Rewrite examples to emphasis data type and not contouring method

This commit is contained in:
Mael Rouxel-Labbé 2024-02-15 10:40:05 +01:00
parent 8e0140e641
commit 2ee864c7b0
20 changed files with 979 additions and 788 deletions

View File

@ -6,51 +6,51 @@ project( Isosurfacing_3_Examples )
find_package(CGAL REQUIRED) find_package(CGAL REQUIRED)
create_single_source_cgal_program( "marching_cubes_implicit_sphere.cpp" )
create_single_source_cgal_program( "marching_cubes_seq_vs_parallel.cpp" )
create_single_source_cgal_program( "marching_cubes_Cartesian_grid_sphere.cpp" )
create_single_source_cgal_program( "marching_cubes_signed_mesh_offset.cpp" )
create_single_source_cgal_program( "marching_cubes_multiple_mesh_offsets.cpp" )
create_single_source_cgal_program( "marching_cubes_inrimage.cpp" )
find_package(Eigen3 3.1.0 QUIET) #(3.1.0 or greater) find_package(Eigen3 3.1.0 QUIET) #(3.1.0 or greater)
include(CGAL_Eigen3_support) include(CGAL_Eigen3_support)
find_package(TBB QUIET)
include(CGAL_TBB_support)
create_single_source_cgal_program("marching_cubes.cpp")
if(TARGET CGAL::Eigen3_support) if(TARGET CGAL::Eigen3_support)
create_single_source_cgal_program( "dual_contouring_Cartesian_grid.cpp" ) create_single_source_cgal_program("dual_contouring.cpp")
target_link_libraries(dual_contouring_Cartesian_grid PRIVATE CGAL::Eigen3_support) create_single_source_cgal_program("contouring_discrete_data.cpp")
create_single_source_cgal_program("contouring_image.cpp")
create_single_source_cgal_program("contouring_implicit_data.cpp")
create_single_source_cgal_program("contouring_mesh_offset.cpp")
create_single_source_cgal_program("contouring_octree.cpp")
create_single_source_cgal_program( "dual_contouring_mesh_offset.cpp" ) # undocumented
target_link_libraries(dual_contouring_mesh_offset PRIVATE CGAL::Eigen3_support) create_single_source_cgal_program("dual_contouring_strategies.cpp")
create_single_source_cgal_program("dual_contouring_intersection_oracles.cpp")
create_single_source_cgal_program( "dual_contouring_octree.cpp" ) target_link_libraries(dual_contouring PRIVATE CGAL::Eigen3_support)
target_link_libraries(dual_contouring_octree PRIVATE CGAL::Eigen3_support) target_link_libraries(contouring_discrete_data PRIVATE CGAL::Eigen3_support)
target_link_libraries(contouring_image PRIVATE CGAL::Eigen3_support)
target_link_libraries(contouring_implicit_data PRIVATE CGAL::Eigen3_support)
target_link_libraries(contouring_mesh_offset PRIVATE CGAL::Eigen3_support)
target_link_libraries(contouring_octree PRIVATE CGAL::Eigen3_support)
create_single_source_cgal_program( "all_Cartesian_cube.cpp" ) target_link_libraries(dual_contouring_strategies PRIVATE CGAL::Eigen3_support)
target_link_libraries(all_Cartesian_cube PRIVATE CGAL::Eigen3_support) target_link_libraries(dual_contouring_intersection_oracles PRIVATE CGAL::Eigen3_support)
create_single_source_cgal_program( "dual_contouring_implicit_iwp.cpp" ) if(TARGET CGAL::TBB_support)
target_link_libraries(dual_contouring_implicit_iwp PRIVATE CGAL::Eigen3_support) target_link_libraries(dual_contouring PRIVATE CGAL::TBB_support)
target_link_libraries(contouring_discrete_data PRIVATE CGAL::TBB_support)
target_link_libraries(contouring_image PRIVATE CGAL::TBB_support)
target_link_libraries(contouring_implicit_data PRIVATE CGAL::TBB_support)
target_link_libraries(contouring_mesh_offset PRIVATE CGAL::TBB_support)
target_link_libraries(contouring_octree PRIVATE CGAL::TBB_support)
target_link_libraries(dual_contouring_strategies PRIVATE CGAL::TBB_support)
target_link_libraries(dual_contouring_intersection_oracles PRIVATE CGAL::TBB_support)
endif()
else() else()
message(STATUS "NOTICE: Some examples use Eigen, and will not be compiled.") message(STATUS "NOTICE: Some examples use Eigen, and will not be compiled.")
endif() endif()
find_package(TBB QUIET)
include(CGAL_TBB_support)
if(TARGET CGAL::TBB_support) if(TARGET CGAL::TBB_support)
target_link_libraries(marching_cubes_seq_vs_parallel PRIVATE CGAL::TBB_support) target_link_libraries(marching_cubes PRIVATE CGAL::TBB_support)
target_link_libraries(marching_cubes_implicit_sphere PRIVATE CGAL::TBB_support)
target_link_libraries(marching_cubes_Cartesian_grid_sphere PRIVATE CGAL::TBB_support)
target_link_libraries(marching_cubes_signed_mesh_offset PRIVATE CGAL::TBB_support)
target_link_libraries(marching_cubes_multiple_mesh_offsets PRIVATE CGAL::TBB_support)
target_link_libraries(marching_cubes_inrimage PRIVATE CGAL::TBB_support)
if(TARGET CGAL::Eigen3_support)
target_link_libraries(dual_contouring_Cartesian_grid PRIVATE CGAL::TBB_support)
target_link_libraries(dual_contouring_mesh_offset PRIVATE CGAL::TBB_support)
target_link_libraries(dual_contouring_octree PRIVATE CGAL::TBB_support)
target_link_libraries(all_Cartesian_cube PRIVATE CGAL::TBB_support)
target_link_libraries(dual_contouring_implicit_iwp PRIVATE CGAL::TBB_support)
endif()
endif() endif()

View File

@ -1,87 +0,0 @@
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Isosurfacing_3/Cartesian_grid_3.h>
#include <CGAL/Isosurfacing_3/dual_contouring_3.h>
#include <CGAL/Isosurfacing_3/Explicit_Cartesian_grid_domain_3.h>
#include <CGAL/Isosurfacing_3/marching_cubes_3.h>
#include <CGAL/boost/graph/IO/OFF.h>
using Kernel = CGAL::Simple_cartesian<double>;
using FT = typename Kernel::FT;
using Point = typename Kernel::Point_3;
using Vector = typename Kernel::Vector_3;
using Grid = CGAL::Isosurfacing::Cartesian_grid_3<Kernel>;
using Point_range = std::vector<Point>;
using Polygon_range = std::vector<std::vector<std::size_t> >;
// return 1.0 if value has positive sign, and -1.0 otherwise
FT sign(FT value)
{
return (value > 0.0) - (value < 0.0);
}
int main(int, char**)
{
// create a Cartesian grid with 7^3 grid points and the bounding box [-1, 1]^3
const CGAL::Bbox_3 bbox{-1., -1., -1., 1., 1., 1.};
Grid grid { 7, 7, 7, bbox };
// calculate the value at all grid points
for(std::size_t i=0; i<grid.xdim(); ++i) {
for(std::size_t j=0; j<grid.ydim(); ++j) {
for(std::size_t k=0; k<grid.zdim(); ++k)
{
const FT pos_x = i * grid.spacing()[0] + bbox.xmin();
const FT pos_y = j * grid.spacing()[1] + bbox.ymin();
const FT pos_z = k * grid.spacing()[2] + bbox.zmin();
// L_inf distance to the origin
grid.value(i, j, k) = (std::max)({std::abs(pos_x), std::abs(pos_y), std::abs(pos_z)});
}
}
}
// compute function gradient
auto cube_gradient = [](const Point& p)
{
// the normal depends on the side of the cube
const FT max_value = std::max({ std::abs(p.x()), std::abs(p.y()), std::abs(p.z())});
Vector g(0.0, 0.0, 0.0);
if(max_value == std::abs(p.x()))
g += Vector(sign(p.x()), 0.0, 0.0);
if(max_value == std::abs(p.y()))
g += Vector(0.0, sign(p.y()), 0.0);
if(max_value == std::abs(p.z()))
g += Vector(0.0, 0.0, sign(p.z()));
const FT length_sq = g.squared_length();
if(length_sq > 0.00001)
g /= CGAL::approximate_sqrt(length_sq);
return g;
};
// create domain from given grid and gradient
auto domain = CGAL::Isosurfacing::create_explicit_Cartesian_grid_domain(grid, cube_gradient);
// containers for output indexed surface meshes
Point_range points_mc, points_dc;
Polygon_range polygons_mc, polygons_dc;
// run topologically correct Marching Cubes and Dual Contouring with given isovalue
const FT isovalue = 0.88;
CGAL::Isosurfacing::marching_cubes(domain, isovalue, points_mc, polygons_mc);
CGAL::Isosurfacing::dual_contouring(domain, isovalue, points_dc, polygons_dc);
// save output indexed meshes to files, in the OFF format @fixme these are not meshes...
CGAL::IO::write_OFF("output_mc.off", points_mc, polygons_mc);
CGAL::IO::write_OFF("output_dc.off", points_dc, polygons_dc);
return EXIT_SUCCESS;
}

View File

@ -0,0 +1,124 @@
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Isosurfacing_3/Cartesian_grid_3.h>
#include <CGAL/Isosurfacing_3/dual_contouring_3.h>
#include <CGAL/Isosurfacing_3/Dual_contouring_domain_3.h>
#include <CGAL/Isosurfacing_3/Interpolated_discrete_gradients_3.h>
#include <CGAL/Isosurfacing_3/Interpolated_discrete_values_3.h>
#include <CGAL/Isosurfacing_3/marching_cubes_3.h>
#include <CGAL/Isosurfacing_3/Marching_cubes_domain_3.h>
#include <CGAL/IO/polygon_soup_io.h>
#include <vector>
using Kernel = CGAL::Simple_cartesian<double>;
using FT = typename Kernel::FT;
using Point = typename Kernel::Point_3;
using Vector = typename Kernel::Vector_3;
using Grid = CGAL::Isosurfacing::Cartesian_grid_3<Kernel>;
using Values = CGAL::Isosurfacing::Interpolated_discrete_values_3<Grid>;
using Gradients = CGAL::Isosurfacing::Interpolated_discrete_gradients_3<Grid>;
using Point_range = std::vector<Point>;
using Polygon_range = std::vector<std::vector<std::size_t> >;
namespace IS = CGAL::Isosurfacing;
void run_marching_cubes(const Grid& grid,
const FT isovalue)
{
using Domain = IS::Marching_cubes_domain_3<Grid, Values, IS::Linear_interpolation_edge_intersection>;
std::cout << "\n ---- " << std::endl;
std::cout << "Running Marching Cubes with isovalue = " << isovalue << std::endl;
// fill up values
Values values { grid };
for(std::size_t i=0; i<grid.xdim(); ++i) {
for(std::size_t j=0; j<grid.ydim(); ++j) {
for(std::size_t k=0; k<grid.zdim(); ++k)
{
const Point& p = grid.point(i,j,k);
const FT d = sqrt(CGAL::squared_distance(p, Point(CGAL::ORIGIN)));
values(i,j,k) = d;
}
}
}
Domain domain { grid, values };
Point_range points;
Polygon_range triangles;
// run marching cubes isosurfacing
IS::marching_cubes(domain, isovalue, points, triangles);
std::cout << "Output #vertices: " << points.size() << std::endl;
std::cout << "Output #triangles: " << triangles.size() << std::endl;
CGAL::IO::write_polygon_soup("marching_cubes_discrete.off", points, triangles);
}
void run_dual_contouring(const Grid& grid,
const FT isovalue)
{
using Domain = IS::Dual_contouring_domain_3<Grid, Values, Gradients, IS::Linear_interpolation_edge_intersection>;
std::cout << "\n ---- " << std::endl;
std::cout << "Running Dual Contouring with isovalue = " << isovalue << std::endl;
// fill up values and gradients
Values values { grid };
Gradients gradients { grid };
for(std::size_t i=0; i<grid.xdim(); ++i) {
for(std::size_t j=0; j<grid.ydim(); ++j) {
for(std::size_t k=0; k<grid.zdim(); ++k)
{
const Point& p = grid.point(i,j,k);
const FT d = sqrt(CGAL::squared_distance(p, Point(CGAL::ORIGIN)));
values(i,j,k) = d;
if(d != 0)
gradients(i,j,k) = Vector(CGAL::ORIGIN, p) / d;
else
gradients(i,j,k) = CGAL::NULL_VECTOR;
}
}
}
Domain domain { grid, values, gradients };
Point_range points;
Polygon_range triangles;
// run dual contouring isosurfacing
IS::dual_contouring(domain, isovalue, points, triangles);
std::cout << "Output #vertices: " << points.size() << std::endl;
std::cout << "Output #triangles: " << triangles.size() << std::endl;
CGAL::IO::write_polygon_soup("dual_contouring_discrete.off", points, triangles);
}
int main(int argc, char** argv)
{
const FT isovalue = (argc > 1) ? std::stod(argv[1]) : 0.8;
// create bounding box and grid
const CGAL::Bbox_3 bbox { -1., -1., -1., 1., 1., 1. };
Grid grid { bbox, 30, 30, 30 };
std::cout << "Bbox: " << grid.bbox() << std::endl;
std::cout << "Cell dimensions: " << grid.spacing()[0] << " " << grid.spacing()[1] << " " << grid.spacing()[2] << std::endl;
std::cout << "Cell #: " << grid.xdim() << ", " << grid.ydim() << ", " << grid.zdim() << std::endl;
run_marching_cubes(grid, isovalue);
run_dual_contouring(grid, isovalue);
std::cout << "Done" << std::endl;
return EXIT_SUCCESS;
}

View File

@ -0,0 +1,114 @@
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Isosurfacing_3/Cartesian_grid_3.h>
#include <CGAL/Isosurfacing_3/dual_contouring_3.h>
#include <CGAL/Isosurfacing_3/Dual_contouring_domain_3.h>
#include <CGAL/Isosurfacing_3/Finite_difference_gradient_3.h>
#include <CGAL/Isosurfacing_3/Interpolated_discrete_values_3.h>
#include <CGAL/Isosurfacing_3/marching_cubes_3.h>
#include <CGAL/Isosurfacing_3/Marching_cubes_domain_3.h>
#include <CGAL/Image_3.h>
#include <CGAL/Isosurfacing_3/IO/Image_3.h>
#include <CGAL/IO/polygon_soup_io.h>
#include <iostream>
#include <vector>
using Kernel = CGAL::Simple_cartesian<double>;
using FT = typename Kernel::FT;
using Point = typename Kernel::Point_3;
using Grid = CGAL::Isosurfacing::Cartesian_grid_3<Kernel>;
using Values = CGAL::Isosurfacing::Interpolated_discrete_values_3<Grid>;
using Gradients = CGAL::Isosurfacing::Finite_difference_gradient_3<Kernel>;
using Point_range = std::vector<Point>;
using Polygon_range = std::vector<std::vector<std::size_t> >;
namespace IS = CGAL::Isosurfacing;
void run_marching_cubes(const Grid& grid,
const FT isovalue,
const Values& values)
{
using Domain = IS::Marching_cubes_domain_3<Grid, Values, IS::Linear_interpolation_edge_intersection>;
std::cout << "\n ---- " << std::endl;
std::cout << "Running Marching Cubes with isovalue = " << isovalue << std::endl;
// fill up values
// create a domain from the grid
Domain domain { grid, values };
// prepare collections for the output indexed soup
Point_range points;
Polygon_range triangles;
// execute marching cubes
IS::marching_cubes(domain, isovalue, points, triangles);
std::cout << "Output #vertices: " << points.size() << std::endl;
std::cout << "Output #triangles: " << triangles.size() << std::endl;
// save output indexed mesh to a file, in the OFF format
CGAL::IO::write_polygon_soup("marching_cubes_image.off", points, triangles);
}
void run_dual_contouring(const Grid& grid,
const FT isovalue,
const Values& values)
{
using Domain = IS::Dual_contouring_domain_3<Grid, Values, Gradients, IS::Linear_interpolation_edge_intersection>;
std::cout << "\n ---- " << std::endl;
std::cout << "Running Dual Contouring with isovalue = " << isovalue << std::endl;
// fill up values and gradients
Gradients gradients { values };
Domain domain { grid, values, gradients };
Point_range points;
Polygon_range triangles;
// run dual contouring isosurfacing
IS::dual_contouring(domain, isovalue, points, triangles);
std::cout << "Output #vertices: " << points.size() << std::endl;
std::cout << "Output #triangles: " << triangles.size() << std::endl;
CGAL::IO::write_polygon_soup("dual_contouring_image.off", points, triangles);
}
int main(int argc, char* argv[])
{
const std::string fname = (argc > 1) ? argv[1] : CGAL::data_file_path("images/skull_2.9.inr");
const FT isovalue = (argc > 2) ? std::stod(argv[2]) : - 2.9;
// load volumetric image from a file
CGAL::Image_3 image;
if(!image.read(fname))
{
std::cerr << "Error: Cannot read image file " << fname << std::endl;
return EXIT_FAILURE;
}
// convert image to a Cartesian grid
auto [grid, values] = IS::IO::read_Image_3<Kernel>(image);
for (std::size_t i=0; i<grid.xdim(); ++i)
for (std::size_t j=0; j<grid.ydim(); ++j)
for (std::size_t k=0; k<grid.zdim(); ++k)
values(i, j, k) = - values(i, j, k); // inside out
std::cout << "Bbox: " << grid.bbox() << std::endl;
std::cout << "Cell dimensions: " << grid.spacing()[0] << " " << grid.spacing()[1] << " " << grid.spacing()[2] << std::endl;
std::cout << "Cell #: " << grid.xdim() << ", " << grid.ydim() << ", " << grid.zdim() << std::endl;
run_marching_cubes(grid, isovalue, values);
run_dual_contouring(grid, isovalue, values);
return EXIT_SUCCESS;
}

View File

@ -0,0 +1,119 @@
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Isosurfacing_3/Cartesian_grid_3.h>
#include <CGAL/Isosurfacing_3/dual_contouring_3.h>
#include <CGAL/Isosurfacing_3/Dual_contouring_domain_3.h>
#include <CGAL/Isosurfacing_3/Value_function_3.h>
#include <CGAL/Isosurfacing_3/Gradient_function_3.h>
#include <CGAL/Isosurfacing_3/marching_cubes_3.h>
#include <CGAL/Isosurfacing_3/Marching_cubes_domain_3.h>
#include <CGAL/Bbox_3.h>
#include <CGAL/IO/polygon_soup_io.h>
#include <vector>
using Kernel = CGAL::Simple_cartesian<double>;
using FT = typename Kernel::FT;
using Point = typename Kernel::Point_3;
using Vector = typename Kernel::Vector_3;
using Grid = CGAL::Isosurfacing::Cartesian_grid_3<Kernel>;
using Values = CGAL::Isosurfacing::Value_function_3<Grid>;
using Gradients = CGAL::Isosurfacing::Gradient_function_3<Grid>;
using Point_range = std::vector<Point>;
using Polygon_range = std::vector<std::vector<std::size_t> >;
// ---
const FT alpha = 5.01;
auto iwp_value = [](const Point& point)
{
const FT x = alpha * (point.x() + FT(1.0)) * CGAL_PI;
const FT y = alpha * (point.y() + FT(1.0)) * CGAL_PI;
const FT z = alpha * (point.z() + FT(1.0)) * CGAL_PI;
return cos(x)*cos(y) + cos(y)*cos(z) + cos(z)*cos(x) - cos(x)*cos(y)*cos(z); // isovalue = 0
};
auto iwp_gradient = [](const Point& point)
{
const FT x = alpha * (point.x() + FT(1.0)) * CGAL_PI;
const FT y = alpha * (point.y() + FT(1.0)) * CGAL_PI;
const FT z = alpha * (point.z() + FT(1.0)) * CGAL_PI;
const FT gx = CGAL_PI * alpha * sin(x) * (cos(y) * (cos(z) - FT(1.0)) - cos(z));
const FT gy = CGAL_PI * alpha * sin(y) * (cos(x) * (cos(z) - FT(1.0)) - cos(z));
const FT gz = CGAL_PI * alpha * sin(z) * (cos(x) * (cos(y) - FT(1.0)) - cos(y));
return Vector(gx, gy, gz);
};
void run_marching_cubes(const Grid& grid,
const FT isovalue)
{
using Domain = CGAL::Isosurfacing::Marching_cubes_domain_3<Grid, Values>;
std::cout << "\n ---- " << std::endl;
std::cout << "Running Marching Cubes with isovalue = " << isovalue << std::endl;
// fill up values
Values values { iwp_value, grid };
Domain domain { grid, values };
// output containers
Point_range points;
Polygon_range triangles;
// run Marching Cubes
CGAL::Isosurfacing::marching_cubes(domain, isovalue, points, triangles);
std::cout << "Output #vertices (MC): " << points.size() << std::endl;
std::cout << "Output #triangles (MC): " << triangles.size() << std::endl;
CGAL::IO::write_polygon_soup("marching_cubes_implicit.off", points, triangles);
}
void run_dual_contouring(const Grid& grid,
const FT isovalue)
{
using Domain = CGAL::Isosurfacing::Dual_contouring_domain_3<Grid, Values, Gradients>;
std::cout << "\n ---- " << std::endl;
std::cout << "Running Dual Contouring with isovalue = " << isovalue << std::endl;
// fill up values and gradients
Values values { iwp_value, grid };
Gradients gradients { iwp_gradient, grid };
Domain domain { grid, values, gradients };
// output containers
Point_range points;
Polygon_range triangles;
// run Dual Contouring
CGAL::Isosurfacing::dual_contouring(domain, isovalue, points, triangles);
std::cout << "Output #vertices (DC): " << points.size() << std::endl;
std::cout << "Output #triangles (DC): " << triangles.size() << std::endl;
CGAL::IO::write_polygon_soup("dual_contouring_implicit.off", points, triangles);
}
int main(int argc, char** argv)
{
const FT isovalue = (argc > 1) ? std::stod(argv[1]) : 0.;
const CGAL::Bbox_3 bbox{-1, -1, -1, 1, 1, 1};
const FT step = 0.0078125; // 0.02
const std::array<FT, 3> spacing { step, step, step };
const Grid grid { bbox, spacing };
std::cout << "Bbox: " << grid.bbox() << std::endl;
std::cout << "Cell dimensions: " << grid.spacing()[0] << " " << grid.spacing()[1] << " " << grid.spacing()[2] << std::endl;
std::cout << "Cell #: " << grid.xdim() << ", " << grid.ydim() << ", " << grid.zdim() << std::endl;
run_marching_cubes(grid, isovalue);
run_dual_contouring(grid, isovalue);
std::cout << "Done" << std::endl;
return EXIT_SUCCESS;
}

View File

@ -0,0 +1,171 @@
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Surface_mesh.h>
#include <CGAL/Isosurfacing_3/Cartesian_grid_3.h>
#include <CGAL/Isosurfacing_3/dual_contouring_3.h>
#include <CGAL/Isosurfacing_3/Dual_contouring_domain_3.h>
#include <CGAL/Isosurfacing_3/Value_function_3.h>
#include <CGAL/Isosurfacing_3/Finite_difference_gradient_3.h>
#include <CGAL/Isosurfacing_3/marching_cubes_3.h>
#include <CGAL/Isosurfacing_3/Marching_cubes_domain_3.h>
#include <CGAL/AABB_face_graph_triangle_primitive.h>
#include <CGAL/AABB_traits.h>
#include <CGAL/AABB_tree.h>
#include <CGAL/Bbox_3.h>
#include <CGAL/Polygon_mesh_processing/bbox.h>
#include <CGAL/Side_of_triangle_mesh.h>
#include <CGAL/boost/graph/IO/polygon_mesh_io.h>
#include <CGAL/IO/polygon_soup_io.h>
#include <array>
#include <iostream>
#include <string>
#include <vector>
using Kernel = CGAL::Simple_cartesian<double>;
using FT = typename Kernel::FT;
using Point = typename Kernel::Point_3;
using Vector = typename Kernel::Vector_3;
using Mesh = CGAL::Surface_mesh<Point>;
using Grid = CGAL::Isosurfacing::Cartesian_grid_3<Kernel>;
using Values = CGAL::Isosurfacing::Value_function_3<Grid>;
using Gradients = CGAL::Isosurfacing::Finite_difference_gradient_3<Kernel>;
using Point_range = std::vector<Point>;
using Polygon_range = std::vector<std::vector<std::size_t> >;
struct Offset_oracle
{
using Primitive = CGAL::AABB_face_graph_triangle_primitive<Mesh>;
using Traits = CGAL::AABB_traits<Kernel, Primitive>;
using Tree = CGAL::AABB_tree<Traits>;
private:
const bool is_closed;
const Tree tree;
CGAL::Side_of_triangle_mesh<Mesh, Kernel> sotm;
public:
Offset_oracle(const Mesh& mesh)
: is_closed(CGAL::is_closed(mesh)), tree(mesh.faces_begin(), mesh.faces_end(), mesh), sotm(mesh)
{ }
FT distance(const Point& p) const
{
const Point cp = tree.closest_point(p);
FT d = sqrt((p - cp).squared_length());
if(is_closed && sotm(p) == (CGAL::ON_BOUNDED_SIDE))
d *= -1;
return d;
}
};
void run_marching_cubes(const Grid& grid,
const FT offset_value,
const Offset_oracle& offset_oracle)
{
using Domain = CGAL::Isosurfacing::Marching_cubes_domain_3<Grid, Values>;
std::cout << "\n ---- " << std::endl;
std::cout << "Running Marching Cubes with offset value = " << offset_value << std::endl;
// fill up values
auto mesh_distance = [&offset_oracle](const Point& p) { return offset_oracle.distance(p); };
Values values { mesh_distance, grid };
Domain domain { grid, values };
Point_range points;
Polygon_range triangles;
std::cout << "Output #vertices (MC): " << points.size() << std::endl;
std::cout << "Output #triangles (MC): " << triangles.size() << std::endl;
CGAL::IO::write_polygon_soup("marching_cubes_offsets.off", points, triangles);
}
void run_dual_contouring(const Grid& grid,
const FT offset_value,
const Offset_oracle& offset_oracle)
{
using Domain = CGAL::Isosurfacing::Dual_contouring_domain_3<Grid, Values, Gradients>;
std::cout << "\n ---- " << std::endl;
std::cout << "Running Dual Contouring with offset value = " << offset_value << std::endl;
// fill up values and gradients
auto mesh_distance = [&offset_oracle](const Point& p) { return offset_oracle.distance(p); };
Values values { mesh_distance, grid };
Gradients gradients { values };
Domain domain { grid, values, gradients };
// output containers
Point_range points;
Polygon_range triangles;
// run dual contouring
std::cout << "Running Dual Contouring with isovalue = " << offset_value << std::endl;
CGAL::Isosurfacing::dual_contouring(domain, offset_value, points, triangles);
std::cout << "Output #vertices (DC): " << points.size() << std::endl;
std::cout << "Output #triangles (DC): " << triangles.size() << std::endl;
CGAL::IO::write_polygon_soup("dual_contouring_mesh_offset.off", points, triangles);
}
int main(int argc, char** argv)
{
const std::string filename = (argc > 1) ? argv[1] : CGAL::data_file_path("meshes/cross.off");
const FT offset_value = (argc > 2) ? std::stod(argv[2]) : 0.2;
if(offset_value <= 0)
{
std::cerr << "Offset value must be positive" << std::endl;
return EXIT_FAILURE;
}
Mesh mesh;
if(!CGAL::IO::read_polygon_mesh(filename, mesh))
{
std::cerr << "Could not read input mesh" << std::endl;
return EXIT_FAILURE;
}
if(CGAL::is_closed(mesh))
std::cout << "Input mesh is closed - using signed distance offset" << std::endl;
else
std::cout << "Input mesh is not closed - using unsigned distance offset" << std::endl;
// construct loose bounding box from input mesh
CGAL::Bbox_3 bbox = CGAL::Polygon_mesh_processing::bbox(mesh);
const FT diag_length = sqrt(CGAL::square(bbox.xmax() - bbox.xmin()) +
CGAL::square(bbox.ymax() - bbox.ymin()) +
CGAL::square(bbox.zmax() - bbox.zmin()));
const FT loose_offset = offset_value + 0.1 * diag_length;
Vector aabb_increase_vec = Vector(loose_offset, loose_offset, loose_offset);
bbox += (Point(bbox.xmax(), bbox.ymax(), bbox.zmax()) + aabb_increase_vec).bbox();
bbox += (Point(bbox.xmin(), bbox.ymin(), bbox.zmin()) - aabb_increase_vec).bbox();
const int n_voxels = 250;
Grid grid { bbox, n_voxels, n_voxels, n_voxels };
std::cout << "Bbox: " << grid.bbox() << std::endl;
std::cout << "Cell dimensions: " << grid.spacing()[0] << " " << grid.spacing()[1] << " " << grid.spacing()[2] << std::endl;
std::cout << "Cell #: " << grid.xdim() << ", " << grid.ydim() << ", " << grid.zdim() << std::endl;
Offset_oracle offset_oracle(mesh);
run_marching_cubes(grid, offset_value, offset_oracle);
run_dual_contouring(grid, offset_value, offset_oracle);
return EXIT_SUCCESS;
}

View File

@ -1,10 +1,11 @@
#include <CGAL/Simple_cartesian.h> #include <CGAL/Simple_cartesian.h>
#include <CGAL/Isosurfacing_3/dual_contouring_3.h> #include <CGAL/Isosurfacing_3/dual_contouring_3.h>
#include <CGAL/Isosurfacing_3/Implicit_octree_domain.h> #include <CGAL/Isosurfacing_3/Value_function_3.h>
#include <CGAL/Isosurfacing_3/Gradient_function_3.h>
#include <CGAL/Isosurfacing_3/internal/Octree_wrapper.h> #include <CGAL/Isosurfacing_3/internal/Octree_wrapper.h>
#include <CGAL/boost/graph/IO/OFF.h> #include <CGAL/IO/polygon_soup_io.h>
#include <cmath> #include <cmath>
#include <iostream> #include <iostream>
@ -19,6 +20,9 @@ using Point_range = std::vector<Point>;
using Polygon_range = std::vector<std::vector<std::size_t> >; using Polygon_range = std::vector<std::vector<std::size_t> >;
using Octree_wrapper = CGAL::Isosurfacing::internal::Octree_wrapper<Kernel>; using Octree_wrapper = CGAL::Isosurfacing::internal::Octree_wrapper<Kernel>;
using Values = CGAL::Isosurfacing::Value_function_3<Octree_wrapper>;
using Gradients = CGAL::Isosurfacing::Gradient_function_3<Octree_wrapper>;
using Domain = CGAL::Isosurfacing::Isosurfacing_domain_3<Octree_wrapper, Data>;
struct Refine_one_eighth struct Refine_one_eighth
{ {
@ -27,6 +31,14 @@ struct Refine_one_eighth
std::size_t octree_dim_; std::size_t octree_dim_;
Refine_one_eighth(std::size_t min_depth,
std::size_t max_depth)
: min_depth_(min_depth),
max_depth_(max_depth)
{
octree_dim_ = std::size_t(1) << max_depth_;
}
Octree_wrapper::Uniform_coords uniform_coordinates(const Octree_wrapper::Octree::Node& node) const Octree_wrapper::Uniform_coords uniform_coordinates(const Octree_wrapper::Octree::Node& node) const
{ {
auto coords = node.global_coordinates(); auto coords = node.global_coordinates();
@ -37,14 +49,6 @@ struct Refine_one_eighth
return coords; return coords;
} }
Refine_one_eighth(std::size_t min_depth,
std::size_t max_depth)
: min_depth_(min_depth),
max_depth_(max_depth)
{
octree_dim_ = std::size_t(1) << max_depth_;
}
bool operator()(const Octree_wrapper::Octree::Node& n) const bool operator()(const Octree_wrapper::Octree::Node& n) const
{ {
if(n.depth() < min_depth_) if(n.depth() < min_depth_)
@ -87,16 +91,15 @@ int main(int, char**)
return g / std::sqrt(g.squared_length()); return g / std::sqrt(g.squared_length());
}; };
auto domain = CGAL::Isosurfacing::create_implicit_octree_domain(octree_wrap, Data data(sphere_function, sphere_gradient);
sphere_function, Domain domain(octree_wrap, data);
sphere_gradient);
Point_range points; Point_range points;
Polygon_range polygons; Polygon_range polygons;
CGAL::Isosurfacing::dual_contouring(domain, 0.8, points, polygons); CGAL::Isosurfacing::dual_contouring(domain, 0.8, points, polygons);
CGAL::IO::write_OFF("dual_contouring_octree.off", points, polygons); CGAL::IO::write_polygon_soup("dual_contouring_octree.off", points, polygons);
return EXIT_SUCCESS; return EXIT_SUCCESS;
} }

View File

@ -0,0 +1,73 @@
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Isosurfacing_3/Cartesian_grid_3.h>
#include <CGAL/Isosurfacing_3/dual_contouring_3.h>
#include <CGAL/Isosurfacing_3/Dual_contouring_domain_3.h>
#include <CGAL/Isosurfacing_3/Value_function_3.h>
#include <CGAL/Isosurfacing_3/Gradient_function_3.h>
#include <CGAL/IO/polygon_soup_io.h>
#include <vector>
using Kernel = CGAL::Simple_cartesian<double>;
using FT = typename Kernel::FT;
using Point = typename Kernel::Point_3;
using Vector = typename Kernel::Vector_3;
using Grid = CGAL::Isosurfacing::Cartesian_grid_3<Kernel>;
using Values = CGAL::Isosurfacing::Value_function_3<Grid>;
using Gradients = CGAL::Isosurfacing::Gradient_function_3<Grid>;
using Domain = CGAL::Isosurfacing::Dual_contouring_domain_3<Grid, Values, Gradients>;
using Point_range = std::vector<Point>;
using Polygon_range = std::vector<std::vector<std::size_t> >;
int main(int argc, char** argv)
{
const FT isovalue = (argc > 1) ? std::stod(argv[1]) : 0.8;
// create bounding box and grid
const CGAL::Bbox_3 bbox { -1., -1., -1., 1., 1., 1. };
Grid grid { bbox, 30, 30, 30 };
std::cout << "Bbox: " << grid.bbox() << std::endl;
std::cout << "Cell dimensions: " << grid.spacing()[0] << " " << grid.spacing()[1] << " " << grid.spacing()[2] << std::endl;
std::cout << "Cell #: " << grid.xdim() << ", " << grid.ydim() << ", " << grid.zdim() << std::endl;
// fill up values and gradients
auto sphere_value_fn = [](const Point& p) -> FT
{
return sqrt(p.x()*p.x() + p.y()*p.y() + p.z()*p.z());
};
auto sphere_gradient_fn = [](const Point& p) -> Vector
{
const FT d = sqrt(p.x()*p.x() + p.y()*p.y() + p.z()*p.z());
return Vector(CGAL::ORIGIN, p) / d;
};
Values values { sphere_value_fn, grid };
Gradients gradients { sphere_gradient_fn, grid };
Domain domain { grid, values, gradients };
// the domain could also be created with:
// auto domain = CGAL::Isosurfacing::create_dual_contouring_domain_3(grid, values, gradients);
Point_range points;
Polygon_range triangles;
// run dual contouring isosurfacing
std::cout << "Running Dual Contouring with isovalue = " << isovalue << std::endl;
CGAL::Isosurfacing::dual_contouring(domain, isovalue, points, triangles,
CGAL::parameters::do_not_triangulate_faces(true)
.constrain_to_cell(true));
std::cout << "Output #vertices: " << points.size() << std::endl;
std::cout << "Output #triangles: " << triangles.size() << std::endl;
CGAL::IO::write_polygon_soup("dual_contouring.off", points, triangles);
std::cout << "Done" << std::endl;
return EXIT_SUCCESS;
}

View File

@ -1,64 +0,0 @@
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Isosurfacing_3/Cartesian_grid_3.h>
#include <CGAL/Isosurfacing_3/Explicit_Cartesian_grid_gradient_3.h>
#include <CGAL/Isosurfacing_3/Explicit_Cartesian_grid_domain_3.h>
#include <CGAL/Isosurfacing_3/dual_contouring_3.h>
#include <CGAL/boost/graph/IO/OFF.h>
using Kernel = CGAL::Simple_cartesian<double>;
using FT = typename Kernel::FT;
using Point = typename Kernel::Point_3;
using Vector = typename Kernel::Vector_3;
using Grid = CGAL::Isosurfacing::Cartesian_grid_3<Kernel>;
using Point_range = std::vector<Point>;
using Polygon_range = std::vector<std::vector<std::size_t> >;
int main(int, char**)
{
// create bounding box and grid
const CGAL::Bbox_3 bbox{-1., -1., -1., 1., 1., 1.};
Grid grid { 30, 30, 30, bbox };
// compute field values and gradients
for(std::size_t x = 0; x < grid.xdim(); ++x) {
for(std::size_t y = 0; y < grid.ydim(); ++y) {
for(std::size_t z = 0; z < grid.zdim(); ++z)
{
const FT pos_x = x * grid.spacing()[0] + bbox.xmin();
const FT pos_y = y * grid.spacing()[1] + bbox.ymin();
const FT pos_z = z * grid.spacing()[2] + bbox.zmin();
const Vector direction(pos_x, pos_y, pos_z);
const FT distance = CGAL::approximate_sqrt(direction.squared_length());
grid.value(x, y, z) = distance;
if(distance != 0)
grid.gradient(x, y, z) = direction / distance;
else
grid.gradient(x, y, z) = CGAL::NULL_VECTOR;
}
}
}
// gradient field
CGAL::Isosurfacing::Explicit_Cartesian_grid_gradient_3<Grid> gradient(grid);
// create domain from scalar and gradient fields
auto domain = CGAL::Isosurfacing::create_explicit_Cartesian_grid_domain(grid, gradient);
Point_range points;
Polygon_range polygons;
// run dual contouring isosurfacing
CGAL::Isosurfacing::dual_contouring(domain, 0.8, points, polygons);
// write output indexed surface mesh to file, in OFF format
CGAL::IO::write_OFF("dual_contouring_Cartesian_grid.off", points, polygons);
return EXIT_SUCCESS;
}

View File

@ -1,59 +0,0 @@
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Isosurfacing_3/dual_contouring_3.h>
#include <CGAL/Isosurfacing_3/Implicit_Cartesian_grid_domain_3.h>
#include <CGAL/Bbox_3.h>
#include <CGAL/boost/graph/IO/OFF.h>
using Kernel = CGAL::Simple_cartesian<double>;
using FT = typename Kernel::FT;
using Point = typename Kernel::Point_3;
using Vector = typename Kernel::Vector_3;
using Point_range = std::vector<Point>;
using Polygon_range = std::vector<std::vector<std::size_t> >;
int main(int, char**)
{
const FT alpha = 5.01;
auto iwp_value = [alpha](const Point& point)
{
const FT x = alpha * (point.x() + FT(1.0)) * CGAL_PI;
const FT y = alpha * (point.y() + FT(1.0)) * CGAL_PI;
const FT z = alpha * (point.z() + FT(1.0)) * CGAL_PI;
return cos(x) * cos(y) + cos(y) * cos(z) + cos(z) * cos(x) - cos(x) * cos(y) * cos(z); // isovalue = 0
};
auto iwp_gradient = [alpha](const Point& point)
{
const FT x = alpha * (point.x() + FT(1.0)) * CGAL_PI;
const FT y = alpha * (point.y() + FT(1.0)) * CGAL_PI;
const FT z = alpha * (point.z() + FT(1.0)) * CGAL_PI;
const FT gx = CGAL_PI * alpha * sin(x) * (cos(y) * (cos(z) - FT(1.0)) - cos(z));
const FT gy = CGAL_PI * alpha * sin(y) * (cos(x) * (cos(z) - FT(1.0)) - cos(z));
const FT gz = CGAL_PI * alpha * sin(z) * (cos(x) * (cos(y) - FT(1.0)) - cos(y));
return Vector(gx, gy, gz);
};
const CGAL::Bbox_3 bbox{-1.0, -1.0, -1.0, 1.0, 1.0, 1.0};
const FT spacing = 0.02;
const Vector vec_spacing(spacing, spacing, spacing);
// create a domain with given bounding box and grid spacing
auto domain = CGAL::Isosurfacing::create_implicit_Cartesian_grid_domain<Kernel>(bbox, vec_spacing, iwp_value, iwp_gradient);
// prepare collections for the result
Point_range points;
Polygon_range polygons;
// run dual contouring with isovalue set to 0
CGAL::Isosurfacing::dual_contouring(domain, 0., points, polygons);
// save output to the OFF format
CGAL::IO::write_OFF("dual_contouring_implicit_iwp.off", points, polygons);
return EXIT_SUCCESS;
}

View File

@ -0,0 +1,111 @@
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Isosurfacing_3/Cartesian_grid_3.h>
#include <CGAL/Isosurfacing_3/dual_contouring_3.h>
#include <CGAL/Isosurfacing_3/Dual_contouring_domain_3.h>
#include <CGAL/Isosurfacing_3/Value_function_3.h>
#include <CGAL/Isosurfacing_3/Finite_difference_gradient_3.h>
#include <CGAL/Isosurfacing_3/internal/implicit_shapes_helper.h>
#include <CGAL/Real_timer.h>
#include <CGAL/IO/polygon_soup_io.h>
#include <vector>
using Kernel = CGAL::Simple_cartesian<double>;
using FT = typename Kernel::FT;
using Point = typename Kernel::Point_3;
using Vector = typename Kernel::Vector_3;
using Grid = CGAL::Isosurfacing::Cartesian_grid_3<Kernel>;
using Values = CGAL::Isosurfacing::Value_function_3<Grid>;
using Gradients = CGAL::Isosurfacing::Finite_difference_gradient_3<Kernel>;
using Point_range = std::vector<Point>;
using Polygon_range = std::vector<std::vector<std::size_t> >;
namespace IS = CGAL::Isosurfacing;
auto implicit_function = [](const Point& q) -> FT
{
auto cyl = [](const Point& q) { return IS::Shapes::infinite_cylinder<Kernel>(Point(0,0,0), Vector(0,0,1), 0.5, q); };
auto cube = [](const Point& q) { return IS::Shapes::box<Kernel>(Point(-0.5,-0.5,-0.5), Point(0.5,0.5,0.5), q); };
auto cyl_and_cube = [&](const Point& q) { return IS::Shapes::shape_union<Kernel>(cyl, cube, q); };
auto sphere = [](const Point& q) { return IS::Shapes::sphere<Kernel>(Point(0,0,0.5), 0.75, q); };
return IS::Shapes::shape_difference<Kernel>(cyl_and_cube, sphere, q);
};
// The example shows that this is a bad choice to use a linear interpolant
// because the implicit function gives much more information than just using the values at grid vertices.
// @todo implement the SDF interpolant and show that it's as good as the dichotomy, but faster
int main(int argc, char** argv)
{
const FT isovalue = (argc > 1) ? std::stod(argv[1]) : 0.;
std::cout << "Isovalue: " << isovalue << std::endl;
// create bounding box and grid
const CGAL::Bbox_3 bbox = {-2., -2., -2., 2., 2., 2.};
Grid grid { bbox, 50, 50, 50 };
std::cout << "Bbox: " << grid.bbox() << std::endl;
std::cout << "Cell dimensions: " << grid.spacing()[0] << " " << grid.spacing()[1] << " " << grid.spacing()[2] << std::endl;
std::cout << "Cell #: " << grid.xdim() << ", " << grid.ydim() << ", " << grid.zdim() << std::endl;
// fill up values and gradients
Values values { implicit_function, grid };
Gradients gradients { values };
const bool triangulate_faces = false;
// Compute edge intersections with dichotomy
{
using Domain = IS::Dual_contouring_domain_3<Grid, Values, Gradients, IS::Dichotomy_edge_intersection>;
Domain domain { grid, values, gradients };
CGAL::Real_timer timer;
timer.start();
Point_range points;
Polygon_range triangles;
std::cout << "--- Dual Contouring (Dichotomy)" << std::endl;
IS::dual_contouring(domain, isovalue, points, triangles,
CGAL::parameters::do_not_triangulate_faces(!triangulate_faces));
timer.stop();
std::cout << "Output #vertices: " << points.size() << std::endl;
std::cout << "Output #triangles: " << triangles.size() << std::endl;
std::cout << "Elapsed time: " << timer.time() << " seconds" << std::endl;
CGAL::IO::write_polygon_soup("dual_contouring-dichotomy_oracle.off", points, triangles);
}
// Compute edge intersections with linear interpolation
{
using Domain = IS::Dual_contouring_domain_3<Grid, Values, Gradients, IS::Linear_interpolation_edge_intersection>;
Domain domain { grid, values, gradients };
CGAL::Real_timer timer;
timer.start();
Point_range points;
Polygon_range triangles;
std::cout << "--- Dual Contouring (Linear Interpolation)" << std::endl;
IS::dual_contouring(domain, isovalue, points, triangles,
CGAL::parameters::do_not_triangulate_faces(!triangulate_faces));
timer.stop();
std::cout << "Output #vertices: " << points.size() << std::endl;
std::cout << "Output #triangles: " << triangles.size() << std::endl;
std::cout << "Elapsed time: " << timer.time() << " seconds" << std::endl;
CGAL::IO::write_polygon_soup("dual_contouring-linear_oracle.off", points, triangles);
}
std::cout << "Done" << std::endl;
return EXIT_SUCCESS;
}

View File

@ -1,87 +0,0 @@
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Surface_mesh.h>
#include <CGAL/Isosurfacing_3/dual_contouring_3.h>
#include <CGAL/Isosurfacing_3/Implicit_Cartesian_grid_domain_3.h>
#include <CGAL/AABB_face_graph_triangle_primitive.h>
#include <CGAL/AABB_traits.h>
#include <CGAL/AABB_tree.h>
#include <CGAL/Bbox_3.h>
#include <CGAL/Side_of_triangle_mesh.h>
#include <CGAL/boost/graph/IO/OFF.h>
#include <iostream>
#include <string>
#include <vector>
using Kernel = CGAL::Simple_cartesian<double>;
using FT = typename Kernel::FT;
using Point = typename Kernel::Point_3;
using Vector = typename Kernel::Vector_3;
using Mesh = CGAL::Surface_mesh<Point>;
using Primitive = CGAL::AABB_face_graph_triangle_primitive<Mesh>;
using Traits = CGAL::AABB_traits<Kernel, Primitive>;
using Tree = CGAL::AABB_tree<Traits>;
using Point_range = std::vector<Point>;
using Polygon_range = std::vector<std::vector<std::size_t> >;
int main(int argc, char* argv[])
{
const std::string input_name = (argc > 1) ? argv[1] : CGAL::data_file_path("meshes/cross.off");
const Vector grid_spacing(0.1, 0.1, 0.1);
const FT offset_value = 0.2;
CGAL_assertion(offset_value > 0);
Mesh input_mesh;
if(!CGAL::IO::read_OFF(input_name, input_mesh))
{
std::cerr << "Could not read input mesh" << std::endl;
return EXIT_FAILURE;
}
// compute bounding box
CGAL::Bbox_3 bbox = CGAL::Polygon_mesh_processing::bbox(input_mesh);
Vector aabb_increase_vec = Vector(offset_value + 0.01, offset_value + 0.01, offset_value + 0.01);
bbox += (Point(bbox.xmax(), bbox.ymax(), bbox.zmax()) + aabb_increase_vec).bbox();
bbox += (Point(bbox.xmin(), bbox.ymin(), bbox.zmin()) - aabb_increase_vec).bbox();
// construct AABB tree
Tree tree(input_mesh.faces_begin(), input_mesh.faces_end(), input_mesh);
CGAL::Side_of_triangle_mesh<Mesh, CGAL::GetGeomTraits<Mesh>::type> sotm(input_mesh);
// functors for addressing distance and normal queries
auto mesh_distance = [&tree](const Point& p)
{
const Point x = tree.closest_point(p);
return sqrt((p - x).squared_length());
};
auto mesh_normal = [&tree](const Point& p)
{
const Point x = tree.closest_point(p);
const Vector n = p - x;
return n / sqrt(n.squared_length()); // normalize output vector
};
// create a domain with given bounding box and grid spacing
auto domain = CGAL::Isosurfacing::create_implicit_Cartesian_grid_domain<Kernel>(bbox, grid_spacing,
mesh_distance, mesh_normal);
// containers for output indexed surface mesh
Point_range points;
Polygon_range polygons;
// run dual contouring
CGAL::Isosurfacing::dual_contouring(domain, offset_value, points, polygons);
// save output indexed mesh to a file, in the OFF format
CGAL::IO::write_OFF("dual_contouring_mesh_offset.off", points, polygons);
return EXIT_SUCCESS;
}

View File

@ -0,0 +1,154 @@
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Isosurfacing_3/Cartesian_grid_3.h>
#include <CGAL/Isosurfacing_3/dual_contouring_3.h>
#include <CGAL/Isosurfacing_3/Dual_contouring_domain_3.h>
#include <CGAL/Isosurfacing_3/Value_function_3.h>
#include <CGAL/Isosurfacing_3/Finite_difference_gradient_3.h>
#include <CGAL/Isosurfacing_3/internal/implicit_shapes_helper.h>
#include <CGAL/Real_timer.h>
#include <CGAL/IO/polygon_soup_io.h>
#include <vector>
using Kernel = CGAL::Simple_cartesian<double>;
using FT = typename Kernel::FT;
using Point = typename Kernel::Point_3;
using Vector = typename Kernel::Vector_3;
using Grid = CGAL::Isosurfacing::Cartesian_grid_3<Kernel>;
using Values = CGAL::Isosurfacing::Value_function_3<Grid>;
using Gradients = CGAL::Isosurfacing::Finite_difference_gradient_3<Kernel>;
using Domain = CGAL::Isosurfacing::Dual_contouring_domain_3<Grid, Values, Gradients>;
using Point_range = std::vector<Point>;
using Polygon_range = std::vector<std::vector<std::size_t> >;
namespace IS = CGAL::Isosurfacing;
auto implicit_function = [](const Point& q) -> FT
{
auto cyl = [](const Point& q) { return IS::Shapes::infinite_cylinder<Kernel>(Point(0,0,0), Vector(0,0,1), 0.5, q); };
auto cube = [](const Point& q) { return IS::Shapes::box<Kernel>(Point(-0.5,-0.5,-0.5), Point(0.5,0.5,0.5), q); };
auto cyl_and_cube = [&](const Point& q) { return IS::Shapes::shape_union<Kernel>(cyl, cube, q); };
auto sphere = [](const Point& q) { return IS::Shapes::sphere<Kernel>(Point(0,0,0.5), 0.75, q); };
return IS::Shapes::shape_difference<Kernel>(cyl_and_cube, sphere, q);
};
int main(int argc, char** argv)
{
const FT isovalue = (argc > 1) ? std::stod(argv[1]) : 0.;
std::cout << "Isovalue: " << isovalue << std::endl;
// create bounding box and grid
const CGAL::Bbox_3 bbox = {-2., -2., -2., 2., 2., 2.};
Grid grid { bbox, 50, 50, 50 };
std::cout << "Bbox: " << grid.bbox() << std::endl;
std::cout << "Cell dimensions: " << grid.spacing()[0] << " " << grid.spacing()[1] << " " << grid.spacing()[2] << std::endl;
std::cout << "Cell #: " << grid.xdim() << ", " << grid.ydim() << ", " << grid.zdim() << std::endl;
// fill up values and gradients
Values values { implicit_function, grid };
Gradients gradients { values };
Domain domain { grid, values, gradients };
const bool triangulate_faces = false;
// unconstrained QEM Placement strategy (default)
{
CGAL::Real_timer timer;
timer.start();
Point_range points;
Polygon_range triangles;
std::cout << "--- Dual Contouring (QEM - unconstrained)" << std::endl;
IS::internal::Dual_contourer<CGAL::Sequential_tag, Domain,
IS::internal::DC_Strategy::QEM> contourer;
contourer(domain, isovalue, points, triangles,
CGAL::parameters::do_not_triangulate_faces(!triangulate_faces));
timer.stop();
std::cout << "Output #vertices: " << points.size() << std::endl;
std::cout << "Output #triangles: " << triangles.size() << std::endl;
std::cout << "Elapsed time: " << timer.time() << " seconds" << std::endl;
CGAL::IO::write_polygon_soup("dual_contouring_QEM-unconstrained.off", points, triangles);
}
// constrained QEM Placement strategy
{
CGAL::Real_timer timer;
timer.start();
Point_range points;
Polygon_range triangles;
std::cout << "--- Dual Contouring (QEM - constrained)" << std::endl;
IS::internal::Dual_contourer<CGAL::Sequential_tag, Domain,
IS::internal::DC_Strategy::QEM> contourer;
contourer(domain, isovalue, points, triangles,
CGAL::parameters::do_not_triangulate_faces(!triangulate_faces)
.constrain_to_cell(true));
timer.stop();
std::cout << "Output #vertices: " << points.size() << std::endl;
std::cout << "Output #triangles: " << triangles.size() << std::endl;
std::cout << "Elapsed time: " << timer.time() << " seconds" << std::endl;
CGAL::IO::write_polygon_soup("dual_contouring_QEM-constrained.off", points, triangles);
}
// Centroid of Edge Intersections strategy
{
CGAL::Real_timer timer;
timer.start();
Point_range points;
Polygon_range triangles;
std::cout << "--- Dual Contouring (Centroid of Edge Intersections)" << std::endl;
IS::internal::Dual_contourer<CGAL::Sequential_tag, Domain,
IS::internal::DC_Strategy::Centroid_of_edge_intersections> contourer;
contourer(domain, isovalue, points, triangles,
CGAL::parameters::do_not_triangulate_faces(!triangulate_faces));
timer.stop();
std::cout << "Output #vertices: " << points.size() << std::endl;
std::cout << "Output #triangles: " << triangles.size() << std::endl;
std::cout << "Elapsed time: " << timer.time() << " seconds" << std::endl;
CGAL::IO::write_polygon_soup("dual_contouring_CEI.off", points, triangles);
}
// Cell Center strategy
{
CGAL::Real_timer timer;
timer.start();
Point_range points;
Polygon_range triangles;
std::cout << "--- Dual Contouring (Cell Center)" << std::endl;
IS::internal::Dual_contourer<CGAL::Sequential_tag, Domain,
IS::internal::DC_Strategy::Cell_center> contourer;
contourer(domain, isovalue, points, triangles,
CGAL::parameters::do_not_triangulate_faces(!triangulate_faces));
timer.stop();
std::cout << "Output #vertices: " << points.size() << std::endl;
std::cout << "Output #triangles: " << triangles.size() << std::endl;
std::cout << "Elapsed time: " << timer.time() << " seconds" << std::endl;
CGAL::IO::write_polygon_soup("dual_contouring_CC.off", points, triangles);
}
std::cout << "Done" << std::endl;
return EXIT_SUCCESS;
}

View File

@ -0,0 +1,62 @@
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Isosurfacing_3/Cartesian_grid_3.h>
#include <CGAL/Isosurfacing_3/Value_function_3.h>
#include <CGAL/Isosurfacing_3/marching_cubes_3.h>
#include <CGAL/Isosurfacing_3/Marching_cubes_domain_3.h>
#include <CGAL/IO/polygon_soup_io.h>
#include <vector>
using Kernel = CGAL::Simple_cartesian<double>;
using FT = typename Kernel::FT;
using Point = typename Kernel::Point_3;
using Vector = typename Kernel::Vector_3;
using Grid = CGAL::Isosurfacing::Cartesian_grid_3<Kernel>;
using Values = CGAL::Isosurfacing::Value_function_3<Grid>;
using Domain = CGAL::Isosurfacing::Marching_cubes_domain_3<Grid, Values>;
using Point_range = std::vector<Point>;
using Polygon_range = std::vector<std::vector<std::size_t> >;
int main(int argc, char** argv)
{
const FT isovalue = (argc > 1) ? std::stod(argv[1]) : 0.8;
// create bounding box and grid
const CGAL::Bbox_3 bbox { -1., -1., -1., 1., 1., 1. };
Grid grid { bbox, 30, 30, 30 };
std::cout << "Bbox: " << grid.bbox() << std::endl;
std::cout << "Cell dimensions: " << grid.spacing()[0] << " " << grid.spacing()[1] << " " << grid.spacing()[2] << std::endl;
std::cout << "Cell #: " << grid.xdim() << ", " << grid.ydim() << ", " << grid.zdim() << std::endl;
// fill up values
auto sphere_value_fn = [](const Point& p) -> FT
{
return sqrt(p.x()*p.x() + p.y()*p.y() + p.z()*p.z());
};
Values values { sphere_value_fn, grid };
Domain domain { grid, values };
// the domain could also be created with:
// auto domain = CGAL::Isosurfacing::create_marching_cubes_domain_3(grid, values);
Point_range points;
Polygon_range triangles;
// run marching cubes isosurfacing
std::cout << "Running Marching Cubes with isovalue = " << isovalue << std::endl;
CGAL::Isosurfacing::marching_cubes(domain, isovalue, points, triangles,
CGAL::parameters::use_topologically_correct_marching_cubes(true));
std::cout << "Output #vertices: " << points.size() << std::endl;
std::cout << "Output #triangles: " << triangles.size() << std::endl;
CGAL::IO::write_polygon_soup("marching_cubes.off", points, triangles);
std::cout << "Done" << std::endl;
return EXIT_SUCCESS;
}

View File

@ -1,54 +0,0 @@
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Isosurfacing_3/Cartesian_grid_3.h>
#include <CGAL/Isosurfacing_3/Explicit_Cartesian_grid_domain_3.h>
#include <CGAL/Isosurfacing_3/marching_cubes_3.h>
#include <CGAL/boost/graph/IO/OFF.h>
#include <vector>
using Kernel = CGAL::Simple_cartesian<double>;
using FT = typename Kernel::FT;
using Point = typename Kernel::Point_3;
using Grid = CGAL::Isosurfacing::Cartesian_grid_3<Kernel>;
using Point_range = std::vector<Point>;
using Polygon_range = std::vector<std::vector<std::size_t> >;
int main(int, char**)
{
// 3D bounding box [-1, 1]^3 and Cartesian grid
const CGAL::Bbox_3 bbox{-1., -1., -1., 1., 1., 1.};
Grid grid { 50, 50, 50, bbox };
// compute and store function values at all grid points
for(std::size_t x = 0; x < grid.xdim(); ++x) {
for(std::size_t y = 0; y < grid.ydim(); ++y) {
for(std::size_t z = 0; z < grid.zdim(); ++z)
{
const FT pos_x = x * grid.spacing()[0] + bbox.xmin();
const FT pos_y = y * grid.spacing()[1] + bbox.ymin();
const FT pos_z = z * grid.spacing()[2] + bbox.zmin();
// Euclidean distance to the origin
grid.value(x, y, z) = sqrt(pos_x * pos_x + pos_y * pos_y + pos_z * pos_z);
}
}
}
// create a domain from the grid
auto domain = CGAL::Isosurfacing::create_explicit_Cartesian_grid_domain(grid);
// prepare collections for the result
Point_range points;
Polygon_range triangles;
// run marching cubes with an isovalue of 0.8
CGAL::Isosurfacing::marching_cubes(domain, 0.8, points, triangles);
// save output indexed surface mesh to file, in the OFF format
CGAL::IO::write_OFF("marching_cubes_Cartesian_grid_sphere.off", points, triangles);
return EXIT_SUCCESS;
}

View File

@ -1,50 +0,0 @@
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Isosurfacing_3/Implicit_Cartesian_grid_domain_3.h>
#include <CGAL/Isosurfacing_3/marching_cubes_3.h>
#include <CGAL/Bbox_3.h>
#include <CGAL/boost/graph/IO/OFF.h>
#include <CGAL/Timer.h>
#include <vector>
using Kernel = CGAL::Simple_cartesian<double>;
using FT = typename Kernel::FT;
using Point = typename Kernel::Point_3;
using Vector = typename Kernel::Vector_3;
using Point_range = std::vector<Point>;
using Triangle_range = std::vector<std::vector<std::size_t> >;
// Sphere function = Euclidean distance function to the origin
auto sphere_function = [](const Point& p) -> FT
{
return std::sqrt(p.x() * p.x() + p.y() * p.y() + p.z() * p.z());
};
int main(int, char**)
{
// box domain and spacing vector
const CGAL::Bbox_3 bbox{ -1.0, -1.0, -1.0, 1.0, 1.0, 1.0 };
const FT spacing = 0.05;
const Vector vec_spacing(spacing, spacing, spacing);
// create domain with sphere function
auto domain = CGAL::Isosurfacing::create_implicit_Cartesian_grid_domain<Kernel>
(bbox, vec_spacing, sphere_function);
// points and triangles for the output indexed soup
Point_range points;
Triangle_range triangles;
// run marching cubes with given isovalue
std::cout << "marching cubes...";
const FT isovalue = 0.8;
CGAL::Timer timer;
timer.start();
CGAL::Isosurfacing::marching_cubes(domain, isovalue, points, triangles);
timer.stop();
std::cout << "done (" << timer.time() << "s, " << triangles.size() << " triangles)" << std::endl;
// save ouput indexed mesh to a file, in the OFF format
CGAL::IO::write_OFF("marching_cubes_implicit_sphere.off", points, triangles);
return EXIT_SUCCESS;
}

View File

@ -1,52 +0,0 @@
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Isosurfacing_3/Cartesian_grid_3.h>
#include <CGAL/Isosurfacing_3/Explicit_Cartesian_grid_domain_3.h>
#include <CGAL/Isosurfacing_3/marching_cubes_3.h>
#include <CGAL/boost/graph/IO/OFF.h>
#include <vector>
using Kernel = CGAL::Simple_cartesian<double>;
using Point = typename Kernel::Point_3;
using Grid = CGAL::Isosurfacing::Cartesian_grid_3<Kernel>;
using Point_range = std::vector<Point>;
using Polygon_range = std::vector<std::vector<std::size_t> >;
int main(int argc, char* argv[])
{
const std::string fname = (argc > 1) ? argv[1] : CGAL::data_file_path("images/skull_2.9.inr");
// load volumetric image from a file
CGAL::Image_3 image;
if(!image.read(fname))
{
std::cerr << "Error: Cannot read image file " << fname << std::endl;
return EXIT_FAILURE;
}
// convert image to a Cartesian grid
Grid grid{image};
for (std::size_t i=0; i<grid.xdim(); ++i)
for (std::size_t j=0; j<grid.ydim(); ++j)
for (std::size_t k=0; k<grid.zdim(); ++k)
grid.value(i, j, k) = - grid.value(i, j, k);
// create a domain from the grid
auto domain = CGAL::Isosurfacing::create_explicit_Cartesian_grid_domain(grid);
// prepare collections for the output indexed soup
Point_range points;
Polygon_range polygons;
// execute marching cubes
CGAL::Isosurfacing::marching_cubes(domain, -2.9 /*isovalue*/, points, polygons);
// save output indexed mesh to a file, in the OFF format
CGAL::IO::write_OFF("marching_cubes_inrimage.off", points, polygons);
return EXIT_SUCCESS;
}

View File

@ -1,120 +0,0 @@
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Surface_mesh.h>
#include <CGAL/Isosurfacing_3/Cartesian_grid_3.h>
#include <CGAL/Isosurfacing_3/Explicit_Cartesian_grid_domain_3.h>
#include <CGAL/Isosurfacing_3/marching_cubes_3.h>
#include <CGAL/AABB_face_graph_triangle_primitive.h>
#include <CGAL/AABB_traits.h>
#include <CGAL/AABB_tree.h>
#include <CGAL/Side_of_triangle_mesh.h>
#include <CGAL/IO/polygon_soup_io.h>
#include <iostream>
#include <vector>
using Kernel = CGAL::Simple_cartesian<double>;
using FT = typename Kernel::FT;
using Point = typename Kernel::Point_3;
using Vector = typename Kernel::Vector_3;
using Grid = CGAL::Isosurfacing::Cartesian_grid_3<Kernel>;
using Mesh = CGAL::Surface_mesh<Point>;
using Primitive = CGAL::AABB_face_graph_triangle_primitive<Mesh>;
using Traits = CGAL::AABB_traits<Kernel, Primitive>;
using Tree = CGAL::AABB_tree<Traits>;
using Point_range = std::vector<Point>;
using Polygon_range = std::vector<std::vector<std::size_t> >;
// computes the Euclidean distance from query point p to the mesh
// via the AABB tree data structure
inline Kernel::FT distance_to_mesh(const Tree& tree,
const Point& p)
{
const Point x = tree.closest_point(p);
return std::sqrt((p - x).squared_length());
}
// Usage : marching_cubes_multiple_mesh_offsets input.off
int main(int argc, char *argv[])
{
const std::string input_name = (argc > 1) ? argv[1] : CGAL::data_file_path("meshes/cross.off");
std::cout << "Input file: " << input_name << std::endl;
// load input mesh
Mesh mesh_input;
if(!CGAL::IO::read_OFF(input_name, mesh_input))
{
std::cerr << "Could not read input mesh" << std::endl;
return EXIT_FAILURE;
}
// construct loose bounding box from input mesh
CGAL::Bbox_3 aabb_grid = CGAL::Polygon_mesh_processing::bbox(mesh_input);
const FT loose_offset = 3.0;
Vector aabb_increase_vec = Vector(loose_offset, loose_offset, loose_offset);
aabb_grid += (Point(aabb_grid.xmax(), aabb_grid.ymax(), aabb_grid.zmax()) + aabb_increase_vec).bbox();
aabb_grid += (Point(aabb_grid.xmin(), aabb_grid.ymin(), aabb_grid.zmin()) - aabb_increase_vec).bbox();
// construct AABB tree and functor to address inside/outside point queries
Tree tree(mesh_input.faces_begin(), mesh_input.faces_end(), mesh_input);
CGAL::Side_of_triangle_mesh<Mesh, CGAL::GetGeomTraits<Mesh>::type> sotm(mesh_input);
// create grid
const int n_voxels = 250;
Grid grid { n_voxels, n_voxels, n_voxels, aabb_grid };
for(std::size_t z = 0; z < grid.zdim(); ++z) {
for(std::size_t y = 0; y < grid.ydim(); ++y) {
for(std::size_t x = 0; x < grid.xdim(); ++x)
{
const FT pos_x = x * grid.spacing()[0] + grid.bbox().xmin();
const FT pos_y = y * grid.spacing()[1] + grid.bbox().ymin();
const FT pos_z = z * grid.spacing()[2] + grid.bbox().zmin();
const Point p(pos_x, pos_y, pos_z);
// compute unsigned distance to input mesh
grid.value(x, y, z) = distance_to_mesh(tree, p);
// sign distance so that it is negative inside the mesh
const bool is_inside = (sotm(p) == CGAL::ON_BOUNDED_SIDE);
if(is_inside)
grid.value(x, y, z) *= -1.0;
}
}
}
// create domain from the grid
auto domain = CGAL::Isosurfacing::create_explicit_Cartesian_grid_domain(grid);
// run Marching cubes with a range of offsets,
// and save all output meshes to files "output-index.off"
int index = 0;
for(FT offset = 0.0; offset < 0.3; offset += 0.01, index++)
{
// containers for the triangle soup output
Point_range points;
Polygon_range triangles;
// execute marching cubes with an isovalue equating offset
std::cout << "Marching cubes with offset " << offset << "...";
CGAL::Isosurfacing::marching_cubes(domain, offset, points, triangles);
std::cout << "done" << std::endl;
// save the output
std::string filename("output-");
filename.append(std::to_string(index));
filename.append(std::string(".off"));
std::cout << "Saving to file " << filename << "...";
CGAL::IO::write_polygon_soup(filename, points, triangles);
std::cout << "done" << std::endl;
}
return EXIT_SUCCESS;
}

View File

@ -1,62 +0,0 @@
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Isosurfacing_3/Implicit_Cartesian_grid_domain_3.h>
#include <CGAL/Isosurfacing_3/marching_cubes_3.h>
#include <CGAL/Bbox_3.h>
#include <CGAL/boost/graph/IO/OFF.h>
#include <CGAL/Real_timer.h>
#include <vector>
using Kernel = CGAL::Simple_cartesian<double>;
using FT = typename Kernel::FT;
using Point = typename Kernel::Point_3;
using Vector = typename Kernel::Vector_3;
using Point_range = std::vector<Point>;
using Triangle_range = std::vector<std::vector<std::size_t> >;
// Sphere function = Euclidean distance function to the origin
auto sphere_function = [](const Point& p) -> FT
{
return std::sqrt(p.x() * p.x() + p.y() * p.y() + p.z() * p.z());
};
int main(int, char**)
{
// box domain and spacing vector
const CGAL::Bbox_3 bbox{ -1.0, -1.0, -1.0, 1.0, 1.0, 1.0 };
const FT spacing = 0.002;
const Vector vec_spacing(spacing, spacing, spacing);
// create domain with sphere function
auto domain = CGAL::Isosurfacing::create_implicit_Cartesian_grid_domain<Kernel>
(bbox, vec_spacing, sphere_function);
// points and triangles for the output indexed soup
Point_range points;
Triangle_range triangles;
// run marching cubes sequential
std::cout << "marching cubes sequential...";
const FT isovalue = 0.8;
CGAL::Real_timer timer;
timer.start();
CGAL::Isosurfacing::marching_cubes<CGAL::Sequential_tag>(domain, isovalue, points, triangles);
timer.stop();
std::cout << "done (" << timer.time() << "s, " << triangles.size() << " triangles)" << std::endl;
CGAL::IO::write_OFF("output-sequential.off", points, triangles);
// clear points and triangles
points.clear();
triangles.clear();
// run marching cubes parallel
std::cout << "marching cubes parallel...";
timer.reset();
timer.start();
CGAL::Isosurfacing::marching_cubes<CGAL::Parallel_tag>(domain, isovalue, points, triangles);
timer.stop();
std::cout << "done (" << timer.time() << "s, " << triangles.size() << " triangles)" << std::endl;
CGAL::IO::write_OFF("output-parallel.off", points, triangles);
return EXIT_SUCCESS;
}

View File

@ -1,105 +0,0 @@
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Surface_mesh.h>
#include <CGAL/Isosurfacing_3/Cartesian_grid_3.h>
#include <CGAL/Isosurfacing_3/Explicit_Cartesian_grid_domain_3.h>
#include <CGAL/Isosurfacing_3/marching_cubes_3.h>
#include <CGAL/AABB_face_graph_triangle_primitive.h>
#include <CGAL/AABB_traits.h>
#include <CGAL/AABB_tree.h>
#include <CGAL/Side_of_triangle_mesh.h>
#include <CGAL/IO/polygon_soup_io.h>
#include <iostream>
#include <vector>
using Kernel = CGAL::Simple_cartesian<double>;
using FT = typename Kernel::FT;
using Point = typename Kernel::Point_3;
using Vector = typename Kernel::Vector_3;
using Grid = CGAL::Isosurfacing::Cartesian_grid_3<Kernel>;
using Mesh = CGAL::Surface_mesh<Point>;
using Primitive = CGAL::AABB_face_graph_triangle_primitive<Mesh>;
using Traits = CGAL::AABB_traits<Kernel, Primitive>;
using Tree = CGAL::AABB_tree<Traits>;
using Point_range = std::vector<Point>;
using Polygon_range = std::vector<std::vector<std::size_t> >;
// computes the Euclidean distance from query point p to the mesh
// via the AABB tree data structure
inline Kernel::FT distance_to_mesh(const Tree& tree,
const Point& p)
{
const Point cp = tree.closest_point(p);
return sqrt((p - cp).squared_length());
}
int main(int argc, char* argv[])
{
const std::string input_name = (argc > 1) ? argv[1] :CGAL::data_file_path("meshes/cross.off");
const int n_voxels = 20;
const FT offset_value = 0.2;
// load input mesh
Mesh mesh_input;
if(!CGAL::IO::read_OFF(input_name, mesh_input))
{
std::cerr << "Could not read input mesh" << std::endl;
return EXIT_FAILURE;
}
// compute loose bounding box of the mesh
CGAL::Bbox_3 aabb_grid = CGAL::Polygon_mesh_processing::bbox(mesh_input);
const FT loose_offset = offset_value + 0.01;
Vector aabb_increase_vec = Vector(loose_offset, loose_offset, loose_offset);
aabb_grid += (Point(aabb_grid.xmax(), aabb_grid.ymax(), aabb_grid.zmax()) + aabb_increase_vec).bbox();
aabb_grid += (Point(aabb_grid.xmin(), aabb_grid.ymin(), aabb_grid.zmin()) - aabb_increase_vec).bbox();
// construct AABB tree and functor to address inside/outside point queries
Tree tree(mesh_input.faces_begin(), mesh_input.faces_end(), mesh_input);
CGAL::Side_of_triangle_mesh<Mesh, CGAL::GetGeomTraits<Mesh>::type> sotm(mesh_input);
// create grid
Grid grid { n_voxels, n_voxels, n_voxels, aabb_grid };
for(std::size_t k=0; k<grid.zdim(); ++k) {
for(std::size_t j=0; j<grid.ydim(); ++j) {
for(std::size_t i=0; i<grid.xdim(); ++i)
{
const FT pos_x = i * grid.spacing()[0] + grid.bbox().xmin();
const FT pos_y = j * grid.spacing()[1] + grid.bbox().ymin();
const FT pos_z = k * grid.spacing()[2] + grid.bbox().zmin();
const Point p(pos_x, pos_y, pos_z);
// compute unsigned distance to input mesh
grid.value(i, j, k) = distance_to_mesh(tree, p);
// sign distance so that it is negative inside the mesh
const bool is_inside = (sotm(p) == CGAL::ON_BOUNDED_SIDE);
if(is_inside)
grid.value(i, j, k) *= -1.0;
}
}
}
// create domain from the grid
auto domain = CGAL::Isosurfacing::create_explicit_Cartesian_grid_domain(grid);
// containers for the triangle soup output
Point_range points;
Polygon_range polygons;
// execute marching cubes with an isovalue equating offset
CGAL::Isosurfacing::marching_cubes(domain, offset_value, points, polygons);
// save the output
CGAL::IO::write_polygon_soup("marching_cubes_signed_mesh_offset.off", points, polygons);
return EXIT_SUCCESS;
}