,7 @@
\input{Kernel_d_ref/Cartesian_d.tex}
\gdef\ccRefPageBreak{\ccTrue}
\input{Kernel_d_ref/Homogeneous_d.tex}
\input{Kernel_d_ref/Epick_d.tex}
\clearpage
\section{Kernel Objects}
@ -36,6 +37,7 @@
\input{Kernel_d_ref/Sphere_d.tex}
\input{Kernel_d_ref/Iso_box_d.tex}
\input{Kernel_d_ref/Aff_transformation_d.tex}
\input{Kernel_d_ref/Epick_d_Point_d.tex}