From 2fc1e22a23b2fd83fa51401e1822aa858585c1fc Mon Sep 17 00:00:00 2001 From: Alex Tsui Date: Mon, 20 Aug 2012 18:18:02 +0000 Subject: [PATCH] Add some algebraic curve arrangement samples. --- .gitattributes | 4 + .../data/algebraic/cubic.arr | 72 ++++++ .../data/algebraic/erdos_lemiscate.arr | 219 ++++++++++++++++++ .../data/algebraic/infinitesimal.arr | 104 +++++++++ .../data/algebraic/trifolium.arr | 116 ++++++++++ 5 files changed, 515 insertions(+) create mode 100644 Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/cubic.arr create mode 100644 Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/erdos_lemiscate.arr create mode 100644 Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/infinitesimal.arr create mode 100644 Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/trifolium.arr diff --git a/.gitattributes b/.gitattributes index 8bd36212304..472ef08f9cf 100644 --- a/.gitattributes +++ b/.gitattributes @@ -365,6 +365,10 @@ Arrangement_on_surface_2/demo/Arrangement_on_surface_2/VerticalRayShootCallback. Arrangement_on_surface_2/demo/Arrangement_on_surface_2/VerticalRayShootCallback.h -text Arrangement_on_surface_2/demo/Arrangement_on_surface_2/arrangement_2b.cpp -text Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/alg_circle.arr -text +Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/cubic.arr -text +Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/erdos_lemiscate.arr -text +Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/infinitesimal.arr -text +Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/trifolium.arr -text Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/conic/big_circ_arcs.dat -text Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/conic/circles_21.dat -text Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/polyline/ps_circs.dat -text diff --git a/Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/cubic.arr b/Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/cubic.arr new file mode 100644 index 00000000000..364c9423918 --- /dev/null +++ b/Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/cubic.arr @@ -0,0 +1,72 @@ +# BEGIN ARRANGEMENT +# number_of_vertices +6 +# number_of_edges +7 +# number_of_faces +3 +# BEGIN VERTICES +0 2 0 +0 3 0 +1 2 0 +1 3 0 +0 4 0 +1 4 0 +# END VERTICES +# BEGIN EDGES +4 1 0 0 +1 3 0 0 +5 2 1 0 +2 0 1 0 +4 0 1 0 +5 3 0 0 +5 4 1 1 Arc_2(Point_2(--,--, P[1(0,P[3(3,-1)])(1,P[0(0,1)])], 0,0),Point_2(--,--, P[1(0,P[3(3,-1)])(1,P[0(0,1)])], 0,1),P[1(0,P[3(3,-1)])(1,P[0(0,1)])],0,0,0,0,1) +# END EDGES +# BEGIN FACES +# BEGIN FACE +1 0 +# number_of_outer_ccbs +0 +# number_of_inner_ccbs +1 +# halfedges_on_inner_ccb +6 +0 2 11 4 6 9 +# number_of_isolated_vertices +0 +# END FACE +# BEGIN FACE +1 1 +# number_of_outer_ccbs +1 +# halfedges_on_outer_ccb +4 +12 8 7 5 +# number_of_inner_ccbs +0 +# number_of_isolated_vertices +0 +# END FACE +# BEGIN FACE +1 1 +# number_of_outer_ccbs +1 +# halfedges_on_outer_ccb +4 +13 10 3 1 +# number_of_inner_ccbs +0 +# number_of_isolated_vertices +0 +# END FACE +# END FACES +# END ARRANGEMENT +# BEGIN CURVES +# number_of_curves +1 +P[1(0,P[3(3,-1)])(1,P[0(0,1)])] +# induced_edges +1 +13 +# END CURVES + diff --git a/Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/erdos_lemiscate.arr b/Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/erdos_lemiscate.arr new file mode 100644 index 00000000000..cf3e5c7879c --- /dev/null +++ b/Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/erdos_lemiscate.arr @@ -0,0 +1,219 @@ +# BEGIN ARRANGEMENT +# number_of_vertices +33 +# number_of_edges +40 +# number_of_faces +10 +# BEGIN VERTICES +0 2 0 +0 3 0 +1 2 0 +1 3 0 +4 4 1 Point_2( Algebraic_real_xca_2([P[8(0,-2)(8,1)],[-15784021086844858534866679767252604979987646373219451491819570241642953244109/14474011154664524427946373126085988481658748083205070504932198000989141204992 , -126272168694758868278933438138020839839901170985755611934556561933143625952871/115792089237316195423570985008687907853269984665640564039457584007913129639936 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],4),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],5),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],6),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],7),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],4),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],5),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],6),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],7),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[8(0,-2)(8,1)],[126272168694758868278933438138020839839901170985755611934556561933143625952871/115792089237316195423570985008687907853269984665640564039457584007913129639936 , 15784021086844858534866679767252604979987646373219451491819570241642953244109/14474011154664524427946373126085988481658748083205070504932198000989141204992 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4) +# END VERTICES +# BEGIN EDGES +0 1 0 0 +1 3 0 0 +3 2 1 0 +2 0 1 0 +5 4 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[8(0,-2)(8,1)],[-15784021086844858534866679767252604979987646373219451491819570241642953244109/14474011154664524427946373126085988481658748083205070504932198000989141204992 , -126272168694758868278933438138020839839901170985755611934556561933143625952871/115792089237316195423570985008687907853269984665640564039457584007913129639936 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0,0,1,0,1) +6 4 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[8(0,-2)(8,1)],[-15784021086844858534866679767252604979987646373219451491819570241642953244109/14474011154664524427946373126085988481658748083205070504932198000989141204992 , -126272168694758868278933438138020839839901170985755611934556561933143625952871/115792089237316195423570985008687907853269984665640564039457584007913129639936 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1,0,2,0,1) +8 7 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0,0,1,0,1) +9 7 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1,0,2,0,1) +10 5 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2,1,3,0,1) +11 6 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],4),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3,2,4,0,1) +13 12 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],5),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],4,3,5,0,1) +14 12 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],6),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],5,3,6,0,1) +16 15 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0,0,0,0,1) +17 15 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1,0,1,0,1) +17 8 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2,1,1,0,1) +9 17 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3,2,1,0,1) +17 10 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],4,3,1,0,1) +11 17 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],4),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],5,4,1,0,1) +17 13 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],5),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],6,5,1,0,1) +14 17 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],6),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],7,6,1,0,1) +18 17 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],7),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],8,7,1,0,1) +19 18 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],7),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],9,7,2,0,1) +20 16 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0,0,0,0,1) +17 20 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1,1,0,0,1) +21 17 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2,1,1,0,1) +22 17 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3,1,2,0,1) +23 17 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],4,1,3,0,1) +24 17 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],4),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],5,1,4,0,1) +25 17 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],5),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],6,1,5,0,1) +26 17 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],6),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],7,1,6,0,1) +27 17 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],7),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],8,1,7,0,1) +19 27 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],7),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],9,2,7,0,1) +28 21 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0,1,0,0,1) +22 28 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1,2,0,0,1) +29 23 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2,3,1,0,1) +30 24 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],4),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3,4,2,0,1) +31 25 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],5),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],4,5,3,0,1) +26 31 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],6),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],5,6,3,0,1) +32 29 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[8(0,-2)(8,1)],[126272168694758868278933438138020839839901170985755611934556561933143625952871/115792089237316195423570985008687907853269984665640564039457584007913129639936 , 15784021086844858534866679767252604979987646373219451491819570241642953244109/14474011154664524427946373126085988481658748083205070504932198000989141204992 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0,1,0,0,1) +30 32 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4),Point_2( Algebraic_real_xca_2([P[8(0,-2)(8,1)],[126272168694758868278933438138020839839901170985755611934556561933143625952871/115792089237316195423570985008687907853269984665640564039457584007913129639936 , 15784021086844858534866679767252604979987646373219451491819570241642953244109/14474011154664524427946373126085988481658748083205070504932198000989141204992 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1,2,0,0,1) +# END EDGES +# BEGIN FACES +# BEGIN FACE +1 0 +# number_of_outer_ccbs +0 +# number_of_inner_ccbs +1 +# halfedges_on_inner_ccb +4 +0 2 4 6 +# number_of_isolated_vertices +0 +# END FACE +# BEGIN FACE +1 1 +# number_of_outer_ccbs +1 +# halfedges_on_outer_ccb +4 +1 7 5 3 +# number_of_inner_ccbs +1 +# halfedges_on_inner_ccb +36 +38 41 43 62 60 59 74 72 56 55 71 78 76 68 52 51 66 64 48 46 44 24 27 28 12 15 30 32 16 8 11 19 34 36 20 23 +# number_of_isolated_vertices +0 +# END FACE +# BEGIN FACE +0 1 +# number_of_outer_ccbs +1 +# halfedges_on_outer_ccb +4 +31 14 13 29 +# number_of_inner_ccbs +0 +# number_of_isolated_vertices +0 +# END FACE +# BEGIN FACE +0 1 +# number_of_outer_ccbs +1 +# halfedges_on_outer_ccb +6 +35 18 10 9 17 33 +# number_of_inner_ccbs +0 +# number_of_isolated_vertices +0 +# END FACE +# BEGIN FACE +0 1 +# number_of_outer_ccbs +1 +# halfedges_on_outer_ccb +4 +39 22 21 37 +# number_of_inner_ccbs +0 +# number_of_isolated_vertices +0 +# END FACE +# BEGIN FACE +0 1 +# number_of_outer_ccbs +1 +# halfedges_on_outer_ccb +4 +47 26 25 45 +# number_of_inner_ccbs +0 +# number_of_isolated_vertices +0 +# END FACE +# BEGIN FACE +0 1 +# number_of_outer_ccbs +1 +# halfedges_on_outer_ccb +4 +63 42 40 61 +# number_of_inner_ccbs +0 +# number_of_isolated_vertices +0 +# END FACE +# BEGIN FACE +0 1 +# number_of_outer_ccbs +1 +# halfedges_on_outer_ccb +4 +67 50 49 65 +# number_of_inner_ccbs +0 +# number_of_isolated_vertices +0 +# END FACE +# BEGIN FACE +0 1 +# number_of_outer_ccbs +1 +# halfedges_on_outer_ccb +4 +75 58 57 73 +# number_of_inner_ccbs +0 +# number_of_isolated_vertices +0 +# END FACE +# BEGIN FACE +0 1 +# number_of_outer_ccbs +1 +# halfedges_on_outer_ccb +6 +79 70 54 53 69 77 +# number_of_inner_ccbs +0 +# number_of_isolated_vertices +0 +# END FACE +# END FACES +# END ARRANGEMENT +# BEGIN CURVES +# number_of_curves +1 +P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])] +# induced_edges +36 +39 31 29 49 11 43 15 45 23 33 13 59 61 21 51 47 69 71 57 63 65 67 73 75 77 79 53 55 17 35 25 27 19 41 9 37 +# END CURVES + diff --git a/Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/infinitesimal.arr b/Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/infinitesimal.arr new file mode 100644 index 00000000000..28678eda89d --- /dev/null +++ b/Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/infinitesimal.arr @@ -0,0 +1,104 @@ +# BEGIN ARRANGEMENT +# number_of_vertices +9 +# number_of_edges +12 +# number_of_faces +5 +# BEGIN VERTICES +0 2 0 +0 3 0 +1 2 0 +1 3 0 +0 4 0 +4 4 1 Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])],0),--,--,--,4) +0 4 0 +0 4 0 +1 4 0 +# END VERTICES +# BEGIN EDGES +7 1 0 0 +1 3 0 0 +8 2 1 0 +2 0 1 0 +4 0 1 0 +5 4 1 1 Arc_2(Point_2(--,--, P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])], 0,0),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])],0),--,--,--,4),P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])],0,0,0,0,1) +6 4 1 0 +5 6 1 1 Arc_2(Point_2(--,--, P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])], 1,0),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])],0),--,--,--,4),P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])],1,1,0,0,1) +7 6 1 0 +5 7 1 1 Arc_2(Point_2(--,--, P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])], 2,0),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])],0),--,--,--,4),P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])],2,2,0,0,1) +8 3 0 0 +8 5 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])],0),--,--,--,4),Point_2(--,--, P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])], 0,1),P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])],0,0,0,0,1) +# END EDGES +# BEGIN FACES +# BEGIN FACE +1 0 +# number_of_outer_ccbs +0 +# number_of_inner_ccbs +1 +# halfedges_on_inner_ccb +8 +0 2 21 4 6 9 13 17 +# number_of_isolated_vertices +0 +# END FACE +# BEGIN FACE +1 1 +# number_of_outer_ccbs +1 +# halfedges_on_outer_ccb +3 +14 12 11 +# number_of_inner_ccbs +0 +# number_of_isolated_vertices +0 +# END FACE +# BEGIN FACE +1 1 +# number_of_outer_ccbs +1 +# halfedges_on_outer_ccb +3 +18 16 15 +# number_of_inner_ccbs +0 +# number_of_isolated_vertices +0 +# END FACE +# BEGIN FACE +1 1 +# number_of_outer_ccbs +1 +# halfedges_on_outer_ccb +5 +22 10 8 7 5 +# number_of_inner_ccbs +0 +# number_of_isolated_vertices +0 +# END FACE +# BEGIN FACE +1 1 +# number_of_outer_ccbs +1 +# halfedges_on_outer_ccb +5 +23 20 3 1 19 +# number_of_inner_ccbs +0 +# number_of_isolated_vertices +0 +# END FACE +# END FACES +# END ARRANGEMENT +# BEGIN CURVES +# number_of_curves +1 +P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])] +# induced_edges +4 +23 19 15 11 +# END CURVES + diff --git a/Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/trifolium.arr b/Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/trifolium.arr new file mode 100644 index 00000000000..4eec3ab7cc7 --- /dev/null +++ b/Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/trifolium.arr @@ -0,0 +1,116 @@ +# BEGIN ARRANGEMENT +# number_of_vertices +14 +# number_of_edges +16 +# number_of_faces +5 +# BEGIN VERTICES +0 2 0 +0 3 0 +1 2 0 +1 3 0 +4 4 1 Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-598955696151088247247054605302853527327/680564733841876926926749214863536422912 , -299477848075544123623527302651426763663/340282366920938463463374607431768211456 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-27228038400421048309/147573952589676412928 , -6807009600105262077/36893488147419103232 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-27228038400421048309/147573952589676412928 , -6807009600105262077/36893488147419103232 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-27228038400421048309/147573952589676412928 , -6807009600105262077/36893488147419103232 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],2),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[6807009600105262077/36893488147419103232 , 27228038400421048309/147573952589676412928 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[6807009600105262077/36893488147419103232 , 27228038400421048309/147573952589676412928 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[6807009600105262077/36893488147419103232 , 27228038400421048309/147573952589676412928 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],2),--,--,--,4) +4 4 1 Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[299477848075544123623527302651426763663/340282366920938463463374607431768211456 , 598955696151088247247054605302853527327/680564733841876926926749214863536422912 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4) +# END VERTICES +# BEGIN EDGES +0 1 0 0 +1 3 0 0 +3 2 1 0 +2 0 1 0 +5 4 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-598955696151088247247054605302853527327/680564733841876926926749214863536422912 , -299477848075544123623527302651426763663/340282366920938463463374607431768211456 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-27228038400421048309/147573952589676412928 , -6807009600105262077/36893488147419103232 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0,0,0,0,1) +6 4 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-598955696151088247247054605302853527327/680564733841876926926749214863536422912 , -299477848075544123623527302651426763663/340282366920938463463374607431768211456 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-27228038400421048309/147573952589676412928 , -6807009600105262077/36893488147419103232 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1,0,1,0,1) +7 5 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-27228038400421048309/147573952589676412928 , -6807009600105262077/36893488147419103232 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0,0,0,0,1) +6 7 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-27228038400421048309/147573952589676412928 , -6807009600105262077/36893488147419103232 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1,1,0,0,1) +8 7 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-27228038400421048309/147573952589676412928 , -6807009600105262077/36893488147419103232 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],2),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],2,2,0,0,1) +9 8 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-27228038400421048309/147573952589676412928 , -6807009600105262077/36893488147419103232 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],2),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],3,2,1,0,1) +10 7 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[6807009600105262077/36893488147419103232 , 27228038400421048309/147573952589676412928 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0,0,0,0,1) +11 7 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[6807009600105262077/36893488147419103232 , 27228038400421048309/147573952589676412928 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1,0,1,0,1) +12 7 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[6807009600105262077/36893488147419103232 , 27228038400421048309/147573952589676412928 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],2),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],2,0,2,0,1) +9 12 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[6807009600105262077/36893488147419103232 , 27228038400421048309/147573952589676412928 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],2),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],3,1,2,0,1) +13 10 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[6807009600105262077/36893488147419103232 , 27228038400421048309/147573952589676412928 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[299477848075544123623527302651426763663/340282366920938463463374607431768211456 , 598955696151088247247054605302853527327/680564733841876926926749214863536422912 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0,0,0,0,1) +11 13 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[6807009600105262077/36893488147419103232 , 27228038400421048309/147573952589676412928 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[299477848075544123623527302651426763663/340282366920938463463374607431768211456 , 598955696151088247247054605302853527327/680564733841876926926749214863536422912 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1,1,0,0,1) +# END EDGES +# BEGIN FACES +# BEGIN FACE +1 0 +# number_of_outer_ccbs +0 +# number_of_inner_ccbs +1 +# halfedges_on_inner_ccb +4 +0 2 4 6 +# number_of_isolated_vertices +0 +# END FACE +# BEGIN FACE +1 1 +# number_of_outer_ccbs +1 +# halfedges_on_outer_ccb +4 +1 7 5 3 +# number_of_inner_ccbs +1 +# halfedges_on_inner_ccb +12 +14 17 19 26 24 23 30 28 20 12 8 11 +# number_of_isolated_vertices +0 +# END FACE +# BEGIN FACE +0 1 +# number_of_outer_ccbs +1 +# halfedges_on_outer_ccb +4 +15 10 9 13 +# number_of_inner_ccbs +0 +# number_of_isolated_vertices +0 +# END FACE +# BEGIN FACE +0 1 +# number_of_outer_ccbs +1 +# halfedges_on_outer_ccb +4 +27 18 16 25 +# number_of_inner_ccbs +0 +# number_of_isolated_vertices +0 +# END FACE +# BEGIN FACE +0 1 +# number_of_outer_ccbs +1 +# halfedges_on_outer_ccb +4 +31 22 21 29 +# number_of_inner_ccbs +0 +# number_of_isolated_vertices +0 +# END FACE +# END FACES +# END ARRANGEMENT +# BEGIN CURVES +# number_of_curves +1 +P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])] +# induced_edges +12 +11 13 15 17 19 21 9 23 25 27 29 31 +# END CURVES +