mirror of https://github.com/CGAL/cgal
Code cleanup and bug fixes
This commit is contained in:
parent
99aeb5f80a
commit
30b9a29ee9
|
|
@ -15,8 +15,10 @@ foreach(cppfile ${cppfiles})
|
|||
create_single_source_cgal_program("${cppfile}")
|
||||
endforeach()
|
||||
|
||||
|
||||
if(CGAL_Qt6_FOUND)
|
||||
target_link_libraries(draw_arr PRIVATE CGAL::CGAL_Basic_viewer)
|
||||
target_link_libraries(unbounded_non_intersecting PRIVATE CGAL::CGAL_Basic_viewer)
|
||||
target_link_libraries(linear_conics PRIVATE CGAL::CGAL_Basic_viewer)
|
||||
target_link_libraries(parabolas PRIVATE CGAL::CGAL_Basic_viewer)
|
||||
target_link_libraries(ellipses PRIVATE CGAL::CGAL_Basic_viewer)
|
||||
|
|
@ -24,6 +26,7 @@ if(CGAL_Qt6_FOUND)
|
|||
target_link_libraries(polylines PRIVATE CGAL::CGAL_Basic_viewer)
|
||||
target_link_libraries(circles PRIVATE CGAL::CGAL_Basic_viewer)
|
||||
target_link_libraries(circular_arcs PRIVATE CGAL::CGAL_Basic_viewer)
|
||||
target_link_libraries(rational_functions PRIVATE CGAL::CGAL_Basic_viewer)
|
||||
target_link_libraries(spherical_insert PRIVATE CGAL::CGAL_Basic_viewer)
|
||||
else()
|
||||
message(
|
||||
|
|
|
|||
|
|
@ -1,7 +1,9 @@
|
|||
#include "CGAL/Random.h"
|
||||
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
|
||||
#include <CGAL/Arrangement_2.h>
|
||||
#include <CGAL/Arr_segment_traits_2.h>
|
||||
#include <CGAL/draw_arrangement_2.h>
|
||||
#include <iterator>
|
||||
|
||||
using Kernel = CGAL::Exact_predicates_exact_constructions_kernel;
|
||||
using Traits = CGAL::Arr_segment_traits_2<Kernel>;
|
||||
|
|
@ -17,9 +19,8 @@ using Arrangement_2 = CGAL::Arrangement_2<Traits>;
|
|||
* \param sat Saturation component range: [0, 1]
|
||||
* \param value Value component range: [0, 1]
|
||||
* \return tuple<red, green, blue>, where each component is in the range [0, 255]
|
||||
*/
|
||||
std::tuple<unsigned char, unsigned char, unsigned char>
|
||||
hsv_to_rgb(float hue, float sat, float value) {
|
||||
*/
|
||||
std::tuple<unsigned char, unsigned char, unsigned char> hsv_to_rgb(float hue, float sat, float value) {
|
||||
float red, green, blue;
|
||||
float fc = value * sat; // Chroma
|
||||
float hue_prime = fmod(hue / 60.0f, 6.f);
|
||||
|
|
@ -30,33 +31,27 @@ hsv_to_rgb(float hue, float sat, float value) {
|
|||
red = fc;
|
||||
green = fx;
|
||||
blue = 0;
|
||||
}
|
||||
else if(1 <= hue_prime && hue_prime < 2) {
|
||||
} else if(1 <= hue_prime && hue_prime < 2) {
|
||||
red = fx;
|
||||
green = fc;
|
||||
blue = 0;
|
||||
}
|
||||
else if(2 <= hue_prime && hue_prime < 3) {
|
||||
} else if(2 <= hue_prime && hue_prime < 3) {
|
||||
red = 0;
|
||||
green = fc;
|
||||
blue = fx;
|
||||
}
|
||||
else if(3 <= hue_prime && hue_prime < 4) {
|
||||
} else if(3 <= hue_prime && hue_prime < 4) {
|
||||
red = 0;
|
||||
green = fx;
|
||||
blue = fc;
|
||||
}
|
||||
else if(4 <= hue_prime && hue_prime < 5) {
|
||||
} else if(4 <= hue_prime && hue_prime < 5) {
|
||||
red = fx;
|
||||
green = 0;
|
||||
blue = fc;
|
||||
}
|
||||
else if(5 <= hue_prime && hue_prime < 6) {
|
||||
} else if(5 <= hue_prime && hue_prime < 6) {
|
||||
red = fc;
|
||||
green = 0;
|
||||
blue = fx;
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
red = 0;
|
||||
green = 0;
|
||||
blue = 0;
|
||||
|
|
@ -80,44 +75,38 @@ int main() {
|
|||
Arrangement_2 arr(&traits);
|
||||
auto ctr_xcv = traits.construct_x_monotone_curve_2_object();
|
||||
|
||||
CGAL::insert(arr, ctr_xcv(Point(-2,-2), Point(2,-2)));
|
||||
CGAL::insert(arr, ctr_xcv(Point(2,-2), Point(2,2)));
|
||||
CGAL::insert(arr, ctr_xcv(Point(2,2), Point(-2,2)));
|
||||
CGAL::insert(arr, ctr_xcv(Point(-2,2), Point(-2,-2)));
|
||||
CGAL::insert(arr, ctr_xcv(Point(-2, -2), Point(2, -2)));
|
||||
CGAL::insert(arr, ctr_xcv(Point(2, -2), Point(2, 2)));
|
||||
CGAL::insert(arr, ctr_xcv(Point(2, 2), Point(-2, 2)));
|
||||
CGAL::insert(arr, ctr_xcv(Point(-2, 2), Point(-2, -2)));
|
||||
|
||||
CGAL::insert(arr, ctr_xcv(Point(-1,-1), Point(1,-1)));
|
||||
CGAL::insert(arr, ctr_xcv(Point(1,-1), Point(1,1)));
|
||||
CGAL::insert(arr, ctr_xcv(Point(1,1), Point(-1,1)));
|
||||
CGAL::insert(arr, ctr_xcv(Point(-1,1), Point(-1,-1)));
|
||||
CGAL::insert(arr, ctr_xcv(Point(-1, -1), Point(1, -1)));
|
||||
CGAL::insert(arr, ctr_xcv(Point(1, -1), Point(1, 1)));
|
||||
CGAL::insert(arr, ctr_xcv(Point(1, 1), Point(-1, 1)));
|
||||
CGAL::insert(arr, ctr_xcv(Point(-1, 1), Point(-1, -1)));
|
||||
|
||||
CGAL::insert(arr, ctr_xcv(Point(-2,-2), Point(-2,-4)));
|
||||
CGAL::insert(arr, ctr_xcv(Point(2,-2), Point(4,-2)));
|
||||
CGAL::insert(arr, ctr_xcv(Point(-2, -2), Point(-2, -4)));
|
||||
CGAL::insert(arr, ctr_xcv(Point(2, -2), Point(4, -2)));
|
||||
|
||||
CGAL::insert(arr, ctr_xcv(Point(0,0), Point(0,-3)));
|
||||
CGAL::insert(arr, ctr_xcv(Point(0, 0), Point(0, -3)));
|
||||
|
||||
std::cout << arr.number_of_vertices() << ", "
|
||||
<< arr.number_of_edges() << ", "
|
||||
<< arr.number_of_faces() << std::endl;
|
||||
std::cout << arr.number_of_vertices() << ", " << arr.number_of_edges() << ", " << arr.number_of_faces() << std::endl;
|
||||
|
||||
std::size_t id(0);
|
||||
CGAL::Graphics_scene_options<Arrangement_2, typename Arrangement_2::Vertex_const_handle,
|
||||
typename Arrangement_2::Halfedge_const_handle, typename Arrangement_2::Face_const_handle>
|
||||
gso;
|
||||
gso.colored_face = [](const Arrangement_2&, Arrangement_2::Face_const_handle) -> bool { return true; };
|
||||
|
||||
CGAL::Graphics_scene_options<Arrangement_2,
|
||||
typename Arrangement_2::Vertex_const_handle,
|
||||
typename Arrangement_2::Halfedge_const_handle,
|
||||
typename Arrangement_2::Face_const_handle> gso;
|
||||
gso.colored_face=[](const Arrangement_2&, Arrangement_2::Face_const_handle) -> bool
|
||||
{ return true; };
|
||||
gso.face_color = [](const Arrangement_2& arr, Arrangement_2::Face_const_handle fh) -> CGAL::IO::Color {
|
||||
CGAL::Random random((size_t(fh.ptr())));
|
||||
float h = 360.0f * random.get_double(0, 1);
|
||||
float s = 0.5;
|
||||
float v = 0.5;
|
||||
auto [r, g, b] = hsv_to_rgb(h, s, v);
|
||||
return CGAL::IO::Color(r, g, b);
|
||||
};
|
||||
|
||||
gso.face_color=[&id](const Arrangement_2& arr, Arrangement_2::Face_const_handle) -> CGAL::IO::Color
|
||||
{
|
||||
float h = 360.0f * id++ / arr.number_of_faces();
|
||||
float s = 0.5;
|
||||
float v = 0.5;
|
||||
auto [r, g, b] = hsv_to_rgb(h, s, v);
|
||||
return CGAL::IO::Color(r,g,b);
|
||||
};
|
||||
CGAL::draw(arr, gso, "hsv colors");
|
||||
|
||||
CGAL::draw(arr, gso, "hsv colors");
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -2,6 +2,7 @@
|
|||
// Constructing an arrangement of arcs of rational functions.
|
||||
|
||||
#include <CGAL/config.h>
|
||||
#include <CGAL/draw_arrangement_2.h>
|
||||
|
||||
#ifndef CGAL_USE_CORE
|
||||
#include <iostream>
|
||||
|
|
@ -17,7 +18,7 @@ int main() {
|
|||
#include "arr_print.h"
|
||||
|
||||
int main() {
|
||||
CGAL::IO::set_pretty_mode(std::cout); // for nice printouts.
|
||||
CGAL::IO::set_pretty_mode(std::cout); // for nice printouts.
|
||||
|
||||
// Define a traits class object and a constructor for rational functions.
|
||||
Traits traits;
|
||||
|
|
@ -31,24 +32,24 @@ int main() {
|
|||
|
||||
// Create an arc (C1) supported by the polynomial y = x^4 - 6x^2 + 8,
|
||||
// defined over the (approximate) interval [-2.1, 2.1].
|
||||
Polynomial P1 = CGAL::ipower(x,4) - 6*x*x + 8;
|
||||
Polynomial P1 = CGAL::ipower(x, 4) - 6 * x * x + 8;
|
||||
Alg_real l(Bound(-2.1)), r(Bound(2.1));
|
||||
arcs.push_back(construct(P1, l, r));
|
||||
|
||||
// Create an arc (C2) supported by the function y = x / (1 + x^2),
|
||||
// defined over the interval [-3, 3].
|
||||
Polynomial P2 = x;
|
||||
Polynomial Q2 = 1 + x*x;
|
||||
Polynomial Q2 = 1 + x * x;
|
||||
arcs.push_back(construct(P2, Q2, Alg_real(-3), Alg_real(3)));
|
||||
|
||||
// Create an arc (C3) supported by the parbola y = 8 - x^2,
|
||||
// defined over the interval [-2, 3].
|
||||
Polynomial P3 = 8 - x*x;
|
||||
Polynomial P3 = 8 - x * x;
|
||||
arcs.push_back(construct(P3, Alg_real(-2), Alg_real(3)));
|
||||
|
||||
// Create an arc (C4) supported by the line y = -2x,
|
||||
// defined over the interval [-3, 0].
|
||||
Polynomial P4 = -2*x;
|
||||
Polynomial P4 = -2 * x;
|
||||
arcs.push_back(construct(P4, Alg_real(-3), Alg_real(0)));
|
||||
|
||||
// Construct the arrangement of the four arcs.
|
||||
|
|
@ -56,6 +57,8 @@ int main() {
|
|||
insert(arr, arcs.begin(), arcs.end());
|
||||
print_arrangement(arr);
|
||||
|
||||
CGAL::draw(arr);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -4,6 +4,7 @@
|
|||
|
||||
#include <cassert>
|
||||
|
||||
#include "CGAL/draw_arrangement_2.h"
|
||||
#include "arr_linear.h"
|
||||
#include "arr_print.h"
|
||||
|
||||
|
|
@ -14,8 +15,8 @@ int main() {
|
|||
// then, insert a point that lies on the line splitting it into two.
|
||||
X_monotone_curve c1 = Line(Point(-1, 0), Point(1, 0));
|
||||
arr.insert_in_face_interior(c1, arr.unbounded_face());
|
||||
Vertex_handle v = insert_point(arr, Point(0,0));
|
||||
assert(! v->is_at_open_boundary());
|
||||
Vertex_handle v = insert_point(arr, Point(0, 0));
|
||||
assert(!v->is_at_open_boundary());
|
||||
|
||||
// Add two more rays using the specialized insertion functions.
|
||||
arr.insert_from_right_vertex(Ray(Point(0, 0), Point(-1, 1)), v); // c2
|
||||
|
|
@ -30,25 +31,27 @@ int main() {
|
|||
|
||||
// Print the outer CCBs of the unbounded faces.
|
||||
int k = 1;
|
||||
for (auto it = arr.unbounded_faces_begin(); it != arr.unbounded_faces_end();
|
||||
++it)
|
||||
{
|
||||
std::cout << "Face no. " << k++ << "(" << it->is_unbounded() << ","
|
||||
<< it->number_of_holes() << ")" << ": ";
|
||||
for(auto it = arr.unbounded_faces_begin(); it != arr.unbounded_faces_end(); ++it) {
|
||||
std::cout << "Face no. " << k++ << "(" << it->is_unbounded() << "," << it->number_of_holes() << ")" << ": ";
|
||||
Arrangement::Ccb_halfedge_const_circulator first = it->outer_ccb();
|
||||
auto curr = first;
|
||||
if (! curr->source()->is_at_open_boundary())
|
||||
if(!curr->source()->is_at_open_boundary())
|
||||
std::cout << "(" << curr->source()->point() << ")";
|
||||
|
||||
do {
|
||||
Arrangement::Halfedge_const_handle e = curr;
|
||||
if (! e->is_fictitious()) std::cout << " [" << e->curve() << "] ";
|
||||
else std::cout << " [ ... ] ";
|
||||
if(!e->is_fictitious())
|
||||
std::cout << " [" << e->curve() << "] ";
|
||||
else
|
||||
std::cout << " [ ... ] ";
|
||||
|
||||
if (! e->target()->is_at_open_boundary())
|
||||
if(!e->target()->is_at_open_boundary())
|
||||
std::cout << "(" << e->target()->point() << ")";
|
||||
} while (++curr != first);
|
||||
} while(++curr != first);
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
CGAL::draw(arr);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,32 +1,31 @@
|
|||
#ifndef CGAL_DRAW_AOS_ARR_APPROXIMATE_POINT_2_H
|
||||
#define CGAL_DRAW_AOS_ARR_APPROXIMATE_POINT_2_H
|
||||
|
||||
#include "CGAL/Arr_has.h"
|
||||
#include "CGAL/Draw_aos/Arr_approximation_geometry_traits.h"
|
||||
#include "CGAL/Arr_rational_function_traits_2.h"
|
||||
#include "CGAL/number_utils.h"
|
||||
#include "CGAL/Draw_aos/type_utils.h"
|
||||
|
||||
namespace CGAL {
|
||||
|
||||
namespace draw_aos {
|
||||
namespace internal {
|
||||
|
||||
template <typename Geom_traits, bool Has_approximate_2>
|
||||
template <typename GeomTraits, bool Has_approximate_2>
|
||||
class Arr_approximate_point_2_impl;
|
||||
|
||||
template <typename Geom_traits>
|
||||
class Arr_approximate_point_2_impl<Geom_traits, true>
|
||||
template <typename GeomTraits>
|
||||
class Arr_approximate_point_2_impl<GeomTraits, true>
|
||||
{
|
||||
using Approx_kernel = Arr_approximation_geometry_traits::Approximation_kernel;
|
||||
using Point_2 = typename Geom_traits::Point_2;
|
||||
using Approx_point = Arr_approximation_geometry_traits::Approx_point;
|
||||
using Approx_traits = Arr_approximation_geometry_traits<GeomTraits>;
|
||||
using Point_2 = typename Traits_adaptor<GeomTraits>::Point_2;
|
||||
using Approx_point = typename Approx_traits::Approx_point;
|
||||
|
||||
public:
|
||||
Arr_approximate_point_2_impl(const Geom_traits& traits)
|
||||
Arr_approximate_point_2_impl(const GeomTraits& traits)
|
||||
: m_approx(traits.approximate_2_object()) {}
|
||||
|
||||
/**
|
||||
* @brief Approximate a point.
|
||||
* TODO: make it work for spherical traits.
|
||||
*
|
||||
* @param pt
|
||||
* @return Point_geom
|
||||
*/
|
||||
|
|
@ -42,20 +41,38 @@ public:
|
|||
double operator()(const Point_2& pt, int dim) const { return m_approx(pt, dim); }
|
||||
|
||||
private:
|
||||
typename Geom_traits::Approximate_2 m_approx;
|
||||
const typename GeomTraits::Approximate_2 m_approx;
|
||||
};
|
||||
|
||||
// Specialized for Arr_rational_function_traits_2.
|
||||
template <typename Kernel>
|
||||
class Arr_approximate_point_2_impl<Arr_rational_function_traits_2<Kernel>, true>
|
||||
{
|
||||
using Geom_traits = Arr_rational_function_traits_2<Kernel>;
|
||||
using Approx_traits = Arr_approximation_geometry_traits<Geom_traits>;
|
||||
using Point_2 = typename Traits_adaptor<Geom_traits>::Point_2;
|
||||
using Approx_point = typename Approx_traits::Approx_point;
|
||||
using Approximate_2 = typename Geom_traits::Approximate_2;
|
||||
|
||||
public:
|
||||
Arr_approximate_point_2_impl(const Geom_traits& traits) {}
|
||||
|
||||
Approx_point operator()(const Point_2& pt) const { return {pt.x().to_double(), pt.y().to_double()}; }
|
||||
|
||||
double operator()(const Point_2& pt, int dim) const { return (dim == 0) ? pt.x().to_double() : pt.y().to_double(); }
|
||||
};
|
||||
|
||||
// Fallback to use CGAL::to_double for traits that do not have an approximate_2_object.
|
||||
template <typename Geom_traits>
|
||||
class Arr_approximate_point_2_impl<Geom_traits, false>
|
||||
template <typename GeomTraits>
|
||||
class Arr_approximate_point_2_impl<GeomTraits, false>
|
||||
{
|
||||
using Approx_kernel = Arr_approximation_geometry_traits::Approximation_kernel;
|
||||
using Point_2 = typename Geom_traits::Point_2;
|
||||
using Approx_point = Arr_approximation_geometry_traits::Approx_point;
|
||||
using Approx_traits = Arr_approximation_geometry_traits<GeomTraits>;
|
||||
using Point_2 = typename Traits_adaptor<GeomTraits>::Point_2;
|
||||
using Approx_point = typename Approx_traits::Approx_point;
|
||||
|
||||
public:
|
||||
// traits object is not used in the fallback implementation, but we keep it for consistency.
|
||||
Arr_approximate_point_2_impl(const Geom_traits& traits) {}
|
||||
// traits object is not used in the fallback implementation, but we keep it for consistency.
|
||||
Arr_approximate_point_2_impl(const GeomTraits& traits) {}
|
||||
|
||||
/**
|
||||
* @brief Approximate a point.
|
||||
|
|
@ -88,10 +105,13 @@ public:
|
|||
|
||||
} // namespace internal
|
||||
|
||||
template <typename Geom_traits>
|
||||
template <typename GeomTraits>
|
||||
using Arr_approximate_point_2 =
|
||||
internal::Arr_approximate_point_2_impl<Geom_traits, has_approximate_2<Geom_traits>::value>;
|
||||
internal::Arr_approximate_point_2_impl<GeomTraits,
|
||||
has_approximate_2_object_v<GeomTraits> &&
|
||||
has_operator_point_v<GeomTraits, typename GeomTraits::Approximate_2>>;
|
||||
|
||||
} // namespace draw_aos
|
||||
} // namespace CGAL
|
||||
|
||||
#endif // CGAL_DRAW_AOS_ARR_APPROXIMATE_POINT_2_H
|
||||
|
|
@ -0,0 +1,124 @@
|
|||
#ifndef CGAL_DRAW_AOS_ARR_APPROXIMATE_POINT_2_AT_X_H
|
||||
#define CGAL_DRAW_AOS_ARR_APPROXIMATE_POINT_2_AT_X_H
|
||||
#include <boost/iterator/function_output_iterator.hpp>
|
||||
|
||||
#include "CGAL/number_utils.h"
|
||||
#include "CGAL/Arr_rational_function_traits_2.h"
|
||||
#include "CGAL/Draw_aos/Arr_construct_curve_end.h"
|
||||
#include "CGAL/Draw_aos/Arr_construct_segments.h"
|
||||
#include "CGAL/Draw_aos/Arr_approximate_point_2.h"
|
||||
#include "CGAL/Draw_aos/type_utils.h"
|
||||
|
||||
namespace CGAL {
|
||||
namespace draw_aos {
|
||||
|
||||
/**
|
||||
* @brief Functor to compute the point at a given x-coordinate on an x-monotone curve within a bounding box.
|
||||
*/
|
||||
template <typename GeomTraits>
|
||||
class Arr_approximate_point_2_at_x
|
||||
{
|
||||
using Point_2 = typename Traits_adaptor<GeomTraits>::Point_2;
|
||||
using X_monotone_curve_2 = typename Traits_adaptor<GeomTraits>::X_monotone_curve_2;
|
||||
using Intersect_2 = typename Traits_adaptor<GeomTraits>::Intersect_2;
|
||||
using FT = typename Traits_adaptor<GeomTraits>::FT;
|
||||
using Approx_traits = Arr_approximation_geometry_traits<GeomTraits>;
|
||||
using Approx_point = typename Approx_traits::Approx_point;
|
||||
using Is_vertical_2 = typename Traits_adaptor<GeomTraits>::Is_vertical_2;
|
||||
|
||||
public:
|
||||
Arr_approximate_point_2_at_x(const GeomTraits& traits)
|
||||
: m_approx_pt(traits)
|
||||
, m_cst_vertical_segment(traits)
|
||||
, m_is_vertical_2(traits.is_vertical_2_object())
|
||||
, m_intersect_2(traits.intersect_2_object()) {}
|
||||
|
||||
/**
|
||||
* @brief Computes the point at a given x-coordinate on an x-monotone curve
|
||||
*
|
||||
* @precondition: The curve is not verical
|
||||
* @param curve
|
||||
* @param x
|
||||
* @return true if there is an intersection at given x,
|
||||
* @return false otherwise.
|
||||
*/
|
||||
std::optional<Approx_point> operator()(const X_monotone_curve_2& curve, FT x) const {
|
||||
CGAL_assertion(!m_is_vertical_2(curve));
|
||||
|
||||
using Multiplicity = typename GeomTraits::Multiplicity;
|
||||
using Intersect_point = std::pair<Point_2, Multiplicity>;
|
||||
using Intersect_curve = X_monotone_curve_2;
|
||||
using Intersect_type = std::variant<Intersect_point, Intersect_curve>;
|
||||
|
||||
auto vertical_line = m_cst_vertical_segment(x, m_ymin, m_ymax);
|
||||
std::optional<Approx_point> pt;
|
||||
auto func_out_iter = boost::make_function_output_iterator([&pt, this](const Intersect_type& res) {
|
||||
CGAL_assertion_msg(std::holds_alternative<Intersect_point>(res),
|
||||
"Unexpected intersection type, expected Intersect_point");
|
||||
pt = this->m_approx_pt(std::get<Intersect_point>(res).first);
|
||||
});
|
||||
m_intersect_2(vertical_line, curve, func_out_iter);
|
||||
|
||||
if(pt.has_value()) {
|
||||
pt = Approx_point(CGAL::to_double(x), pt->y());
|
||||
}
|
||||
return pt;
|
||||
}
|
||||
|
||||
private:
|
||||
const Arr_approximate_point_2<GeomTraits> m_approx_pt;
|
||||
const Arr_construct_vertical_segment<GeomTraits> m_cst_vertical_segment;
|
||||
const Is_vertical_2 m_is_vertical_2;
|
||||
const Intersect_2 m_intersect_2;
|
||||
|
||||
// Should be enough for visualization purposes.
|
||||
// constexpr static double m_ymin = std::numeric_limits<double>::lowest();
|
||||
// constexpr static double m_ymax = std::numeric_limits<double>::max();
|
||||
// maximum of double is too large for CORE number types, no idea why
|
||||
constexpr static double m_ymin = -1e8;
|
||||
constexpr static double m_ymax = 1e8;
|
||||
};
|
||||
|
||||
// Specialization for rational function traits, which has no vertical curves but provides
|
||||
// evaluation at x directly.
|
||||
template <typename Kernel>
|
||||
class Arr_approximate_point_2_at_x<Arr_rational_function_traits_2<Kernel>>
|
||||
{
|
||||
using Geom_traits = CGAL::Arr_rational_function_traits_2<Kernel>;
|
||||
using Point_2 = typename Traits_adaptor<Geom_traits>::Point_2;
|
||||
using X_monotone_curve_2 = typename Traits_adaptor<Geom_traits>::X_monotone_curve_2;
|
||||
using FT = typename Traits_adaptor<Geom_traits>::FT;
|
||||
using Approx_point = typename Arr_approximation_geometry_traits<Geom_traits>::Approx_point;
|
||||
using Construct_curve_end = Arr_construct_curve_end<Geom_traits>;
|
||||
|
||||
public:
|
||||
Arr_approximate_point_2_at_x(const Geom_traits& traits)
|
||||
: m_cst_curve_end(traits) {}
|
||||
|
||||
std::optional<Approx_point> operator()(const X_monotone_curve_2& curve, FT x) const {
|
||||
std::optional<Point_2> min_end = m_cst_curve_end(curve, ARR_MIN_END);
|
||||
if(min_end.has_value() && x < min_end->x()) {
|
||||
return std::nullopt;
|
||||
}
|
||||
std::optional<Point_2> max_end = m_cst_curve_end(curve, ARR_MAX_END);
|
||||
if(max_end.has_value() && x > max_end->x()) {
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
using Bound = typename Geom_traits::Bound;
|
||||
const auto& numerator = curve.numerator();
|
||||
const auto& denominator = curve.denominator();
|
||||
Bound approx_x = (x.lower() + x.upper()) / 2.0;
|
||||
double enum_at_x = CGAL::to_double(numerator.evaluate(approx_x));
|
||||
double denom_at_x = CGAL::to_double(denominator.evaluate(approx_x));
|
||||
return std::make_optional(Approx_point(CGAL::to_double(x), enum_at_x / denom_at_x));
|
||||
}
|
||||
|
||||
private:
|
||||
const Construct_curve_end m_cst_curve_end;
|
||||
};
|
||||
|
||||
} // namespace draw_aos
|
||||
} // namespace CGAL
|
||||
|
||||
#endif // CGAL_DRAW_AOS_ARR_COMPUTE_Y_AT_X_H
|
||||
|
|
@ -1,26 +1,32 @@
|
|||
#ifndef CGAL_DRAW_AOS_ARR_APPROXIMATION_CACHE_H
|
||||
#define CGAL_DRAW_AOS_ARR_APPROXIMATION_CACHE_H
|
||||
#include "CGAL/Arr_enums.h"
|
||||
#include "CGAL/Draw_aos/Arr_approximation_geometry_traits.h"
|
||||
#include "CGAL/Draw_aos/helpers.h"
|
||||
#include "CGAL/unordered_flat_map.h"
|
||||
#include <cstddef>
|
||||
|
||||
#include <boost/range/iterator_range.hpp>
|
||||
|
||||
#include "CGAL/Arr_enums.h"
|
||||
#include "CGAL/unordered_flat_map.h"
|
||||
#include "CGAL/Draw_aos/type_utils.h"
|
||||
|
||||
namespace CGAL {
|
||||
namespace draw_aos {
|
||||
|
||||
template <typename Arrangement>
|
||||
class Arr_approximation_cache
|
||||
{
|
||||
using Approx_geom_traits = Arr_approximation_geometry_traits;
|
||||
using Geom_traits = typename Arrangement::Geometry_traits_2;
|
||||
using Approx_traits = Arr_approximation_geometry_traits<Geom_traits>;
|
||||
|
||||
public:
|
||||
using Vertex_cache_obj = Approx_geom_traits::Point_geom;
|
||||
using Halfedge_cache_obj = Approx_geom_traits::Polyline_geom;
|
||||
using Face_cache_obj = Approx_geom_traits::Triangulated_face;
|
||||
using Vertex_cache_obj = typename Approx_traits::Point_geom;
|
||||
using Halfedge_cache_obj = typename Approx_traits::Polyline_geom;
|
||||
using Face_cache_obj = typename Approx_traits::Triangulated_face;
|
||||
|
||||
private:
|
||||
using Vertex_const_handle = Arrangement::Vertex_const_handle;
|
||||
using Edge_const_handle = Arrangement::Edge_const_iterator;
|
||||
using Halfedge_const_handle = Arrangement::Halfedge_const_iterator;
|
||||
using Face_const_handle = Arrangement::Face_const_handle;
|
||||
using Vertex_const_handle = typename Arrangement::Vertex_const_handle;
|
||||
using Edge_const_handle = typename Arrangement::Edge_const_iterator;
|
||||
using Halfedge_const_handle = typename Arrangement::Halfedge_const_iterator;
|
||||
using Face_const_handle = typename Arrangement::Face_const_handle;
|
||||
using Vertex_cache = unordered_flat_map<Vertex_const_handle, Vertex_cache_obj>;
|
||||
using Halfedge_cache = unordered_flat_map<Halfedge_const_handle, Halfedge_cache_obj>;
|
||||
using Face_cache = unordered_flat_map<Face_const_handle, Face_cache_obj>;
|
||||
|
|
@ -38,6 +44,12 @@ private:
|
|||
}
|
||||
|
||||
public:
|
||||
Arr_approximation_cache() = default;
|
||||
|
||||
void reserve_vertex_cache(std::size_t size) { m_vertex_cache.reserve(size); }
|
||||
void reserve_halfedge_cache(std::size_t size) { m_halfedge_cache.reserve(size); }
|
||||
void reserve_face_cache(std::size_t size) { m_face_cache.reserve(size); }
|
||||
|
||||
std::pair<Vertex_cache_obj&, bool> try_emplace(const Vertex_const_handle& vh) {
|
||||
const auto& [it, inserted] = m_vertex_cache.try_emplace(vh, Vertex_cache_obj());
|
||||
return {it->second, inserted};
|
||||
|
|
@ -104,5 +116,6 @@ private:
|
|||
Face_cache m_face_cache;
|
||||
};
|
||||
|
||||
} // namespace draw_aos
|
||||
} // namespace CGAL
|
||||
#endif // CGAL_DRAW_AOS_ARR_APPROXIMATION_CACHE_H
|
||||
|
|
@ -1,26 +0,0 @@
|
|||
#ifndef CGAL_DRAW_AOS_ARR_APPROXIMATION_GEOMETRY_TRAITS_H
|
||||
#define CGAL_DRAW_AOS_ARR_APPROXIMATION_GEOMETRY_TRAITS_H
|
||||
|
||||
#include "CGAL/Simple_cartesian.h"
|
||||
|
||||
namespace CGAL {
|
||||
class Arr_approximation_geometry_traits
|
||||
{
|
||||
public:
|
||||
using Approximation_kernel = Simple_cartesian<double>;
|
||||
using Approx_point = Approximation_kernel::Point_2;
|
||||
using FT = double;
|
||||
using Point_geom = Approx_point;
|
||||
using Apporx_point_vec = std::vector<Point_geom>;
|
||||
using Polyline_geom = Apporx_point_vec;
|
||||
using Triangle = std::array<std::size_t, 3>;
|
||||
using Triangle_vec = std::vector<Triangle>;
|
||||
struct Triangulated_face
|
||||
{
|
||||
Apporx_point_vec points;
|
||||
Triangle_vec triangles;
|
||||
};
|
||||
};
|
||||
|
||||
} // namespace CGAL
|
||||
#endif // CGAL_DRAW_AOS_ARR_APPROXIMATION_GEOMETRY_TRAITS_H
|
||||
|
|
@ -1,83 +1,97 @@
|
|||
#ifndef CGAL_DRAW_AOS_ARR_BOUNDED_APPROXIMATE_CURVE_2_H
|
||||
#define CGAL_DRAW_AOS_ARR_BOUNDED_APPROXIMATE_CURVE_2_H
|
||||
|
||||
#include "CGAL/Arr_enums.h"
|
||||
#include "CGAL/Draw_aos/Arr_bounded_approximate_point_2.h"
|
||||
#include "CGAL/Draw_aos/Arr_compute_y_at_x.h"
|
||||
#include "CGAL/Draw_aos/Arr_construct_curve_end.h"
|
||||
#include "CGAL/Draw_aos/Arr_construct_segments.h"
|
||||
#include "CGAL/Draw_aos/Arr_render_context.h"
|
||||
#include "CGAL/Draw_aos/helpers.h"
|
||||
#include "CGAL/Draw_aos/Arr_approximation_geometry_traits.h"
|
||||
#include "CGAL/basic.h"
|
||||
#include <algorithm>
|
||||
#include <cstddef>
|
||||
#include <functional>
|
||||
#include <iterator>
|
||||
#include <optional>
|
||||
#include <vector>
|
||||
|
||||
namespace CGAL {
|
||||
#include "CGAL/Arr_enums.h"
|
||||
#include "CGAL/Draw_aos/Arr_approximate_point_2_at_x.h"
|
||||
#include "CGAL/Draw_aos/Arr_render_context.h"
|
||||
#include "CGAL/Draw_aos/type_utils.h"
|
||||
#include "CGAL/basic.h"
|
||||
|
||||
/**
|
||||
* @brief Functor to approximate an x-monotone curve within an bounding box.
|
||||
* The bbox here has closed boundary.
|
||||
*
|
||||
* The Approximation is done from xmin to xmax with a given step. For parts outbound the y limits and precedes or
|
||||
* succeeds a part within, the approximation may be skipped but there will be at least one point outside the bbox for
|
||||
* indication.
|
||||
*
|
||||
* @note Bounded approximation is meaningful only when the curve has at least two points within the bbox (boundary
|
||||
* points included).
|
||||
*
|
||||
* TODO: Possible optimizations:
|
||||
* - Specialize for traits that models Approximate_2 on curves.
|
||||
*/
|
||||
class Arr_bounded_approximate_curve_2
|
||||
namespace CGAL {
|
||||
namespace draw_aos {
|
||||
|
||||
template <typename Arrangement, bool Has_approximate_2_on_curve>
|
||||
class Arr_bounded_approximate_curve_2_impl;
|
||||
|
||||
template <typename Arrangement>
|
||||
class Arr_bounded_approximate_curve_2_impl<Arrangement, false>
|
||||
{
|
||||
using FT = Geom_traits::FT;
|
||||
using Point_2 = Geom_traits::Point_2;
|
||||
using X_monotone_curve_2 = Geom_traits::X_monotone_curve_2;
|
||||
using Halfedge_const_handle = Arrangement::Halfedge_const_iterator;
|
||||
using Approx_point = Arr_approximation_geometry_traits::Approx_point;
|
||||
using Point_geom = Arr_approximation_geometry_traits::Point_geom;
|
||||
using Polyline_geom = Arr_approximation_geometry_traits::Polyline_geom;
|
||||
using Halfedge_const_handle = typename Arrangement::Halfedge_const_iterator;
|
||||
using Geom_traits = typename Arrangement::Geometry_traits_2;
|
||||
|
||||
using Approx_traits = Arr_approximation_geometry_traits<Geom_traits>;
|
||||
using Approx_nt = typename Approx_traits::Approx_nt;
|
||||
using Approx_point = typename Approx_traits::Approx_point;
|
||||
using Polyline_geom = typename Approx_traits::Polyline_geom;
|
||||
|
||||
using Adapted_traits = Traits_adaptor<Geom_traits>;
|
||||
using FT = typename Adapted_traits::FT;
|
||||
using Point_2 = typename Adapted_traits::Point_2;
|
||||
using X_monotone_curve_2 = typename Adapted_traits::X_monotone_curve_2;
|
||||
|
||||
using Approx_point_2_at_x = Arr_approximate_point_2_at_x<Geom_traits>;
|
||||
using Bounded_render_context = Arr_bounded_render_context<Arrangement>;
|
||||
|
||||
using Intersections_vector = std::vector<Point_2>;
|
||||
|
||||
struct Execution_context : public Arr_context_delegator<Arr_bounded_render_context>
|
||||
struct Execution_context : public Arr_context_delegator<Bounded_render_context>
|
||||
{
|
||||
Execution_context(const Arr_bounded_render_context& ctx,
|
||||
Execution_context(const Bounded_render_context& ctx,
|
||||
const X_monotone_curve_2& curve,
|
||||
const Arr_bounded_approximate_point_2& approx_pt,
|
||||
const Arr_compute_y_at_x& compute_y_at_x,
|
||||
const Approx_point_2_at_x& approx_pt_at_x,
|
||||
const Intersections_vector& top_inters,
|
||||
const Intersections_vector& bottom_inters,
|
||||
Polyline_geom& polyline)
|
||||
: Arr_context_delegator(ctx)
|
||||
: Arr_context_delegator<Bounded_render_context>(ctx)
|
||||
, curve(curve)
|
||||
, compute_y_at_x(compute_y_at_x)
|
||||
, bounded_approx_pt(approx_pt)
|
||||
, m_approx_pt_at_x(approx_pt_at_x)
|
||||
, top_inters(top_inters)
|
||||
, bottom_inters(bottom_inters)
|
||||
, min_end(Arr_construct_curve_end<Geom_traits>(ctx.traits)(curve, ARR_MIN_END))
|
||||
, max_end(Arr_construct_curve_end<Geom_traits>(ctx.traits)(curve, ARR_MAX_END))
|
||||
, tight_xmin(is_min_end_bounded() ? std::clamp(min_end->x(), FT(ctx.xmin()), FT(ctx.xmax())) : FT(ctx.xmin()))
|
||||
, tight_xmax(is_max_end_bounded() ? std::clamp(max_end->x(), FT(ctx.xmin()), FT(ctx.xmax())) : FT(ctx.xmax()))
|
||||
, tight_ymin(is_min_end_bounded() ? std::clamp(min_end->y(), FT(ctx.ymin()), FT(ctx.ymax())) : FT(ctx.ymin()))
|
||||
, tight_ymax(is_max_end_bounded() ? std::clamp(max_end->y(), FT(ctx.ymin()), FT(ctx.ymax())) : FT(ctx.ymax()))
|
||||
, out_it(std::back_inserter(polyline)) {}
|
||||
, out_it(std::back_inserter(polyline)) {
|
||||
auto min_end_pt = Arr_construct_curve_end<Geom_traits>(ctx.traits)(curve, ARR_MIN_END);
|
||||
if(min_end_pt.has_value()) {
|
||||
min_end = (*this)->approx_pt(min_end_pt.value());
|
||||
}
|
||||
auto max_end_pt = Arr_construct_curve_end<Geom_traits>(ctx.traits)(curve, ARR_MAX_END);
|
||||
if(max_end_pt.has_value()) {
|
||||
max_end = (*this)->approx_pt(max_end_pt.value());
|
||||
}
|
||||
txmin = is_min_end_bounded() ? std::clamp(min_end->x(), ctx.xmin(), ctx.xmax()) : ctx.xmin();
|
||||
txmax = is_max_end_bounded() ? std::clamp(max_end->x(), ctx.xmin(), ctx.xmax()) : ctx.xmax();
|
||||
tymin = is_min_end_bounded() ? std::clamp(min_end->y(), ctx.ymin(), ctx.ymax()) : ctx.ymin();
|
||||
tymax = is_max_end_bounded() ? std::clamp(max_end->y(), ctx.ymin(), ctx.ymax()) : ctx.ymax();
|
||||
}
|
||||
|
||||
bool has_y_intersections() const { return !top_inters.empty() || !bottom_inters.empty(); }
|
||||
bool is_min_end_bounded() const { return min_end.has_value(); }
|
||||
bool is_max_end_bounded() const { return max_end.has_value(); }
|
||||
bool is_bounded_curve() const { return is_min_end_bounded() && is_max_end_bounded(); }
|
||||
std::optional<Approx_point> approx_pt_at_x(double x) const {
|
||||
if(x == txmin && is_min_end_bounded() && (*this)->contains_x(min_end->x())) {
|
||||
return min_end;
|
||||
}
|
||||
if(x == txmax && is_max_end_bounded() && (*this)->contains_x(max_end->x())) {
|
||||
return max_end;
|
||||
}
|
||||
return m_approx_pt_at_x(curve, to_ft(x));
|
||||
}
|
||||
|
||||
const X_monotone_curve_2& curve;
|
||||
const Arr_compute_y_at_x& compute_y_at_x;
|
||||
const Arr_bounded_approximate_point_2& bounded_approx_pt;
|
||||
const Intersections_vector &top_inters, bottom_inters;
|
||||
const std::optional<Point_2> min_end, max_end;
|
||||
const FT tight_xmin, tight_xmax, tight_ymin, tight_ymax;
|
||||
std::optional<Approx_point> min_end, max_end;
|
||||
double txmin, txmax, tymin, tymax;
|
||||
std::back_insert_iterator<Polyline_geom> out_it;
|
||||
const Construct_coordinate<Geom_traits> to_ft;
|
||||
|
||||
private:
|
||||
const Approx_point_2_at_x& m_approx_pt_at_x;
|
||||
};
|
||||
|
||||
private:
|
||||
|
|
@ -85,8 +99,8 @@ private:
|
|||
const X_monotone_curve_2& cv2,
|
||||
const typename Geom_traits::Intersect_2& intersect_2,
|
||||
const Arr_construct_curve_end<Geom_traits>& cst_curve_end) {
|
||||
using Intersect_point = std::pair<Geom_traits::Point_2, Geom_traits::Multiplicity>;
|
||||
using Intersect_curve = Geom_traits::X_monotone_curve_2;
|
||||
using Intersect_point = std::pair<Point_2, typename Geom_traits::Multiplicity>;
|
||||
using Intersect_curve = X_monotone_curve_2;
|
||||
using Intersect_type = std::variant<Intersect_point, Intersect_curve>;
|
||||
|
||||
std::vector<Point_2> intersections;
|
||||
|
|
@ -106,23 +120,24 @@ private:
|
|||
return intersections;
|
||||
}
|
||||
|
||||
static std::optional<Point_2> first_intersection(Execution_context& ctx) {
|
||||
static std::optional<Approx_point> first_intersection(Execution_context& ctx) {
|
||||
if(!ctx.top_inters.empty() && !ctx.bottom_inters.empty()) {
|
||||
return ctx->compare_xy_2(ctx.top_inters.front(), ctx.bottom_inters.front()) == CGAL::SMALLER
|
||||
? ctx.top_inters.front()
|
||||
: ctx.bottom_inters.front();
|
||||
return ctx->approx_pt(ctx->compare_xy_2(ctx.top_inters.front(), ctx.bottom_inters.front()) == CGAL::SMALLER
|
||||
? ctx.top_inters.front()
|
||||
: ctx.bottom_inters.front());
|
||||
}
|
||||
if(!ctx.top_inters.empty()) {
|
||||
return ctx.top_inters.front();
|
||||
return ctx->approx_pt(ctx.top_inters.front());
|
||||
}
|
||||
if(!ctx.bottom_inters.empty()) {
|
||||
return ctx.bottom_inters.front();
|
||||
return ctx->approx_pt(ctx.bottom_inters.front());
|
||||
}
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief approximate strictly x-monotone curve segment that does not cross the y bounds.
|
||||
* A fallback implementation that approximates curve with Arr_approximate_point_2_at_x, which is inefficient.
|
||||
*
|
||||
* @precondition: The segment is either inbound or outbound the bbox in the given range.
|
||||
* @param start the x-coordinate of the segment start(exclusive)
|
||||
|
|
@ -130,27 +145,27 @@ private:
|
|||
* @param step the step to approximate the curve segment, negative values allowed.
|
||||
* @returns true if this part of the curve is within the closed bbox
|
||||
*/
|
||||
static void approximate_simple_curve_segment(Execution_context& ctx, const FT& start, const FT& end, double step) {
|
||||
for(FT x = start + step; x < end; x += step) {
|
||||
auto y = ctx.compute_y_at_x(ctx.curve, x);
|
||||
if(!y.has_value()) {
|
||||
static void approximate_simple_curve_segment(Execution_context& ctx, double start, double end, double step) {
|
||||
for(double x = start + step; x <= end - step; x += step) {
|
||||
auto pt = ctx.approx_pt_at_x(x);
|
||||
if(!pt.has_value()) {
|
||||
// break as soon as there's no more intersections
|
||||
break;
|
||||
}
|
||||
if(y == ctx->ymin() || y == ctx->ymax()) {
|
||||
if(pt->y() == ctx->ymin() || pt->y() == ctx->ymax()) {
|
||||
// The segment overlaps with the bbox edge. There's no need to insert a dummy point.
|
||||
break;
|
||||
}
|
||||
*ctx.out_it++ = ctx->approx_pt(Point_2(x, y.value()));
|
||||
if(y > ctx->ymax() || y < ctx->ymin()) {
|
||||
*ctx.out_it++ = pt.value();
|
||||
if(!ctx->contains_y(pt->y())) {
|
||||
// We are outside the bbox. The dummy point was already inserted to indicate that.
|
||||
break;
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
static void approximate_vertical_curve(Execution_context& ctx) {
|
||||
if(ctx.is_bounded_curve() && (ctx.min_end->x() < ctx->xmin() || ctx.min_end->x() > ctx->xmax())) {
|
||||
if(ctx.is_bounded_curve() && !ctx->contains_x(ctx.min_end->x())) {
|
||||
// The curve is outside the bbox in x direction, no need to approximate
|
||||
return;
|
||||
}
|
||||
|
|
@ -161,28 +176,25 @@ private:
|
|||
}
|
||||
// The vertical curve is now within the x bounds.
|
||||
|
||||
FT tymin = ctx.tight_ymin;
|
||||
FT tymax = ctx.tight_ymax;
|
||||
if(tymax == tymin) {
|
||||
if(ctx.tymax == ctx.tymin) {
|
||||
// But the curve is not degenerate. So, either it has only one point within the bbox or it is
|
||||
// entirely outside the bbox in y direction.
|
||||
return;
|
||||
}
|
||||
// Now we gaurantee that the curve has at least two points within the bbox in y direction.
|
||||
// We have to obtain the x coordinate of this vertical curve.
|
||||
FT x = ctx.is_bounded_curve() ? ctx.min_end->x() : first_intersection(ctx)->x();
|
||||
*ctx.out_it++ = ctx->approx_pt(Point_2(x, tymin));
|
||||
*ctx.out_it++ = ctx->approx_pt(Point_2(x, tymax));
|
||||
double x = ctx.is_bounded_curve() ? ctx.min_end->x() : first_intersection(ctx).value().x();
|
||||
*ctx.out_it++ = Approx_point(x, ctx.tymin);
|
||||
*ctx.out_it++ = Approx_point(x, ctx.tymax);
|
||||
}
|
||||
|
||||
public:
|
||||
Arr_bounded_approximate_curve_2(const Arr_bounded_render_context& ctx,
|
||||
const Arr_bounded_approximate_point_2& point_approx)
|
||||
: m_compute_y_at_x(ctx)
|
||||
, m_approx_pt(point_approx)
|
||||
Arr_bounded_approximate_curve_2_impl(const Bounded_render_context& ctx)
|
||||
: to_ft()
|
||||
, m_ctx(ctx)
|
||||
, m_top(ctx.cst_horizontal_segment(ctx.ymax(), ctx.xmin(), ctx.xmax()))
|
||||
, m_bottom(ctx.cst_horizontal_segment(ctx.ymin(), ctx.xmin(), ctx.xmax())) {}
|
||||
, m_approx_pt_at_x(ctx.traits)
|
||||
, m_top(ctx.cst_horizontal_segment(to_ft(ctx.ymax()), to_ft(ctx.xmin()), to_ft(ctx.xmax())))
|
||||
, m_bottom(ctx.cst_horizontal_segment(to_ft(ctx.ymin()), to_ft(ctx.xmin()), to_ft(ctx.xmax()))) {}
|
||||
|
||||
/**
|
||||
* @brief Approximate an x-monotone curve from left to right within the bounding box.
|
||||
|
|
@ -204,13 +216,9 @@ public:
|
|||
|
||||
const X_monotone_curve_2& curve = he->curve();
|
||||
|
||||
if(curve.is_degenerate()) {
|
||||
return polyline;
|
||||
}
|
||||
|
||||
auto top_inters = compute_intersections(curve, m_top, m_ctx.intersect_2, m_ctx.cst_curve_end);
|
||||
auto bottom_inters = compute_intersections(curve, m_bottom, m_ctx.intersect_2, m_ctx.cst_curve_end);
|
||||
Execution_context ctx(m_ctx, curve, m_approx_pt, m_compute_y_at_x, top_inters, bottom_inters, polyline);
|
||||
auto top_inters = compute_intersections(m_top, curve, m_ctx.intersect_2, m_ctx.cst_curve_end);
|
||||
auto bottom_inters = compute_intersections(m_bottom, curve, m_ctx.intersect_2, m_ctx.cst_curve_end);
|
||||
Execution_context ctx(m_ctx, curve, m_approx_pt_at_x, top_inters, bottom_inters, polyline);
|
||||
|
||||
if(ctx->is_vertical_2(curve)) {
|
||||
approximate_vertical_curve(ctx);
|
||||
|
|
@ -219,20 +227,17 @@ public:
|
|||
|
||||
polyline.reserve(top_inters.size() + bottom_inters.size());
|
||||
|
||||
FT txmin = ctx.tight_xmin;
|
||||
FT txmax = ctx.tight_xmax;
|
||||
FT last_x;
|
||||
std::optional<Point_2> first_inter = first_intersection(ctx);
|
||||
double last_x;
|
||||
std::optional<Approx_point> first_inter = first_intersection(ctx);
|
||||
|
||||
if(auto y_at_txmin = ctx.compute_y_at_x(curve, txmin);
|
||||
y_at_txmin.has_value() && y_at_txmin != ctx->ymin() && y_at_txmin != ctx->ymax())
|
||||
if(auto pt_at_txmin = ctx.approx_pt_at_x(ctx.txmin);
|
||||
pt_at_txmin.has_value() && pt_at_txmin->y() != ctx->ymin() && pt_at_txmin->y() != ctx->ymax())
|
||||
{
|
||||
// The tight starting point of the curve is within the bbox and
|
||||
// it's not on the top or bottom edge.
|
||||
*ctx.out_it++ = txmin == ctx->xmin() ? ctx->approx_pt_on_boundary(Point_2(txmin, y_at_txmin.value()))
|
||||
: ctx->approx_pt(Point_2(txmin, y_at_txmin.value()));
|
||||
FT segment_end = first_inter.has_value() ? first_inter->x() : txmax;
|
||||
approximate_simple_curve_segment(ctx, txmin, segment_end, ctx->approx_error);
|
||||
*ctx.out_it++ = ctx.txmin == ctx->xmin() ? ctx->make_on_boundary(pt_at_txmin.value()) : pt_at_txmin.value();
|
||||
double segment_end = first_inter.has_value() ? first_inter->x() : ctx.txmax;
|
||||
approximate_simple_curve_segment(ctx, ctx.txmin, segment_end, ctx->approx_error);
|
||||
last_x = segment_end;
|
||||
} else if(first_inter.has_value()) {
|
||||
last_x = first_inter->x();
|
||||
|
|
@ -243,29 +248,203 @@ public:
|
|||
// iterate through the intersections and insert segments in-between.
|
||||
std::merge(top_inters.begin(), top_inters.end(), bottom_inters.begin(), bottom_inters.end(),
|
||||
boost::make_function_output_iterator([&last_x, &ctx](const Point_2& inter) {
|
||||
approximate_simple_curve_segment(ctx, last_x, inter.x(), ctx->approx_error);
|
||||
*ctx.out_it++ = ctx->approx_pt_on_boundary(inter);
|
||||
last_x = inter.x();
|
||||
auto approx_inter = ctx->approx_pt(inter);
|
||||
approximate_simple_curve_segment(ctx, last_x, approx_inter.x(), ctx->approx_error);
|
||||
*ctx.out_it++ = ctx->make_on_boundary(approx_inter);
|
||||
last_x = approx_inter.x();
|
||||
}),
|
||||
[&ctx](const Point_2& pt1, const Point_2& pt2) { return ctx->compare_xy_2(pt1, pt2) == CGAL::SMALLER; });
|
||||
|
||||
if(auto y_at_txmax = ctx.compute_y_at_x(curve, txmax);
|
||||
y_at_txmax.has_value() && y_at_txmax != ctx->ymin() && y_at_txmax != ctx->ymax())
|
||||
if(auto pt_at_txmax = ctx.approx_pt_at_x(ctx.txmax);
|
||||
pt_at_txmax.has_value() && pt_at_txmax->y() != ctx->ymin() && pt_at_txmax->y() != ctx->ymax())
|
||||
{
|
||||
approximate_simple_curve_segment(ctx, last_x, txmax, ctx->approx_error);
|
||||
*ctx.out_it++ = txmax == ctx->xmax() ? ctx->approx_pt_on_boundary(Point_2(txmax, y_at_txmax.value()))
|
||||
: ctx->approx_pt(Point_2(txmax, y_at_txmax.value()));
|
||||
approximate_simple_curve_segment(ctx, last_x, ctx.txmax, ctx->approx_error);
|
||||
*ctx.out_it++ = ctx.txmax == ctx->xmax() ? ctx->make_on_boundary(pt_at_txmax.value()) : pt_at_txmax.value();
|
||||
}
|
||||
|
||||
return polyline;
|
||||
}
|
||||
|
||||
private:
|
||||
const Arr_bounded_render_context& m_ctx;
|
||||
const Arr_bounded_approximate_point_2& m_approx_pt;
|
||||
const Arr_compute_y_at_x m_compute_y_at_x;
|
||||
const Construct_coordinate<Geom_traits> to_ft;
|
||||
const Bounded_render_context& m_ctx;
|
||||
const Approx_point_2_at_x m_approx_pt_at_x;
|
||||
const X_monotone_curve_2 m_top;
|
||||
const X_monotone_curve_2 m_bottom;
|
||||
};
|
||||
|
||||
template <typename Arrangement>
|
||||
class Arr_bounded_approximate_curve_2_impl<Arrangement, true>
|
||||
{
|
||||
using Geom_traits = typename Arrangement::Geometry_traits_2;
|
||||
using Halfedge_const_handle = typename Arrangement::Halfedge_const_iterator;
|
||||
|
||||
using Approx_traits = Arr_approximation_geometry_traits<Geom_traits>;
|
||||
using Approx_nt = typename Approx_traits::Approx_nt;
|
||||
using Approx_point = typename Approx_traits::Approx_point;
|
||||
using Approx_kernel = typename Approx_traits::Approx_kernel;
|
||||
using Approx_line_2 = typename Approx_kernel::Line_2;
|
||||
using Polyline_geom = typename Approx_traits::Polyline_geom;
|
||||
|
||||
using Adapted_traits = Traits_adaptor<Geom_traits>;
|
||||
using Approximate_2 = typename Adapted_traits::Approximate_2;
|
||||
using X_monotone_curve_2 = typename Adapted_traits::X_monotone_curve_2;
|
||||
using Construct_curve_end = Arr_construct_curve_end<Geom_traits>;
|
||||
|
||||
using Bounded_render_context = Arr_bounded_render_context<Arrangement>;
|
||||
|
||||
private:
|
||||
struct Execution_context : public Arr_context_delegator<Bounded_render_context>
|
||||
{
|
||||
Execution_context(const Bounded_render_context& ctx,
|
||||
const X_monotone_curve_2& curve,
|
||||
const Approximate_2& approx_2,
|
||||
Polyline_geom& polyline)
|
||||
: Arr_context_delegator<Bounded_render_context>(ctx)
|
||||
, curve(curve)
|
||||
, approx_2(approx_2)
|
||||
, top(Approx_line_2(Approx_point(ctx.xmin(), ctx.ymax()), Approx_point(ctx.xmax(), ctx.ymax())))
|
||||
, right(Approx_line_2(Approx_point(ctx.xmax(), ctx.ymin()), Approx_point(ctx.xmax(), ctx.ymax())))
|
||||
, bottom(Approx_line_2(Approx_point(ctx.xmin(), ctx.ymin()), Approx_point(ctx.xmax(), ctx.ymin())))
|
||||
, left(Approx_line_2(Approx_point(ctx.xmin(), ctx.ymin()), Approx_point(ctx.xmin(), ctx.ymax())))
|
||||
, m_base_out_it(std::back_inserter(polyline))
|
||||
, out_it(boost::make_function_output_iterator(std::function([this](Approx_point pt) {
|
||||
if(!(*this)->contains_x(pt.x())) {
|
||||
return;
|
||||
}
|
||||
*this->m_base_out_it++ = pt;
|
||||
}))) {}
|
||||
|
||||
private:
|
||||
std::back_insert_iterator<Polyline_geom> m_base_out_it;
|
||||
|
||||
public:
|
||||
const X_monotone_curve_2& curve;
|
||||
const Approximate_2& approx_2;
|
||||
const Approx_line_2 top, right, bottom, left;
|
||||
boost::function_output_iterator<std::function<void(Approx_point)>> out_it;
|
||||
};
|
||||
|
||||
static void update_on_crossing_boundary(Execution_context& ctx,
|
||||
Approx_point& last_pt,
|
||||
const Approx_point& pt,
|
||||
Side_of_boundary side) {
|
||||
const auto& boundary_line = [&ctx, side]() {
|
||||
switch(side) {
|
||||
case Side_of_boundary::Top:
|
||||
return ctx.top;
|
||||
case Side_of_boundary::Right:
|
||||
return ctx.right;
|
||||
case Side_of_boundary::Bottom:
|
||||
return ctx.bottom;
|
||||
case Side_of_boundary::Left:
|
||||
return ctx.left;
|
||||
default:
|
||||
return Approx_line_2();
|
||||
}
|
||||
CGAL_assertion(false && "Unexpected side of boundary");
|
||||
}();
|
||||
|
||||
std::optional<std::variant<Approx_point, Approx_line_2>> res =
|
||||
CGAL::intersection(Approx_line_2(last_pt, pt), boundary_line);
|
||||
Approx_point inter = ctx->make_on_boundary(std::get<Approx_point>(*res));
|
||||
if(!ctx->contains_x(inter.x())) {
|
||||
return;
|
||||
}
|
||||
last_pt = inter;
|
||||
*ctx.out_it++ = last_pt;
|
||||
}
|
||||
|
||||
public:
|
||||
Arr_bounded_approximate_curve_2_impl(const Bounded_render_context& ctx)
|
||||
: m_ctx(ctx)
|
||||
, m_approximate_2(ctx.traits.approximate_2_object()) {}
|
||||
|
||||
const Polyline_geom& operator()(const Halfedge_const_handle& he) const {
|
||||
CGAL_assertion(!he->is_fictitious());
|
||||
|
||||
auto [polyline, inserted] = m_ctx.cache.try_emplace(he);
|
||||
if(!inserted) {
|
||||
return polyline;
|
||||
}
|
||||
|
||||
if(m_ctx.is_cancelled()) {
|
||||
return polyline;
|
||||
}
|
||||
|
||||
polyline.reserve(static_cast<std::size_t>(m_ctx.bbox().x_span() / m_ctx.approx_error));
|
||||
const X_monotone_curve_2& curve = he->curve();
|
||||
Execution_context ctx(m_ctx, curve, m_approximate_2, polyline);
|
||||
std::optional<Approx_point> last_pt;
|
||||
|
||||
m_approximate_2(curve, m_ctx.approx_error, boost::make_function_output_iterator([&ctx, &last_pt](Approx_point pt) {
|
||||
if(last_pt.has_value()) {
|
||||
if(last_pt->x() < ctx->xmin() && pt.x() >= ctx->xmin()) {
|
||||
update_on_crossing_boundary(ctx, last_pt.value(), pt, Side_of_boundary::Left);
|
||||
}
|
||||
if(last_pt->y() < ctx->ymin()) {
|
||||
if(pt.y() >= ctx->ymin()) {
|
||||
*ctx.out_it++ = last_pt.value();
|
||||
update_on_crossing_boundary(ctx, last_pt.value(), pt, Side_of_boundary::Bottom);
|
||||
}
|
||||
if(pt.y() > ctx->ymax()) {
|
||||
update_on_crossing_boundary(ctx, last_pt.value(), pt, Side_of_boundary::Top);
|
||||
}
|
||||
} else if(last_pt->y() > ctx->ymax()) {
|
||||
if(pt.y() <= ctx->ymax()) {
|
||||
*ctx.out_it++ = last_pt.value();
|
||||
update_on_crossing_boundary(ctx, last_pt.value(), pt, Side_of_boundary::Top);
|
||||
}
|
||||
if(pt.y() < ctx->ymin()) {
|
||||
update_on_crossing_boundary(ctx, last_pt.value(), pt, Side_of_boundary::Bottom);
|
||||
}
|
||||
} else {
|
||||
if(pt.y() < ctx->ymin()) {
|
||||
update_on_crossing_boundary(ctx, last_pt.value(), pt, Side_of_boundary::Bottom);
|
||||
} else if(pt.y() > ctx->ymax()) {
|
||||
update_on_crossing_boundary(ctx, last_pt.value(), pt, Side_of_boundary::Top);
|
||||
}
|
||||
}
|
||||
if(last_pt->x() <= ctx->xmax() && pt.x() > ctx->xmax()) {
|
||||
update_on_crossing_boundary(ctx, last_pt.value(), pt, Side_of_boundary::Right);
|
||||
}
|
||||
|
||||
if(!(pt.y() > ctx->ymax() && last_pt->y() > ctx->ymax() ||
|
||||
pt.y() < ctx->ymin() && last_pt->y() < ctx->ymin())) {
|
||||
*ctx.out_it++ = pt;
|
||||
}
|
||||
} else {
|
||||
*ctx.out_it++ = pt;
|
||||
}
|
||||
|
||||
last_pt = pt;
|
||||
}),
|
||||
true);
|
||||
|
||||
return polyline;
|
||||
}
|
||||
|
||||
private:
|
||||
const Bounded_render_context& m_ctx;
|
||||
const Approximate_2 m_approximate_2;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Functor to approximate an x-monotone curve within an bounding box.
|
||||
* The bbox here has closed boundary.
|
||||
*
|
||||
* The Approximation is done from xmin to xmax with a given step. For parts outbound the y limits and precedes or
|
||||
* succeeds a part within, the approximation may be skipped but there will be at least one point outside the bbox
|
||||
* for indication.
|
||||
*
|
||||
*/
|
||||
template <typename Arrangement>
|
||||
using Arr_bounded_approximate_curve_2 = Arr_bounded_approximate_curve_2_impl<
|
||||
Arrangement,
|
||||
has_approximate_2_object_v<typename Arrangement::Geometry_traits_2> &&
|
||||
has_operator_xcv_v<typename Arrangement::Geometry_traits_2,
|
||||
typename Arrangement::Geometry_traits_2::Approximate_2>>;
|
||||
|
||||
} // namespace draw_aos
|
||||
} // namespace CGAL
|
||||
#endif // CGAL_DRAW_AOS_ARR_BOUNDED_APPROXIMATE_CURVE_2_H
|
||||
|
|
@ -1,45 +1,37 @@
|
|||
#ifndef CGAL_DRAW_AOS_ARR_BOUNDED_APPROXIMATE_FACE_2_H
|
||||
#define CGAL_DRAW_AOS_ARR_BOUNDED_APPROXIMATE_FACE_2_H
|
||||
|
||||
#include <cstddef>
|
||||
#include <functional>
|
||||
#include <optional>
|
||||
#include <type_traits>
|
||||
#include <variant>
|
||||
#include <algorithm>
|
||||
|
||||
#include <boost/iterator/function_output_iterator.hpp>
|
||||
|
||||
#include "CGAL/Arr_enums.h"
|
||||
#include "CGAL/Bbox_2.h"
|
||||
#include "CGAL/Draw_aos/Arr_bounded_approximate_curve_2.h"
|
||||
#include "CGAL/Draw_aos/Arr_bounded_approximate_point_2.h"
|
||||
#include "CGAL/Draw_aos/Arr_bounded_face_triangulator.h"
|
||||
#include "CGAL/Draw_aos/Arr_render_context.h"
|
||||
#include "CGAL/basic.h"
|
||||
#include <CGAL/Draw_aos/Arr_approximation_geometry_traits.h>
|
||||
#include <CGAL/Draw_aos/helpers.h>
|
||||
#include <algorithm>
|
||||
#include <boost/iterator/function_output_iterator.hpp>
|
||||
#include <cstddef>
|
||||
#include <functional>
|
||||
#include <iostream>
|
||||
#include <iterator>
|
||||
#include <optional>
|
||||
#include <type_traits>
|
||||
#include "CGAL/Draw_aos/type_utils.h"
|
||||
|
||||
namespace CGAL {
|
||||
|
||||
namespace internal {
|
||||
namespace draw_aos {
|
||||
/**
|
||||
* @brief Patches corners between two boundary points of the bbox
|
||||
* counter-clockwisely.
|
||||
*/
|
||||
template <typename GeomTraits>
|
||||
class Patch_boundary
|
||||
{
|
||||
using Approx_point = Arr_approximation_geometry_traits::Approx_point;
|
||||
|
||||
enum class Side_of_boundary {
|
||||
Top = 0,
|
||||
Left = 1,
|
||||
Bottom = 2,
|
||||
Right = 3,
|
||||
None = -1,
|
||||
};
|
||||
using Approx_point = typename Arr_approximation_geometry_traits<GeomTraits>::Approx_point;
|
||||
|
||||
private:
|
||||
Side_of_boundary side_of_boundary(const Approx_point& pt) const {
|
||||
Side_of_boundary side_of_boundary(Approx_point pt) const {
|
||||
if(m_bbox.xmin() <= pt.x() && pt.x() < m_bbox.xmax() && pt.y() == m_bbox.ymax()) {
|
||||
return Side_of_boundary::Top;
|
||||
} else if(pt.x() == m_bbox.xmin() && m_bbox.ymin() <= pt.y() && pt.y() < m_bbox.ymax()) {
|
||||
|
|
@ -83,9 +75,8 @@ private:
|
|||
return static_cast<Side_of_boundary>((static_cast<int>(side) + 1) % 4);
|
||||
}
|
||||
|
||||
bool is_on_boundary(const Approx_point& pt) const { return side_of_boundary(pt) != Side_of_boundary::None; }
|
||||
|
||||
double distance_on_same_side(const Approx_point& pt1, const Approx_point& pt2) const {
|
||||
// Computes the distance between two points with the precondition that they are on the same side of the boundary.
|
||||
double distance_on_same_side(Approx_point pt1, Approx_point pt2) const {
|
||||
return std::abs(pt1.x() - pt2.x()) + std::abs(pt1.y() - pt2.y());
|
||||
}
|
||||
|
||||
|
|
@ -93,8 +84,11 @@ public:
|
|||
Patch_boundary(Bbox_2 bbox)
|
||||
: m_bbox(bbox) {}
|
||||
|
||||
/**
|
||||
* @brief Patch the boundary between two points on the boundary of the bbox counter-clockwisely.
|
||||
*/
|
||||
template <typename OutputIterator>
|
||||
void operator()(const Approx_point& from, const Approx_point& to, OutputIterator out_it) const {
|
||||
void operator()(Approx_point from, Approx_point to, OutputIterator out_it) const {
|
||||
auto from_side = side_of_boundary(from);
|
||||
auto to_side = side_of_boundary(to);
|
||||
|
||||
|
|
@ -117,21 +111,39 @@ public:
|
|||
continue;
|
||||
}
|
||||
*out_it++ = corner;
|
||||
std::cout << "Patching corner: " << corner << std::endl;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Patch all four sides.
|
||||
*/
|
||||
template <typename OutputIterator>
|
||||
void operator()(OutputIterator out_it) const {
|
||||
for(auto side : {Side_of_boundary::Top, Side_of_boundary::Left, Side_of_boundary::Bottom, Side_of_boundary::Right})
|
||||
{
|
||||
*out_it++ = corner_of_side(side);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
const Bbox_2 m_bbox;
|
||||
};
|
||||
|
||||
template <typename OutputIterator>
|
||||
class Geom_simplifier
|
||||
template <typename GeomTraits, typename OutputIterator>
|
||||
class Colinear_simplifier
|
||||
{
|
||||
using Approx_point = Arr_approximation_geometry_traits::Approx_point;
|
||||
using Geom_traits = GeomTraits;
|
||||
using Approx_point = typename Arr_approximation_geometry_traits<Geom_traits>::Approx_point;
|
||||
|
||||
public:
|
||||
using Insert_iterator = boost::function_output_iterator<std::function<void(Approx_point)>>;
|
||||
|
||||
public:
|
||||
Colinear_simplifier(OutputIterator out_it, Bbox_2 bbox)
|
||||
: m_out_it(out_it)
|
||||
, m_bbox(bbox) {}
|
||||
|
||||
private:
|
||||
void dump() {
|
||||
if(m_start.has_value()) {
|
||||
*m_out_it++ = m_start.value();
|
||||
|
|
@ -143,17 +155,9 @@ private:
|
|||
}
|
||||
}
|
||||
|
||||
public:
|
||||
Geom_simplifier(OutputIterator& out_it, const Bbox_2& bbox)
|
||||
: m_out_it(out_it)
|
||||
, m_bbox(bbox) {}
|
||||
|
||||
decltype(auto) insert_iterator() {
|
||||
return boost::make_function_output_iterator([this](const Approx_point& p) {
|
||||
Insert_iterator insert_iterator() {
|
||||
return boost::make_function_output_iterator(std::function([this](Approx_point p) {
|
||||
if(m_mid.has_value()) {
|
||||
if(m_mid.value() == p) {
|
||||
return;
|
||||
}
|
||||
if(p.y() == m_mid->y() && p.y() == m_start->y() || p.x() == m_mid->x() && p.x() == m_start->x()) {
|
||||
// Three points are collinear horizontally or vertically.
|
||||
m_mid = p;
|
||||
|
|
@ -166,175 +170,270 @@ public:
|
|||
}
|
||||
|
||||
if(m_start.has_value()) {
|
||||
if(m_start.value() == p) {
|
||||
return;
|
||||
}
|
||||
m_mid = p;
|
||||
} else {
|
||||
m_start = p;
|
||||
}
|
||||
});
|
||||
}));
|
||||
}
|
||||
|
||||
~Geom_simplifier() { dump(); }
|
||||
~Colinear_simplifier() { dump(); }
|
||||
|
||||
private:
|
||||
OutputIterator& m_out_it;
|
||||
OutputIterator m_out_it;
|
||||
std::optional<Approx_point> m_start, m_mid;
|
||||
Bbox_2 m_bbox;
|
||||
const Bbox_2 m_bbox;
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
/**
|
||||
* @brief Bounded face approximation for arrangements.
|
||||
* @note Member functions are not thread-safe.
|
||||
*/
|
||||
template <typename Arrangement>
|
||||
class Arr_bounded_approximate_face_2
|
||||
{
|
||||
using Approx_geom_traits = Arr_approximation_geometry_traits;
|
||||
using Face_const_handle = Arrangement::Face_const_handle;
|
||||
using Halfedge_const_handle = Arrangement::Halfedge_const_handle;
|
||||
using Vertex_const_handle = Arrangement::Vertex_const_handle;
|
||||
using Polyline_geom = Approx_geom_traits::Polyline_geom;
|
||||
using Ccb_halfedge_const_circulator = Arrangement::Ccb_halfedge_const_circulator;
|
||||
using Approx_point = Approx_geom_traits::Approx_point;
|
||||
using Triangulated_face = Approx_geom_traits::Triangulated_face;
|
||||
using Patch_boundary = internal::Patch_boundary;
|
||||
using Geom_traits = typename Arrangement::Geometry_traits_2;
|
||||
using Approx_traits = Arr_approximation_geometry_traits<Geom_traits>;
|
||||
using Face_const_handle = typename Arrangement::Face_const_handle;
|
||||
using Halfedge_const_handle = typename Arrangement::Halfedge_const_handle;
|
||||
using Vertex_const_handle = typename Arrangement::Vertex_const_handle;
|
||||
using Polyline_geom = typename Approx_traits::Polyline_geom;
|
||||
using Ccb_halfedge_const_circulator = typename Arrangement::Ccb_halfedge_const_circulator;
|
||||
using Approx_point = typename Approx_traits::Approx_point;
|
||||
using Triangulated_face = typename Approx_traits::Triangulated_face;
|
||||
using Feature_portal_map = typename Arr_portals<Arrangement>::Feature_portals_map;
|
||||
using Portal_vector = typename Arr_portals<Arrangement>::Portal_vector;
|
||||
using Portal = typename Arr_portals<Arrangement>::Portal;
|
||||
using Point_or_portal = std::variant<Approx_point, Portal>;
|
||||
using FT = typename Traits_adaptor<Geom_traits>::FT;
|
||||
|
||||
template <typename OutputIterator>
|
||||
using Geom_simplifier = internal::Geom_simplifier<OutputIterator>;
|
||||
using Bounded_approximate_point_2 = Arr_bounded_approximate_point_2<Arrangement>;
|
||||
using Bounded_approximate_curve_2 = Arr_bounded_approximate_curve_2<Arrangement>;
|
||||
using Bounded_render_context = Arr_bounded_render_context<Arrangement>;
|
||||
|
||||
using Triangulator = Arr_bounded_face_triangulator<Arrangement>;
|
||||
using Patch_boundary = Patch_boundary<Geom_traits>;
|
||||
using Simplifier = Colinear_simplifier<Geom_traits, typename Triangulator::Insert_iterator>;
|
||||
|
||||
struct Left_to_right_tag
|
||||
{};
|
||||
struct Right_to_left_tag
|
||||
{};
|
||||
|
||||
struct Inner_ccb_tag
|
||||
{};
|
||||
struct Outer_ccb_tag
|
||||
{};
|
||||
|
||||
private:
|
||||
class Execution_context : public Arr_context_delegator<Arr_bounded_render_context>
|
||||
class Execution_context : public Arr_context_delegator<Bounded_render_context>
|
||||
{
|
||||
public:
|
||||
Execution_context(const Arr_bounded_render_context& ctx,
|
||||
Arr_bounded_face_triangulator& triangulator,
|
||||
const Patch_boundary& patch_boundary,
|
||||
const Arr_bounded_approximate_point_2& bounded_approx_pt,
|
||||
const Arr_bounded_approximate_curve_2& bounded_approx_curve)
|
||||
: Arr_context_delegator(ctx)
|
||||
, triangulator(triangulator)
|
||||
, patch_boundary(patch_boundary)
|
||||
, bounded_approx_pt(bounded_approx_pt)
|
||||
, bounded_approx_curve(bounded_approx_curve) {}
|
||||
private:
|
||||
using Output_iterator =
|
||||
typename Colinear_simplifier<Geom_traits, typename Triangulator::Insert_iterator>::Insert_iterator;
|
||||
|
||||
public:
|
||||
const Arr_bounded_approximate_point_2& bounded_approx_pt;
|
||||
const Arr_bounded_approximate_curve_2& bounded_approx_curve;
|
||||
Arr_bounded_face_triangulator& triangulator;
|
||||
using Insert_iterator = boost::function_output_iterator<std::function<void(Approx_point pt)>>;
|
||||
|
||||
Execution_context(const Bounded_render_context& ctx,
|
||||
const Patch_boundary& patch_boundary,
|
||||
Output_iterator out_it,
|
||||
const Bounded_approximate_point_2& bounded_approx_pt,
|
||||
const Bounded_approximate_curve_2& bounded_approx_curve)
|
||||
: Arr_context_delegator<Bounded_render_context>(ctx)
|
||||
, base_out_it(out_it)
|
||||
, patch_boundary(patch_boundary)
|
||||
, bounded_approx_pt(bounded_approx_pt)
|
||||
, bounded_approx_curve(bounded_approx_curve) {
|
||||
this->out_it = boost::make_function_output_iterator(std::function([this](Approx_point pt) {
|
||||
if(!(*this)->contains_x(pt.x())) {
|
||||
return;
|
||||
}
|
||||
|
||||
pt = Approx_point(pt.x(), std::clamp(pt.y(), (*this)->ymin(), (*this)->ymax()));
|
||||
if(pt == last_pt) {
|
||||
passed_fictitious_edge = false;
|
||||
return;
|
||||
}
|
||||
|
||||
if(passed_fictitious_edge && last_pt.has_value()) {
|
||||
this->patch_boundary(last_pt.value(), pt, base_out_it);
|
||||
}
|
||||
passed_fictitious_edge = false;
|
||||
|
||||
*base_out_it++ = pt;
|
||||
|
||||
if(!first_pt.has_value()) {
|
||||
first_pt = pt;
|
||||
}
|
||||
last_pt = pt;
|
||||
}));
|
||||
}
|
||||
// Let's not accidentally copy this object.
|
||||
Execution_context(const Execution_context&) = delete;
|
||||
Execution_context& operator=(const Execution_context&) = delete;
|
||||
|
||||
public:
|
||||
const Bounded_approximate_point_2& bounded_approx_pt;
|
||||
const Bounded_approximate_curve_2& bounded_approx_curve;
|
||||
Insert_iterator out_it;
|
||||
std::optional<Approx_point> last_pt, first_pt;
|
||||
bool passed_fictitious_edge{false};
|
||||
Output_iterator base_out_it;
|
||||
const Patch_boundary& patch_boundary;
|
||||
};
|
||||
|
||||
private:
|
||||
/**
|
||||
* @brief Get the first halfedge on the inner ccb that should be traversed.
|
||||
*
|
||||
* @precondition: The vertex must not be isolated.
|
||||
* @param vh
|
||||
*/
|
||||
static Halfedge_const_handle get_inner_ccb_first_halfedge(const Vertex_const_handle& vh) {
|
||||
auto circ = vh->incident_halfedges();
|
||||
if(vh->degree() == 1) {
|
||||
return circ->twin();
|
||||
}
|
||||
auto curr = circ;
|
||||
auto next = curr;
|
||||
++next;
|
||||
// Traverse the halfedges incident to the vertex in clockwise direction.
|
||||
// Note that circulator around a vertex points to a halfedge whose target is the vertex.
|
||||
do {
|
||||
if(curr->direction() == ARR_LEFT_TO_RIGHT && next->direction() == ARR_RIGHT_TO_LEFT) {
|
||||
// This indicates that "curr" crosses 12 o'clock and reaches "next".
|
||||
break;
|
||||
}
|
||||
++curr;
|
||||
++next;
|
||||
} while(curr != circ);
|
||||
|
||||
return next->twin();
|
||||
}
|
||||
|
||||
static void approximate_vertex(Execution_context& ctx, const Vertex_const_handle& vh) {
|
||||
if(vh->is_at_open_boundary()) {
|
||||
return;
|
||||
}
|
||||
ctx.bounded_approx_pt(vh);
|
||||
}
|
||||
|
||||
template <typename OutputIterator>
|
||||
static void
|
||||
approximate_halfedge_of_ccb(Execution_context& ctx, const Halfedge_const_handle& he, OutputIterator& out_it) {
|
||||
if(he->is_fictitious()) {
|
||||
auto portals_it = ctx->feature_portals.find(vh);
|
||||
if(portals_it == ctx->feature_portals.end()) {
|
||||
return;
|
||||
}
|
||||
const auto& portals = portals_it->second;
|
||||
if(portals.empty()) {
|
||||
return;
|
||||
}
|
||||
CGAL_assertion_msg(portals.size() == 1, "Vertex should have at most one portal.");
|
||||
traverse_portal(ctx, portals.front());
|
||||
}
|
||||
|
||||
const Polyline_geom& polyline = ctx.bounded_approx_curve(he);
|
||||
if(he->direction() == ARR_LEFT_TO_RIGHT) {
|
||||
std::copy(polyline.begin(), polyline.end(), out_it);
|
||||
template <typename DirectionTag>
|
||||
static void approximate_halfedge(Execution_context& ctx, const Halfedge_const_handle& he, DirectionTag dir_tag) {
|
||||
constexpr bool Is_left_to_right = std::is_same_v<DirectionTag, Left_to_right_tag>;
|
||||
using Approx_point_it = std::conditional_t<Is_left_to_right, typename Polyline_geom::const_iterator,
|
||||
typename Polyline_geom::const_reverse_iterator>;
|
||||
using Portals_it = std::conditional_t<Is_left_to_right, typename Portal_vector::const_iterator,
|
||||
typename Portal_vector::const_reverse_iterator>;
|
||||
|
||||
const Polyline_geom& polyline = he->is_fictitious() ? Polyline_geom{} : ctx.bounded_approx_curve(he);
|
||||
auto portal_map_it = ctx->feature_portals.find(he);
|
||||
const Portal_vector& portals =
|
||||
portal_map_it != ctx->feature_portals.end() ? portal_map_it->second : Portal_vector{};
|
||||
|
||||
Approx_point_it points_iter, points_end;
|
||||
Portals_it portals_iter, portals_end;
|
||||
if constexpr(Is_left_to_right) {
|
||||
points_iter = polyline.begin();
|
||||
points_end = polyline.end();
|
||||
portals_iter = portals.begin();
|
||||
portals_end = portals.end();
|
||||
} else {
|
||||
std::copy(polyline.rbegin(), polyline.rend(), out_it);
|
||||
points_iter = polyline.rbegin();
|
||||
points_end = polyline.rend();
|
||||
portals_iter = portals.rbegin();
|
||||
portals_end = portals.rend();
|
||||
}
|
||||
|
||||
std::merge(points_iter, points_end, portals_iter, portals_end,
|
||||
boost::make_function_output_iterator([&ctx](const Point_or_portal& point_or_portal) {
|
||||
if(auto* portal = std::get_if<Portal>(&point_or_portal)) {
|
||||
traverse_portal(ctx, *portal);
|
||||
return;
|
||||
}
|
||||
*ctx.out_it++ = std::get<Approx_point>(point_or_portal);
|
||||
}),
|
||||
[](const Portal& portal, const Approx_point& pt) {
|
||||
return Is_left_to_right ? portal.second->point().x() < FT(pt.x())
|
||||
: portal.second->point().x() > FT(pt.x());
|
||||
});
|
||||
}
|
||||
|
||||
static void approximate_inner_ccb(Execution_context& ctx, const Vertex_const_handle& vh) {
|
||||
if(vh->is_isolated()) {
|
||||
approximate_vertex(ctx, vh);
|
||||
return;
|
||||
}
|
||||
approximate_ccb<Inner_ccb_tag>(ctx, get_inner_ccb_first_halfedge(vh));
|
||||
}
|
||||
|
||||
static void traverse_portal(Execution_context& ctx, const Portal& portal) { // We have a portal.
|
||||
const auto& [source, dest] = portal;
|
||||
Approx_point dest_pt = ctx->approx_pt(dest->point());
|
||||
Approx_point source_pt = source.has_value() ? source.value() : Approx_point(dest_pt.x(), ctx->ymax());
|
||||
|
||||
*ctx.out_it++ = source_pt;
|
||||
approximate_inner_ccb(ctx, dest);
|
||||
// We come back here after inner ccb is approximated.
|
||||
*ctx.out_it++ = source_pt;
|
||||
|
||||
if(!source.has_value()) {
|
||||
ctx.passed_fictitious_edge = true;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename CcbTag, bool Bounded = true>
|
||||
template <typename CcbTag, bool Unbounded = false>
|
||||
static void approximate_ccb(Execution_context& ctx, Ccb_halfedge_const_circulator start_circ) {
|
||||
constexpr bool Is_outer_ccb = std::is_same_v<CcbTag, Outer_ccb_tag>;
|
||||
static_assert(Is_outer_ccb || Bounded, "Inner CCBs are impossible to be unbounded.");
|
||||
static_assert(Is_outer_ccb || !Unbounded, "Inner CCBs are impossible to be unbounded.");
|
||||
|
||||
// For unbound ccb, we start on a fictitious edge
|
||||
if constexpr(!Bounded) {
|
||||
if constexpr(Unbounded) {
|
||||
while(!start_circ->is_fictitious()) {
|
||||
++start_circ;
|
||||
}
|
||||
}
|
||||
|
||||
auto ccb_constraint = ctx.triangulator.make_ccb_constraint<CcbTag>();
|
||||
auto constraint_out_it = ccb_constraint.insert_iterator();
|
||||
|
||||
auto simplifier = Geom_simplifier(constraint_out_it, ctx->bbox());
|
||||
auto simplifier_out_it = simplifier.insert_iterator();
|
||||
|
||||
auto circ = start_circ;
|
||||
std::optional<Approx_point> last_pt;
|
||||
|
||||
// These vars are used only in unbounded ccb.
|
||||
std::optional<Approx_point> first_pt;
|
||||
bool passed_fictitious_edge = false;
|
||||
|
||||
auto he_process_out_it = boost::make_function_output_iterator([&](const Approx_point& pt) {
|
||||
Approx_point regulated_pt(pt.x(), std::clamp(pt.y(), ctx->ymin(), ctx->ymax()));
|
||||
if(last_pt == regulated_pt) {
|
||||
return;
|
||||
}
|
||||
|
||||
*simplifier_out_it++ = regulated_pt;
|
||||
|
||||
if constexpr(!Bounded) {
|
||||
// TODO: nesting too deep and looks ugly
|
||||
if(passed_fictitious_edge) {
|
||||
passed_fictitious_edge = false;
|
||||
if(last_pt.has_value()) {
|
||||
ctx.patch_boundary(last_pt.value(), regulated_pt, simplifier_out_it);
|
||||
}
|
||||
}
|
||||
if(!first_pt.has_value()) {
|
||||
first_pt = regulated_pt;
|
||||
}
|
||||
}
|
||||
|
||||
last_pt = regulated_pt;
|
||||
});
|
||||
|
||||
do {
|
||||
if constexpr(!Bounded) {
|
||||
if(circ->is_fictitious()) {
|
||||
passed_fictitious_edge = true;
|
||||
}
|
||||
if(circ->is_fictitious()) {
|
||||
ctx.passed_fictitious_edge = true;
|
||||
}
|
||||
approximate_halfedge_of_ccb(ctx, circ, he_process_out_it);
|
||||
|
||||
circ->direction() == ARR_LEFT_TO_RIGHT ? approximate_halfedge(ctx, circ, Left_to_right_tag{})
|
||||
: approximate_halfedge(ctx, circ, Right_to_left_tag{});
|
||||
approximate_vertex(ctx, circ->target());
|
||||
} while(++circ != start_circ);
|
||||
|
||||
if constexpr(!Bounded) {
|
||||
if(!first_pt.has_value()) {
|
||||
*simplifier_out_it++ = Approx_point(ctx->xmin(), ctx->ymin());
|
||||
*simplifier_out_it++ = Approx_point(ctx->xmin(), ctx->ymax());
|
||||
*simplifier_out_it++ = Approx_point(ctx->xmax(), ctx->ymax());
|
||||
*simplifier_out_it++ = Approx_point(ctx->xmax(), ctx->ymin());
|
||||
|
||||
if constexpr(Unbounded) {
|
||||
if(ctx.first_pt.has_value()) {
|
||||
ctx.patch_boundary(ctx.last_pt.value(), ctx.first_pt.value(), ctx.base_out_it);
|
||||
} else {
|
||||
ctx.patch_boundary(last_pt.value(), first_pt.value(), simplifier_out_it);
|
||||
ctx.patch_boundary(ctx.base_out_it);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
Arr_bounded_approximate_face_2(const Arr_bounded_render_context& ctx,
|
||||
const Arr_bounded_approximate_point_2& point_approx,
|
||||
const Arr_bounded_approximate_curve_2& curve_approx)
|
||||
Arr_bounded_approximate_face_2(const Bounded_render_context& ctx,
|
||||
const Bounded_approximate_point_2& bounded_approx_pt,
|
||||
const Bounded_approximate_curve_2& bounded_approx_curve)
|
||||
: m_ctx(ctx)
|
||||
, m_patch_boundary(ctx.bbox())
|
||||
, m_point_approx(point_approx)
|
||||
, m_curve_approx(curve_approx) {}
|
||||
, m_bounded_approx_pt(bounded_approx_pt)
|
||||
, m_bounded_approx_curve(bounded_approx_curve) {}
|
||||
|
||||
const Triangulated_face& operator()(const Face_const_handle& fh) const {
|
||||
auto [triangulated_face, inserted] = m_ctx.cache.try_emplace(fh);
|
||||
|
|
@ -346,47 +445,50 @@ public:
|
|||
return triangulated_face;
|
||||
}
|
||||
|
||||
CGAL_assertion_msg(!fh->is_fictitious(), "Cannot approximate a fictitious face.");
|
||||
CGAL_precondition_msg(!fh->is_fictitious(), "Cannot approximate a fictitious face.");
|
||||
|
||||
if(!fh->has_outer_ccb()) {
|
||||
// The face is the unbounded face of bounded arrangements, we skip approximating any non degenerate features.
|
||||
for(auto inner_ccb = fh->inner_ccbs_begin(); inner_ccb != fh->inner_ccbs_end(); ++inner_ccb) {
|
||||
if((*inner_ccb)->twin()->face() != (*inner_ccb)->face()) {
|
||||
continue;
|
||||
}
|
||||
m_curve_approx(*inner_ccb);
|
||||
auto circ = *inner_ccb;
|
||||
do {
|
||||
if(circ->face() != circ->twin()->face()) {
|
||||
// Found non degenerate edge, skip.
|
||||
continue;
|
||||
}
|
||||
m_bounded_approx_curve(circ);
|
||||
} while(++circ != *inner_ccb);
|
||||
}
|
||||
for(auto isolated_vh = fh->isolated_vertices_begin(); isolated_vh != fh->isolated_vertices_end(); ++isolated_vh) {
|
||||
m_point_approx(isolated_vh);
|
||||
for(auto vh = fh->isolated_vertices_begin(); vh != fh->isolated_vertices_end(); ++vh) {
|
||||
m_bounded_approx_pt(vh);
|
||||
}
|
||||
|
||||
return triangulated_face;
|
||||
}
|
||||
|
||||
Arr_bounded_face_triangulator triangulator(m_ctx);
|
||||
Execution_context ctx(m_ctx, triangulator, m_patch_boundary, m_point_approx, m_curve_approx);
|
||||
auto triangulator = Triangulator(m_ctx);
|
||||
auto simplifier = Simplifier(triangulator.insert_iterator(), m_ctx.bbox());
|
||||
auto ctx = Execution_context(m_ctx, m_patch_boundary, simplifier.insert_iterator(), m_bounded_approx_pt,
|
||||
m_bounded_approx_curve);
|
||||
|
||||
if(fh->is_unbounded()) {
|
||||
approximate_ccb<Outer_ccb_tag, false>(ctx, fh->outer_ccb());
|
||||
} else {
|
||||
approximate_ccb<Outer_ccb_tag, true>(ctx, fh->outer_ccb());
|
||||
} else {
|
||||
approximate_ccb<Outer_ccb_tag, false>(ctx, fh->outer_ccb());
|
||||
}
|
||||
|
||||
for(auto inner_ccb = fh->inner_ccbs_begin(); inner_ccb != fh->inner_ccbs_end(); ++inner_ccb) {
|
||||
approximate_ccb<Inner_ccb_tag>(ctx, *inner_ccb);
|
||||
}
|
||||
simplifier.dump();
|
||||
|
||||
for(auto isolated_vh = fh->isolated_vertices_begin(); isolated_vh != fh->isolated_vertices_begin(); ++isolated_vh) {
|
||||
approximate_vertex(ctx, isolated_vh);
|
||||
}
|
||||
|
||||
return triangulated_face = (std::move(triangulator));
|
||||
return triangulated_face = std::move(triangulator);
|
||||
}
|
||||
|
||||
private:
|
||||
const Arr_bounded_render_context& m_ctx;
|
||||
const Arr_bounded_approximate_point_2& m_point_approx;
|
||||
const Arr_bounded_approximate_curve_2& m_curve_approx;
|
||||
const Bounded_render_context& m_ctx;
|
||||
const Bounded_approximate_point_2& m_bounded_approx_pt;
|
||||
const Bounded_approximate_curve_2& m_bounded_approx_curve;
|
||||
const Patch_boundary m_patch_boundary;
|
||||
};
|
||||
|
||||
} // namespace draw_aos
|
||||
} // namespace CGAL
|
||||
#endif // CGAL_DRAW_AOS_ARR_BOUNDED_APPROXIMATE_FACE_2_H
|
||||
|
|
@ -2,22 +2,26 @@
|
|||
#ifndef CGAL_DRAW_AOS_ARR_BOUNDED_APPROXIMATE_POINT_2_H
|
||||
#define CGAL_DRAW_AOS_ARR_BOUNDED_APPROXIMATE_POINT_2_H
|
||||
|
||||
#include "CGAL/Draw_aos/Arr_render_context.h"
|
||||
#include <CGAL/Draw_aos/helpers.h>
|
||||
#include <CGAL/Draw_aos/Arr_approximate_point_2.h>
|
||||
#include <CGAL/Draw_aos/Arr_approximation_geometry_traits.h>
|
||||
#include <utility>
|
||||
|
||||
#include <CGAL/Draw_aos/type_utils.h>
|
||||
#include <CGAL/Draw_aos/Arr_render_context.h>
|
||||
#include <CGAL/Draw_aos/Arr_approximate_point_2.h>
|
||||
|
||||
namespace CGAL {
|
||||
namespace draw_aos {
|
||||
|
||||
template <typename Arrangement>
|
||||
class Arr_bounded_approximate_point_2
|
||||
{
|
||||
using Approx_kernel = Arr_approximation_geometry_traits::Approximation_kernel;
|
||||
using Point_2 = Geom_traits::Point_2;
|
||||
using Vertex_const_handle = Arrangement::Vertex_const_handle;
|
||||
using Point_geom = Arr_approximation_geometry_traits::Point_geom;
|
||||
using Geom_traits = typename Arrangement::Geometry_traits_2;
|
||||
using Point_2 = typename Traits_adaptor<Geom_traits>::Point_2;
|
||||
using Vertex_const_handle = typename Arrangement::Vertex_const_handle;
|
||||
using Point_geom = typename Arr_approximation_geometry_traits<Geom_traits>::Point_geom;
|
||||
using Bounded_render_context = Arr_bounded_render_context<Arrangement>;
|
||||
|
||||
public:
|
||||
Arr_bounded_approximate_point_2(const Arr_bounded_render_context& ctx)
|
||||
Arr_bounded_approximate_point_2(const Bounded_render_context& ctx)
|
||||
: m_ctx(ctx) {}
|
||||
|
||||
/**
|
||||
|
|
@ -47,9 +51,10 @@ public:
|
|||
}
|
||||
|
||||
private:
|
||||
const Arr_bounded_render_context& m_ctx;
|
||||
const Bounded_render_context& m_ctx;
|
||||
};
|
||||
|
||||
} // namespace draw_aos
|
||||
} // namespace CGAL
|
||||
|
||||
#endif // CGAL_DRAW_AOS_ARR_BOUNDED_APPROXIMATE_POINT_2_H
|
||||
|
|
|
|||
|
|
@ -1,15 +0,0 @@
|
|||
#ifndef CGAL_DRAW_AOS_ARR_BOUNDED_COMPUTE_Y_AT_X_H
|
||||
#define CGAL_DRAW_AOS_ARR_BOUNDED_COMPUTE_Y_AT_X_H
|
||||
|
||||
#include "CGAL/Arr_enums.h"
|
||||
#include "CGAL/Draw_aos/Arr_render_context.h"
|
||||
#include "CGAL/basic.h"
|
||||
#include <CGAL/Draw_aos/helpers.h>
|
||||
#include <CGAL/Draw_aos/Arr_construct_segments.h>
|
||||
#include <CGAL/Draw_aos/Arr_construct_curve_end.h>
|
||||
#include <CGAL/Draw_aos/Arr_compute_y_at_x.h>
|
||||
#include <boost/iterator/function_output_iterator.hpp>
|
||||
#include <optional>
|
||||
|
||||
namespace CGAL {} // namespace CGAL
|
||||
#endif // CGAL_DRAW_AOS_ARR_BOUNDED_COMPUTE_Y_AT_X_H
|
||||
|
|
@ -1,37 +1,55 @@
|
|||
#ifndef CGAL_DRAW_AOS_ARR_FACE_TRIANGULATOR_H
|
||||
#define CGAL_DRAW_AOS_ARR_FACE_TRIANGULATOR_H
|
||||
|
||||
#include "CGAL/Constrained_triangulation_2.h"
|
||||
#include "CGAL/Constrained_triangulation_face_base_2.h"
|
||||
#include "CGAL/Draw_aos/Arr_approximation_geometry_traits.h"
|
||||
#include "CGAL/Draw_aos/Arr_render_context.h"
|
||||
#include "CGAL/Exact_predicates_inexact_constructions_kernel.h"
|
||||
#include "CGAL/Triangulation_vertex_base_with_info_2.h"
|
||||
#include "CGAL/mark_domain_in_triangulation.h"
|
||||
#include "CGAL/number_utils.h"
|
||||
#include "CGAL/unordered_flat_map.h"
|
||||
#include <algorithm>
|
||||
#include <cstddef>
|
||||
#include <CGAL/Draw_aos/helpers.h>
|
||||
#include <boost/iterator/function_output_iterator.hpp>
|
||||
#include <boost/iterator/transform_iterator.hpp>
|
||||
#include <functional>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include <boost/iterator/function_output_iterator.hpp>
|
||||
#include <boost/iterator/transform_iterator.hpp>
|
||||
|
||||
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
|
||||
#include <CGAL/Triangulation_vertex_base_with_info_2.h>
|
||||
#include <CGAL/mark_domain_in_triangulation.h>
|
||||
#include <CGAL/unordered_flat_map.h>
|
||||
#include <CGAL/Constrained_triangulation_2.h>
|
||||
#include <CGAL/Constrained_triangulation_face_base_2.h>
|
||||
#include <CGAL/Draw_aos/Arr_render_context.h>
|
||||
|
||||
#if defined(CGAL_DRAW_AOS_DEBUG) && defined(CGAL_DRAW_AOS_TRIANGULATOR_DEBUG_FILE_DIR)
|
||||
#include <fstream>
|
||||
#include <filesystem>
|
||||
|
||||
template <typename Arrangement>
|
||||
class Arr_bounded_face_triangulator;
|
||||
|
||||
template <typename Arrangement>
|
||||
void debug_print(const Arr_bounded_face_triangulator<Arrangement>& triangulator);
|
||||
#endif
|
||||
|
||||
namespace CGAL {
|
||||
namespace draw_aos {
|
||||
|
||||
/**
|
||||
* @brief Triangulator a bounded face of an arrangement
|
||||
* @brief Triangulate a face of an arrangement within a bounding box.
|
||||
*
|
||||
* @note The face must have an outer CCB.
|
||||
*/
|
||||
template <typename Arrangement>
|
||||
class Arr_bounded_face_triangulator
|
||||
{
|
||||
using Approx_geom_traits = Arr_approximation_geometry_traits;
|
||||
using Approx_kernel = Approx_geom_traits::Approximation_kernel;
|
||||
using Approx_point = Approx_geom_traits::Approx_point;
|
||||
using Point_vec = Approx_geom_traits::Apporx_point_vec;
|
||||
using Triangle = Approx_geom_traits::Triangle;
|
||||
using Triangulated_face = Approx_geom_traits::Triangulated_face;
|
||||
using Geom_traits = typename Arrangement::Geometry_traits_2;
|
||||
using Approx_traits = Arr_approximation_geometry_traits<Geom_traits>;
|
||||
using Approx_point = typename Approx_traits::Approx_point;
|
||||
using Point_vec = typename Approx_traits::Apporx_point_vec;
|
||||
using Triangle = typename Approx_traits::Triangle;
|
||||
using Triangulated_face = typename Approx_traits::Triangulated_face;
|
||||
#if defined(CGAL_DRAW_AOS_DEBUG)
|
||||
template <typename T>
|
||||
friend void debug_print(const Arr_bounded_face_triangulator<T>& triangulator);
|
||||
#endif
|
||||
|
||||
struct Point_index
|
||||
{
|
||||
|
|
@ -43,190 +61,137 @@ class Arr_bounded_face_triangulator
|
|||
bool is_valid() const { return index != Invalid_index; }
|
||||
operator std::size_t() const { return index; }
|
||||
};
|
||||
using Epick = CGAL::Exact_predicates_inexact_constructions_kernel;
|
||||
using Vb = CGAL::Triangulation_vertex_base_with_info_2<Point_index, Epick>;
|
||||
using Fb = CGAL::Constrained_triangulation_face_base_2<Epick>;
|
||||
using Tds = CGAL::Triangulation_data_structure_2<Vb, Fb>;
|
||||
using Epick = Exact_predicates_inexact_constructions_kernel;
|
||||
using Vb = Triangulation_vertex_base_with_info_2<Point_index, Epick>;
|
||||
using Fb = Constrained_triangulation_face_base_2<Epick>;
|
||||
using Tds = Triangulation_data_structure_2<Vb, Fb>;
|
||||
using Ct = Constrained_triangulation_2<Epick, Tds, Exact_predicates_tag>;
|
||||
using KPoint = Epick::Point_2;
|
||||
using KPoint_with_info = std::pair<KPoint, Point_index>;
|
||||
|
||||
/**
|
||||
* @brief RAII-style inserter for one CCB in a triangulation.
|
||||
* Collects points and inserts them as a constraint on destruction.
|
||||
* Only one instance per Arr_face_triangulator is allowed at a time.
|
||||
*/
|
||||
template <typename Ccb_tag>
|
||||
class Ccb_constraint
|
||||
{
|
||||
constexpr static bool Is_outer_ccb = std::is_same_v<Ccb_tag, Outer_ccb_tag>;
|
||||
|
||||
friend class Arr_bounded_face_triangulator;
|
||||
using Side_of_boundary = Arr_bounded_render_context::Side_of_boundary;
|
||||
|
||||
Ccb_constraint(Arr_bounded_face_triangulator& triangulator)
|
||||
: m_triangulator(&triangulator)
|
||||
, m_ccb_start(m_triangulator->m_points.size()) {
|
||||
triangulator.m_has_active_constraint = true;
|
||||
}
|
||||
|
||||
private:
|
||||
std::vector<KPoint_with_info>& points() { return m_triangulator->m_points; }
|
||||
const std::vector<KPoint_with_info>& points() const { return m_triangulator->m_points; }
|
||||
auto first_point() const { return points()[m_ccb_start].first; }
|
||||
auto last_point() const { return points().back().first; }
|
||||
const Arr_bounded_render_context& ctx() const { return m_triangulator->m_ctx; }
|
||||
void add_point(const KPoint& pt) { points().emplace_back(pt, points().size()); }
|
||||
std::size_t ccb_size() const { return m_triangulator->m_points.size() - m_ccb_start - m_helper_indices.size(); }
|
||||
|
||||
KPoint offset_boundary_point(const KPoint& pt, Side_of_boundary side, double offset) const {
|
||||
CGAL_precondition(side != Side_of_boundary::None);
|
||||
switch(side) {
|
||||
case Side_of_boundary::Left:
|
||||
return KPoint(pt.x() - offset, pt.y());
|
||||
case Side_of_boundary::Right:
|
||||
return KPoint(pt.x() + offset, pt.y());
|
||||
case Side_of_boundary::Top:
|
||||
return KPoint(pt.x(), pt.y() + offset);
|
||||
case Side_of_boundary::Bottom:
|
||||
return KPoint(pt.x(), pt.y() - offset);
|
||||
default:
|
||||
return pt; // Should not reach here
|
||||
}
|
||||
}
|
||||
|
||||
void insert_ccb() {
|
||||
auto& ct = m_triangulator->m_ct;
|
||||
auto& points = m_triangulator->m_points;
|
||||
|
||||
auto begin = points.begin() + m_ccb_start;
|
||||
auto end = points.end();
|
||||
|
||||
if constexpr(Is_outer_ccb) {
|
||||
auto helpers_iter = m_helper_indices.begin();
|
||||
auto helpers_end = m_helper_indices.end();
|
||||
|
||||
auto concrete_pt_filter = [&helpers_iter, helpers_end](std::size_t idx) {
|
||||
if(helpers_iter == helpers_end) {
|
||||
return true;
|
||||
}
|
||||
if(idx == *helpers_iter) {
|
||||
++helpers_iter;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
};
|
||||
|
||||
auto index_to_point_with_info = [&points](std::size_t idx) { return points[idx]; };
|
||||
auto indexes_begin = boost::make_counting_iterator<std::size_t>(m_ccb_start);
|
||||
auto indexes_end = boost::make_counting_iterator<std::size_t>(points.size());
|
||||
auto filtered_begin = boost::make_filter_iterator(concrete_pt_filter, indexes_begin, indexes_end);
|
||||
auto filtered_end = boost::make_filter_iterator(concrete_pt_filter, indexes_end, indexes_end);
|
||||
auto transformed_begin = boost::make_transform_iterator(filtered_begin, index_to_point_with_info);
|
||||
auto transformed_end = boost::make_transform_iterator(filtered_end, index_to_point_with_info);
|
||||
|
||||
ct.insert_with_info<KPoint_with_info>(transformed_begin, transformed_end);
|
||||
} else {
|
||||
ct.insert_with_info<KPoint_with_info>(begin, end);
|
||||
}
|
||||
}
|
||||
|
||||
void try_add_offset(const KPoint& from, const KPoint& to) {
|
||||
if(from == to) {
|
||||
return;
|
||||
}
|
||||
auto shared_side = ctx().shared_boundary_side(from, to);
|
||||
if(shared_side == Arr_bounded_render_context::Side_of_boundary::None) {
|
||||
return;
|
||||
}
|
||||
// m_helper_indices.push_back(points().size());
|
||||
// add_point(offset_boundary_point(from, shared_side, m_offset));
|
||||
m_helper_indices.push_back(points().size());
|
||||
add_point(offset_boundary_point(KPoint((from.x() + to.x()) / 2, (from.y() + to.y()) / 2), shared_side, m_offset));
|
||||
|
||||
// TODO: we'll come back to find out if we do need to offset the second point.
|
||||
// m_helper_indices.push_back(points().size());
|
||||
// add_point(offset_boundary_point(to, shared_side, m_offset));
|
||||
// Doesn't matter how much we increase the offset.
|
||||
m_offset += 0.5;
|
||||
}
|
||||
|
||||
public:
|
||||
Ccb_constraint(const Ccb_constraint&) = delete;
|
||||
Ccb_constraint& operator=(const Ccb_constraint&) = delete;
|
||||
Ccb_constraint(Ccb_constraint&& other) noexcept
|
||||
: m_triangulator(other.m_triangulator) {
|
||||
other.m_triangulator = nullptr;
|
||||
}
|
||||
Ccb_constraint& operator=(Ccb_constraint&& other) noexcept {
|
||||
if(this != &other) {
|
||||
m_triangulator = other.m_triangulator;
|
||||
other.m_triangulator = nullptr;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
auto insert_iterator() {
|
||||
return boost::make_function_output_iterator([this](const Approx_point& pt) {
|
||||
CGAL_assertion_msg(m_triangulator != nullptr, "Use of destructed or moved Ccb_constraint object.");
|
||||
CGAL_assertion_msg(ctx().contains(pt), "Outbound point in Ccb_constraint.");
|
||||
KPoint kp(pt.x(), pt.y());
|
||||
|
||||
if(Is_outer_ccb && ccb_size() != 0) {
|
||||
try_add_offset(last_point(), kp);
|
||||
}
|
||||
|
||||
add_point(kp);
|
||||
});
|
||||
}
|
||||
|
||||
~Ccb_constraint() {
|
||||
if(m_triangulator == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
if(Is_outer_ccb && ccb_size() != 0) {
|
||||
try_add_offset(last_point(), first_point());
|
||||
}
|
||||
|
||||
insert_ccb();
|
||||
m_triangulator->m_has_active_constraint = false;
|
||||
m_triangulator = nullptr;
|
||||
}
|
||||
|
||||
private:
|
||||
Arr_bounded_face_triangulator* m_triangulator;
|
||||
const std::size_t m_ccb_start;
|
||||
|
||||
// These are used only for outer CCBs.
|
||||
double m_offset = 0.5; // Doesn't matter how much we offset.
|
||||
std::vector<std::size_t> m_helper_indices; // The offseted point indices when inserting outer ccb constraint
|
||||
};
|
||||
using Bounded_render_context = Arr_bounded_render_context<Arrangement>;
|
||||
|
||||
public:
|
||||
Arr_bounded_face_triangulator(const Arr_bounded_render_context& ctx)
|
||||
using Insert_iterator = boost::function_output_iterator<std::function<void(Approx_point)>>;
|
||||
|
||||
private:
|
||||
static KPoint transform_point(Approx_point pt) { return KPoint(pt.x(), pt.y()); }
|
||||
|
||||
static Approx_point offset_boundary_point(Approx_point pt, Side_of_boundary side, double offset) {
|
||||
CGAL_precondition(side != Side_of_boundary::None);
|
||||
switch(side) {
|
||||
case Side_of_boundary::Left:
|
||||
return Approx_point(pt.x() - offset, pt.y());
|
||||
case Side_of_boundary::Right:
|
||||
return Approx_point(pt.x() + offset, pt.y());
|
||||
case Side_of_boundary::Top:
|
||||
return Approx_point(pt.x(), pt.y() + offset);
|
||||
case Side_of_boundary::Bottom:
|
||||
return Approx_point(pt.x(), pt.y() - offset);
|
||||
default:
|
||||
return pt; // Should not reach here
|
||||
}
|
||||
}
|
||||
|
||||
void insert_ccb() {
|
||||
auto begin = m_points.begin();
|
||||
auto end = m_points.end();
|
||||
|
||||
auto helpers_iter = m_helper_indices.begin();
|
||||
auto helpers_end = m_helper_indices.end();
|
||||
|
||||
auto concrete_pt_filter = [&helpers_iter, helpers_end](std::size_t idx) {
|
||||
if(helpers_iter == helpers_end) {
|
||||
return true;
|
||||
}
|
||||
if(idx == *helpers_iter) {
|
||||
++helpers_iter;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
};
|
||||
|
||||
auto indexes_begin = boost::make_counting_iterator<std::size_t>(0);
|
||||
auto indexes_end = boost::make_counting_iterator<std::size_t>(m_points.size());
|
||||
auto filtered_begin = boost::make_filter_iterator(concrete_pt_filter, indexes_begin, indexes_end);
|
||||
auto filtered_end = boost::make_filter_iterator(concrete_pt_filter, indexes_end, indexes_end);
|
||||
auto index_to_point_with_info = [this](std::size_t idx) -> KPoint_with_info {
|
||||
return std::make_pair(transform_point(m_points[idx]), idx);
|
||||
};
|
||||
auto transformed_begin = boost::make_transform_iterator(filtered_begin, index_to_point_with_info);
|
||||
auto transformed_end = boost::make_transform_iterator(filtered_end, index_to_point_with_info);
|
||||
|
||||
m_ct.template insert_with_info<KPoint_with_info>(transformed_begin, transformed_end);
|
||||
}
|
||||
|
||||
Side_of_boundary shared_boundary_side(const Approx_point& pt1, const Approx_point& pt2) const {
|
||||
if(pt1.x() == m_ctx.xmin() && pt2.x() == m_ctx.xmin() && m_ctx.contains_y(pt1.y()) && m_ctx.contains_y(pt2.y())) {
|
||||
return Side_of_boundary::Left;
|
||||
} else if(pt1.x() == m_ctx.xmax() && pt2.x() == m_ctx.xmax() && m_ctx.contains_y(pt1.y()) &&
|
||||
m_ctx.contains_y(pt2.y()))
|
||||
{
|
||||
return Side_of_boundary::Right;
|
||||
} else if(pt1.y() == m_ctx.ymin() && pt2.y() == m_ctx.ymin() && m_ctx.contains_x(pt1.x()) &&
|
||||
m_ctx.contains_x(pt2.x()))
|
||||
{
|
||||
return Side_of_boundary::Bottom;
|
||||
} else if(pt1.y() == m_ctx.ymax() && pt2.y() == m_ctx.ymax() && m_ctx.contains_x(pt1.x()) &&
|
||||
m_ctx.contains_x(pt2.x()))
|
||||
{
|
||||
return Side_of_boundary::Top;
|
||||
}
|
||||
return Side_of_boundary::None;
|
||||
}
|
||||
|
||||
void add_boundary_helper_point(Approx_point from, Approx_point to) {
|
||||
if(from == to) {
|
||||
return;
|
||||
}
|
||||
auto shared_side = shared_boundary_side(from, to);
|
||||
if(shared_side == Side_of_boundary::None) {
|
||||
return;
|
||||
}
|
||||
m_helper_indices.push_back(m_points.size());
|
||||
m_points.emplace_back(
|
||||
offset_boundary_point(Approx_point((from.x() + to.x()) / 2, (from.y() + to.y()) / 2), shared_side, m_offset));
|
||||
m_offset += 0.5;
|
||||
}
|
||||
|
||||
public:
|
||||
Arr_bounded_face_triangulator(const Bounded_render_context& ctx)
|
||||
: m_ctx(ctx) {}
|
||||
Arr_bounded_face_triangulator(const Arr_bounded_face_triangulator& other) = delete;
|
||||
Arr_bounded_face_triangulator& operator=(const Arr_bounded_face_triangulator& other) = delete;
|
||||
|
||||
Insert_iterator insert_iterator() {
|
||||
return boost::make_function_output_iterator(std::function([this](Approx_point pt) {
|
||||
CGAL_assertion_msg(m_ctx.contains(pt), "Outbound point in Ccb_constraint.");
|
||||
|
||||
if(m_points.size() != 0) {
|
||||
add_boundary_helper_point(m_points.back(), pt);
|
||||
}
|
||||
m_points.emplace_back(pt);
|
||||
}));
|
||||
}
|
||||
|
||||
operator Triangulated_face() && {
|
||||
CGAL_assertion(!m_has_active_constraint && "There is an active constraint in the triangulator.");
|
||||
CGAL_assertion(m_outer_ccb_processed && "Outer CCB has not been processed yet.");
|
||||
if(m_points.empty() || m_ct.number_of_faces() == 0) {
|
||||
if(m_points.empty()) {
|
||||
return Triangulated_face();
|
||||
}
|
||||
|
||||
add_boundary_helper_point(m_points.back(), m_points.front());
|
||||
insert_ccb();
|
||||
// insert_constraint() should be called after insert_with_info(), or info will not be set correctly.
|
||||
auto first_of_pair = [](const KPoint_with_info& pt_with_info) { return pt_with_info.first; };
|
||||
for(std::size_t i = 0; i < m_ccb_start_indices.size(); ++i) {
|
||||
auto begin = m_points.begin() + m_ccb_start_indices[i];
|
||||
auto end = i + 1 < m_ccb_start_indices.size() ? m_points.begin() + m_ccb_start_indices[i + 1] : m_points.end();
|
||||
m_ct.insert_constraint(boost::make_transform_iterator(m_points.begin(), transform_point),
|
||||
boost::make_transform_iterator(m_points.end(), transform_point), true);
|
||||
|
||||
m_ct.insert_constraint(boost::make_transform_iterator(begin, first_of_pair),
|
||||
boost::make_transform_iterator(end, first_of_pair), true);
|
||||
#if defined(CGAL_DRAW_AOS_DEBUG)
|
||||
debug_print(*this);
|
||||
#endif
|
||||
|
||||
if(m_ct.number_of_faces() == 0) {
|
||||
return Triangulated_face();
|
||||
}
|
||||
|
||||
unordered_flat_map<Ct::Face_handle, bool> in_domain_map;
|
||||
unordered_flat_map<typename Ct::Face_handle, bool> in_domain_map;
|
||||
boost::associative_property_map<decltype(in_domain_map)> in_domain(in_domain_map);
|
||||
CGAL::mark_domain_in_triangulation(m_ct, in_domain);
|
||||
|
||||
|
|
@ -246,39 +211,57 @@ public:
|
|||
tf.triangles.emplace_back(tri);
|
||||
}
|
||||
|
||||
auto transform_first_of_pair = [](const KPoint_with_info& pt_with_info) {
|
||||
return Approx_point(CGAL::to_double(pt_with_info.first.x()), CGAL::to_double(pt_with_info.first.y()));
|
||||
};
|
||||
tf.points = Point_vec(boost::make_transform_iterator(m_points.begin(), transform_first_of_pair),
|
||||
boost::make_transform_iterator(m_points.end(), transform_first_of_pair));
|
||||
tf.points = std::move(m_points);
|
||||
return tf;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get an constraint object for a certain ccb.
|
||||
* @note Only one Ccb_constraint can be active per triangulator at a certain time point. When it goes out of scope,
|
||||
* the points collected will be inserted as a constraint into the triangulation.
|
||||
*/
|
||||
template <typename Ccb_tag>
|
||||
Ccb_constraint<Ccb_tag> make_ccb_constraint() {
|
||||
if constexpr(std::is_same_v<Ccb_tag, Outer_ccb_tag>) {
|
||||
CGAL_assertion_msg(!m_outer_ccb_processed, "Outer CCB has already been processed.");
|
||||
m_outer_ccb_processed = true;
|
||||
}
|
||||
CGAL_assertion_msg(!m_has_active_constraint, "Only one Ccb_constraint can be active per triangulator at a time.");
|
||||
m_ccb_start_indices.push_back(m_points.size());
|
||||
return Ccb_constraint<Ccb_tag>(*this);
|
||||
}
|
||||
|
||||
private:
|
||||
const Arr_bounded_render_context& m_ctx;
|
||||
const Bounded_render_context& m_ctx;
|
||||
Ct m_ct;
|
||||
std::vector<KPoint_with_info> m_points;
|
||||
std::vector<std::size_t> m_ccb_start_indices;
|
||||
bool m_has_active_constraint = false;
|
||||
bool m_outer_ccb_processed = false;
|
||||
std::vector<Approx_point> m_points;
|
||||
double m_offset = 0.5; // Doesn't matter how much we offset.
|
||||
std::vector<std::size_t> m_helper_indices; // The offseted point indices when inserting outer ccb constraint
|
||||
};
|
||||
|
||||
#if defined(CGAL_DRAW_AOS_DEBUG) && defined(CGAL_DRAW_AOS_TRIANGULATOR_DEBUG_FILE_DIR)
|
||||
template <typename Arrangement>
|
||||
void debug_print(const Arr_bounded_face_triangulator<Arrangement>& triangulator) {
|
||||
const auto& ctx = triangulator.m_ctx;
|
||||
const auto& m_points = triangulator.m_points;
|
||||
const auto& m_helper_indices = triangulator.m_helper_indices;
|
||||
|
||||
using Path = std::filesystem::path;
|
||||
Path debug_dir(CGAL_DRAW_AOS_TRIANGULATOR_DEBUG_FILE_DIR);
|
||||
std::string index_file_name = "index.txt";
|
||||
Path index_file_path = debug_dir / index_file_name;
|
||||
std::string ccb_file_name = "ccb_" + std::to_string(*ctx.debug_counter) + ".txt";
|
||||
std::string ccb_constraint_file_name = "ccb_constraint_" + std::to_string(*ctx.debug_counter) + ".txt";
|
||||
Path ccb_file_path = debug_dir / ccb_file_name;
|
||||
Path ccb_constraint_file_path = debug_dir / ccb_constraint_file_name;
|
||||
const_cast<int&>(*ctx.debug_counter)++;
|
||||
|
||||
std::ofstream ofs_index(index_file_path, std::ios::app);
|
||||
ofs_index << ccb_file_name << "\n" << ccb_constraint_file_name << std::endl;
|
||||
|
||||
std::ofstream ofs_ccb(ccb_file_path);
|
||||
std::size_t helper_indices_index = 0;
|
||||
for(std::size_t i = 0; i < m_points.size(); ++i) {
|
||||
const auto& pt = m_points[i];
|
||||
if(helper_indices_index < m_helper_indices.size() && i == m_helper_indices[helper_indices_index]) {
|
||||
helper_indices_index++;
|
||||
continue;
|
||||
}
|
||||
ofs_ccb << pt.x() << " " << pt.y() << "\n";
|
||||
}
|
||||
|
||||
std::ofstream ofs_ccb_constraint(ccb_constraint_file_path);
|
||||
for(const auto& pt : m_points) {
|
||||
ofs_ccb_constraint << pt.x() << " " << pt.y() << "\n";
|
||||
}
|
||||
}
|
||||
#endif // CGAL_DRAW_AOS_DEBUG && CGAL_DRAW_AOS_TRIANGULATOR_DEBUG_FILE_DIR
|
||||
|
||||
} // namespace draw_aos
|
||||
} // namespace CGAL
|
||||
|
||||
#endif // CGAL_DRAW_AOS_ARR_FACE_TRIANGULATOR_H
|
||||
|
|
@ -1,44 +1,56 @@
|
|||
#ifndef CGAL_DRAW_AOS_ARR_BOUNDED_RENDERER_H
|
||||
#define CGAL_DRAW_AOS_ARR_BOUNDED_RENDERER_H
|
||||
|
||||
#include "CGAL/Arr_trapezoid_ric_point_location.h"
|
||||
#include "CGAL/Bbox_2.h"
|
||||
#include "CGAL/Draw_aos/Arr_approximation_cache.h"
|
||||
#include "CGAL/Draw_aos/Arr_approximation_geometry_traits.h"
|
||||
#include "CGAL/Draw_aos/Arr_bounded_approximate_curve_2.h"
|
||||
#include "CGAL/Draw_aos/Arr_bounded_approximate_face_2.h"
|
||||
#include "CGAL/Draw_aos/Arr_render_context.h"
|
||||
#include <CGAL/Draw_aos/helpers.h>
|
||||
#include <CGAL/Draw_aos/Arr_portals.h>
|
||||
#include <CGAL/IO/Color.h>
|
||||
#include <vector>
|
||||
|
||||
#include <CGAL/Arr_trapezoid_ric_point_location.h>
|
||||
#include <CGAL/Bbox_2.h>
|
||||
#include <CGAL/IO/Color.h>
|
||||
#include <CGAL/Draw_aos/Arr_approximation_cache.h>
|
||||
#include <CGAL/Draw_aos/Arr_bounded_approximate_curve_2.h>
|
||||
#include <CGAL/Draw_aos/Arr_bounded_approximate_face_2.h>
|
||||
#include <CGAL/Draw_aos/Arr_render_context.h>
|
||||
#include <CGAL/Draw_aos/type_utils.h>
|
||||
#include <CGAL/Draw_aos/Arr_portals.h>
|
||||
|
||||
namespace CGAL {
|
||||
namespace draw_aos {
|
||||
|
||||
/**
|
||||
* @brief Render arrangement on surface within a bounding box.
|
||||
*
|
||||
* @note The class is not thread-safe.
|
||||
*/
|
||||
template <typename Arrangement>
|
||||
class Arr_bounded_renderer
|
||||
{
|
||||
using Color = IO::Color;
|
||||
using Point_2 = Geom_traits::Point_2;
|
||||
using Vertex_const_handle = Arrangement::Vertex_const_handle;
|
||||
using Edge_const_handle = Arrangement::Edge_const_iterator;
|
||||
using Halfedge_const_handle = Arrangement::Halfedge_const_handle;
|
||||
using Face_const_handle = Arrangement::Face_const_handle;
|
||||
using Vertex_handle = Arrangement::Vertex_handle;
|
||||
using Halfedge_handle = Arrangement::Halfedge_handle;
|
||||
using Face_handle = Arrangement::Face_handle;
|
||||
using X_monotone_curve_2 = Geom_traits::X_monotone_curve_2;
|
||||
using Geom_traits = typename Arrangement::Geometry_traits_2;
|
||||
using FT = typename Traits_adaptor<Geom_traits>::FT;
|
||||
using Point_2 = typename Traits_adaptor<Geom_traits>::Point_2;
|
||||
using X_monotone_curve_2 = typename Traits_adaptor<Geom_traits>::X_monotone_curve_2;
|
||||
using Vertex_const_handle = typename Arrangement::Vertex_const_handle;
|
||||
using Edge_const_handle = typename Arrangement::Edge_const_iterator;
|
||||
using Halfedge_const_handle = typename Arrangement::Halfedge_const_handle;
|
||||
using Face_const_handle = typename Arrangement::Face_const_handle;
|
||||
using Vertex_handle = typename Arrangement::Vertex_handle;
|
||||
using Halfedge_handle = typename Arrangement::Halfedge_handle;
|
||||
using Face_handle = typename Arrangement::Face_handle;
|
||||
using Point_Location = Arr_trapezoid_ric_point_location<Arrangement>;
|
||||
using Feature_const = std::variant<Vertex_const_handle, Halfedge_const_handle, Face_const_handle>;
|
||||
using Feature_const_vector = std::vector<Feature_const>;
|
||||
using Feature_const_vector_inserter = std::back_insert_iterator<Feature_const_vector>;
|
||||
using Arr_approx_geom_traits = Arr_approximation_geometry_traits;
|
||||
using Point_geom = Arr_approx_geom_traits::Point_geom;
|
||||
using Polyline_geom = Arr_approx_geom_traits::Polyline_geom;
|
||||
using Feature_portal_map = Arr_portals::Feature_portals_map;
|
||||
using Approx_traits = Arr_approximation_geometry_traits<Geom_traits>;
|
||||
using Point_geom = typename Approx_traits::Point_geom;
|
||||
using Polyline_geom = typename Approx_traits::Polyline_geom;
|
||||
using Feature_portal_map = typename Arr_portals<Arrangement>::Feature_portals_map;
|
||||
using Bounded_render_context = Arr_bounded_render_context<Arrangement>;
|
||||
using Render_context = Arr_render_context<Arrangement>;
|
||||
using Bounded_approx_point_2 = Arr_bounded_approximate_point_2<Arrangement>;
|
||||
using Bounded_approx_curve_2 = Arr_bounded_approximate_curve_2<Arrangement>;
|
||||
using Bounded_approx_face_2 = Arr_bounded_approximate_face_2<Arrangement>;
|
||||
using Approx_cache = Arr_approximation_cache<Arrangement>;
|
||||
|
||||
// QFlags implement this pattern better, but we try not to reply on Qt classes.
|
||||
template <typename E>
|
||||
class Arr_flags
|
||||
|
|
@ -65,46 +77,62 @@ class Arr_bounded_renderer
|
|||
Face = 1 << 2,
|
||||
};
|
||||
|
||||
struct Execution_context : Arr_context_delegator<Arr_bounded_render_context>
|
||||
struct Execution_context : Arr_context_delegator<Bounded_render_context>
|
||||
{
|
||||
Execution_context(const Arr_bounded_render_context& ctx)
|
||||
: Arr_context_delegator(ctx)
|
||||
Execution_context(const Bounded_render_context& ctx)
|
||||
: Arr_context_delegator<Bounded_render_context>(ctx)
|
||||
, bounded_approx_pt(ctx)
|
||||
, bounded_approx_curve(ctx, bounded_approx_pt)
|
||||
, bounded_approx_curve(ctx)
|
||||
, bounded_approx_face(ctx, bounded_approx_pt, bounded_approx_curve) {}
|
||||
|
||||
const Arr_bounded_approximate_point_2 bounded_approx_pt;
|
||||
const Arr_bounded_approximate_curve_2 bounded_approx_curve;
|
||||
const Arr_bounded_approximate_face_2 bounded_approx_face;
|
||||
const Bounded_approx_point_2 bounded_approx_pt;
|
||||
const Bounded_approx_curve_2 bounded_approx_curve;
|
||||
const Bounded_approx_face_2 bounded_approx_face;
|
||||
};
|
||||
|
||||
private:
|
||||
template <typename OutputIterator>
|
||||
static void locate_intersecting_features(const Execution_context& ctx,
|
||||
static Face_const_handle inbound_face_of_edge(const Halfedge_const_handle& he, Side_of_boundary side) {
|
||||
bool is_left_to_right = he->direction() == ARR_LEFT_TO_RIGHT;
|
||||
switch(side) {
|
||||
case Side_of_boundary::Top:
|
||||
case Side_of_boundary::Left:
|
||||
return is_left_to_right ? he->twin()->face() : he->face();
|
||||
case Side_of_boundary::Bottom:
|
||||
case Side_of_boundary::Right:
|
||||
return is_left_to_right ? he->face() : he->twin()->face();
|
||||
default:
|
||||
CGAL_assertion(false && "Invalid side of boundary");
|
||||
}
|
||||
return Face_const_handle();
|
||||
}
|
||||
static void approx_intersecting_features(Execution_context& ctx,
|
||||
const X_monotone_curve_2& curve,
|
||||
OutputIterator out_iter,
|
||||
Side_of_boundary side,
|
||||
Arr_flags<Feature_type> feats) {
|
||||
CGAL_assertion(side != Side_of_boundary::None);
|
||||
using Feature = std::variant<Vertex_handle, Halfedge_handle, Face_handle>;
|
||||
using Feature_vector = std::vector<Feature>;
|
||||
|
||||
auto func_out_iter = boost::make_function_output_iterator([&out_iter, &feats](const Feature& feature) {
|
||||
auto func_out_iter = boost::make_function_output_iterator([&ctx, feats, side](const Feature& feature) {
|
||||
if(auto* vh = std::get_if<Vertex_handle>(&feature)) {
|
||||
if(!feats.is_set(Feature_type::Vertex) || (*vh)->is_at_open_boundary()) {
|
||||
return;
|
||||
}
|
||||
*out_iter++ = Vertex_const_handle(*vh);
|
||||
ctx.bounded_approx_pt(*vh);
|
||||
} else if(auto* he = std::get_if<Halfedge_handle>(&feature)) {
|
||||
if(!feats.is_set(Feature_type::Halfedge) || (*he)->is_fictitious()) {
|
||||
return;
|
||||
}
|
||||
*out_iter++ = Halfedge_const_handle(*he);
|
||||
ctx.bounded_approx_curve(*he);
|
||||
|
||||
// There's a rare case that some faces' outer ccb overlaps with the bounding box edges, causing
|
||||
// no face to be discovered. We need to approximate the inbound face incident to the halfedge
|
||||
discover_faces(ctx, inbound_face_of_edge(*he, side));
|
||||
} else if(auto* fh = std::get_if<Face_handle>(&feature)) {
|
||||
if(!feats.is_set(Feature_type::Face)) {
|
||||
return;
|
||||
}
|
||||
*out_iter++ = Face_const_handle(*fh);
|
||||
} else {
|
||||
CGAL_assertion(false && "Unexpected feature type");
|
||||
discover_faces(ctx, *fh);
|
||||
}
|
||||
});
|
||||
|
||||
|
|
@ -126,14 +154,16 @@ private:
|
|||
ctx.bounded_approx_face(fh);
|
||||
|
||||
for(auto inner_ccb = fh->inner_ccbs_begin(); inner_ccb != fh->inner_ccbs_end(); ++inner_ccb) {
|
||||
auto he = *inner_ccb;
|
||||
auto inner_face = he->twin()->face();
|
||||
auto circ = *inner_ccb;
|
||||
|
||||
if(inner_face == fh || !ctx->strictly_contains(inner_face->outer_ccb()->source()->point())) {
|
||||
continue;
|
||||
}
|
||||
|
||||
discover_faces(ctx, inner_face);
|
||||
// We have to traverse the entire inner ccb instead of using arbitary vertex,
|
||||
// because the inner ccb may contain degenerate edges.
|
||||
do {
|
||||
auto inner_face = circ->twin()->face();
|
||||
if(inner_face != fh && ctx->strictly_contains(circ->source()->point())) {
|
||||
discover_faces(ctx, inner_face);
|
||||
}
|
||||
} while(++circ != *inner_ccb);
|
||||
}
|
||||
|
||||
// We don't need to handle isolated vertices.
|
||||
|
|
@ -153,8 +183,7 @@ private:
|
|||
continue;
|
||||
}
|
||||
|
||||
bool within_bounds = ctx->strictly_contains(adj_face->outer_ccb()->source()->point());
|
||||
if(!within_bounds) {
|
||||
if(!ctx->strictly_contains(adj_face->outer_ccb()->source()->point())) {
|
||||
continue;
|
||||
}
|
||||
// For a face that is not one of the seeding faces,
|
||||
|
|
@ -165,12 +194,16 @@ private:
|
|||
}
|
||||
|
||||
public:
|
||||
Arr_bounded_renderer(Arr_render_context& ctx, Bbox_2 bbox)
|
||||
Arr_bounded_renderer(const Render_context& ctx, Bbox_2 bbox)
|
||||
: m_ctx(ctx)
|
||||
, to_ft()
|
||||
, m_bbox(bbox) {}
|
||||
|
||||
Arr_approximation_cache render() const {
|
||||
Arr_approximation_cache cache;
|
||||
Approx_cache render() const {
|
||||
Approx_cache cache;
|
||||
cache.reserve_face_cache(m_ctx.arr.number_of_faces());
|
||||
cache.reserve_halfedge_cache(m_ctx.arr.number_of_halfedges());
|
||||
cache.reserve_vertex_cache(m_ctx.arr.number_of_vertices());
|
||||
|
||||
if(m_ctx.is_cancelled()) {
|
||||
return cache;
|
||||
|
|
@ -178,38 +211,28 @@ public:
|
|||
|
||||
Execution_context ctx(Arr_bounded_render_context(m_ctx, m_bbox, cache));
|
||||
|
||||
auto insert_features = boost::make_function_output_iterator([&ctx](const Feature_const& feature) {
|
||||
if(auto* vh = std::get_if<Vertex_const_handle>(&feature)) {
|
||||
ctx.bounded_approx_pt(*vh);
|
||||
} else if(auto* he = std::get_if<Halfedge_const_handle>(&feature)) {
|
||||
ctx.bounded_approx_curve(*he);
|
||||
} else if(auto* fh = std::get_if<Face_const_handle>(&feature)) {
|
||||
discover_faces(ctx, *fh);
|
||||
} else {
|
||||
CGAL_assertion(false && "Unexpected feature type");
|
||||
}
|
||||
});
|
||||
|
||||
auto top = ctx->cst_horizontal_segment(ctx->ymax(), ctx->xmin(), ctx->xmax());
|
||||
auto bottom = ctx->cst_horizontal_segment(ctx->ymin(), ctx->xmin(), ctx->xmax());
|
||||
auto left = ctx->cst_vertical_segment(ctx->xmin(), ctx->ymin(), ctx->ymax());
|
||||
auto right = ctx->cst_vertical_segment(ctx->xmax(), ctx->ymin(), ctx->ymax());
|
||||
auto top = ctx->cst_horizontal_segment(to_ft(ctx->ymax()), to_ft(ctx->xmin()), to_ft(ctx->xmax()));
|
||||
auto bottom = ctx->cst_horizontal_segment(to_ft(ctx->ymin()), to_ft(ctx->xmin()), to_ft(ctx->xmax()));
|
||||
auto left = ctx->cst_vertical_segment(to_ft(ctx->xmin()), to_ft(ctx->ymin()), to_ft(ctx->ymax()));
|
||||
auto right = ctx->cst_vertical_segment(to_ft(ctx->xmax()), to_ft(ctx->ymin()), to_ft(ctx->ymax()));
|
||||
|
||||
// top, left are open edges while bottom, right are closed.
|
||||
locate_intersecting_features(ctx, top, insert_features, Feature_type::Face);
|
||||
locate_intersecting_features(ctx, left, insert_features, Feature_type::Face);
|
||||
locate_intersecting_features(ctx, bottom, insert_features, {Feature_type::Face, Feature_type::Halfedge});
|
||||
locate_intersecting_features(ctx, right, insert_features,
|
||||
approx_intersecting_features(ctx, top, Side_of_boundary::Top, Feature_type::Face);
|
||||
approx_intersecting_features(ctx, left, Side_of_boundary::Left, Feature_type::Face);
|
||||
approx_intersecting_features(ctx, bottom, Side_of_boundary::Bottom, {Feature_type::Face, Feature_type::Halfedge});
|
||||
approx_intersecting_features(ctx, right, Side_of_boundary::Right,
|
||||
{Feature_type::Face, Feature_type::Halfedge, Feature_type::Vertex});
|
||||
|
||||
return cache;
|
||||
}
|
||||
|
||||
private:
|
||||
Arr_render_context m_ctx;
|
||||
const Render_context& m_ctx;
|
||||
const Construct_coordinate<Geom_traits> to_ft;
|
||||
const Bbox_2 m_bbox;
|
||||
};
|
||||
|
||||
} // namespace draw_aos
|
||||
} // namespace CGAL
|
||||
|
||||
#endif // CGAL_DRAW_AOS_ARR_BOUNDED_RENDERER_H
|
||||
|
|
@ -1,77 +0,0 @@
|
|||
#ifndef CGAL_DRAW_AOS_ARR_COMPUTE_Y_AT_X_H
|
||||
#define CGAL_DRAW_AOS_ARR_COMPUTE_Y_AT_X_H
|
||||
#include "CGAL/Bbox_2.h"
|
||||
#include "CGAL/Draw_aos/Arr_render_context.h"
|
||||
#include "CGAL/Draw_aos/helpers.h"
|
||||
#include <boost/iterator/function_output_iterator.hpp>
|
||||
|
||||
namespace CGAL {
|
||||
|
||||
/**
|
||||
* @brief Functor to compute the y-coordinate at a given x-coordinate for an x-monotone curve within a bounding box.
|
||||
*/
|
||||
class Arr_compute_y_at_x
|
||||
{
|
||||
public:
|
||||
using Point_2 = Geom_traits::Point_2;
|
||||
using X_monotone_curve_2 = Geom_traits::X_monotone_curve_2;
|
||||
using Intersect_2 = Geom_traits::Intersect_2;
|
||||
using Construct_min_vertex_2 = Geom_traits::Construct_min_vertex_2;
|
||||
using FT = Geom_traits::FT;
|
||||
using Approximate_2 = Geom_traits::Approximate_2;
|
||||
using Is_vertical_2 = Geom_traits::Is_vertical_2;
|
||||
|
||||
Arr_compute_y_at_x(const Arr_render_context& ctx)
|
||||
: m_ctx(ctx)
|
||||
// TODO: some traits does not have approximate_2_object. we'll need a specialization for them.
|
||||
, m_approx(ctx.traits.approximate_2_object()) {}
|
||||
|
||||
/**
|
||||
* @brief Computes the y-coordinate at a given x-coordinate for an x-monotone curve trimmed
|
||||
* to the bounding box.
|
||||
*
|
||||
* The bounding box here is considered as closed.
|
||||
*
|
||||
* @precondition The curve is not verical
|
||||
* @param curve
|
||||
* @param x
|
||||
* @return true if there is an intersection at given x within the bounding box,
|
||||
* @return false otherwise.
|
||||
*/
|
||||
std::optional<FT> operator()(const X_monotone_curve_2& curve, const FT& x) const {
|
||||
CGAL_assertion(!m_ctx.is_vertical_2(curve));
|
||||
|
||||
auto min_pt = m_ctx.cst_curve_end(curve, ARR_MIN_END);
|
||||
auto max_pt = m_ctx.cst_curve_end(curve, ARR_MAX_END);
|
||||
if(min_pt.has_value() && min_pt->x() == x) {
|
||||
return min_pt->y();
|
||||
}
|
||||
if(max_pt.has_value() && max_pt->x() == x) {
|
||||
return max_pt->y();
|
||||
}
|
||||
|
||||
using Multiplicity = Geom_traits::Multiplicity;
|
||||
using Intersect_point = std::pair<Point_2, Multiplicity>;
|
||||
using Intersect_curve = X_monotone_curve_2;
|
||||
using Intersect_type = std::variant<Intersect_point, Intersect_curve>;
|
||||
|
||||
auto vertical_line = m_ctx.cst_vertical_segment(x, m_ymin, m_ymax);
|
||||
std::optional<FT> y;
|
||||
auto func_out_iter = boost::make_function_output_iterator(
|
||||
[&y, this](const Intersect_type& res) { y = std::get<Intersect_point>(res).first.y(); });
|
||||
m_ctx.intersect_2(curve, vertical_line, func_out_iter);
|
||||
return y;
|
||||
}
|
||||
|
||||
private:
|
||||
Approximate_2 m_approx;
|
||||
const Arr_render_context& m_ctx;
|
||||
|
||||
// Should be enough for visualization purposes.
|
||||
constexpr static double m_ymin = std::numeric_limits<double>::lowest();
|
||||
constexpr static double m_ymax = std::numeric_limits<double>::max();
|
||||
};
|
||||
|
||||
} // namespace CGAL
|
||||
|
||||
#endif // CGAL_DRAW_AOS_ARR_COMPUTE_Y_AT_X_H
|
||||
|
|
@ -1,23 +1,24 @@
|
|||
#ifndef CGAL_ARR_CONSTRUCT_CURVE_END_H
|
||||
#define CGAL_ARR_CONSTRUCT_CURVE_END_H
|
||||
|
||||
#include "CGAL/Arr_enums.h"
|
||||
#include "CGAL/Arr_has.h"
|
||||
#include "CGAL/Draw_aos/Arr_approximation_geometry_traits.h"
|
||||
#include <optional>
|
||||
|
||||
namespace CGAL {
|
||||
#include <CGAL/Arr_enums.h>
|
||||
#include <CGAL/Arr_has.h>
|
||||
#include <CGAL/Draw_aos/type_utils.h>
|
||||
|
||||
namespace CGAL {
|
||||
namespace draw_aos {
|
||||
namespace internal {
|
||||
|
||||
template <typename Geom_traits>
|
||||
template <typename GeomTraits>
|
||||
class Arr_construct_curve_end_base
|
||||
{
|
||||
using Construct_min_vertex_2 = typename Geom_traits::Construct_min_vertex_2;
|
||||
using Construct_max_vertex_2 = typename Geom_traits::Construct_max_vertex_2;
|
||||
using Construct_min_vertex_2 = typename GeomTraits::Construct_min_vertex_2;
|
||||
using Construct_max_vertex_2 = typename GeomTraits::Construct_max_vertex_2;
|
||||
|
||||
protected:
|
||||
Arr_construct_curve_end_base(const Geom_traits& traits)
|
||||
Arr_construct_curve_end_base(const GeomTraits& traits)
|
||||
: m_cst_min_vertex(traits.construct_min_vertex_2_object())
|
||||
, m_cst_max_vertex(traits.construct_max_vertex_2_object()) {}
|
||||
|
||||
|
|
@ -25,21 +26,21 @@ protected:
|
|||
Construct_min_vertex_2 m_cst_min_vertex;
|
||||
};
|
||||
|
||||
template <typename Geom_traits, bool Has_parameter_space_in_x>
|
||||
template <typename GeomTraits, bool Has_parameter_space_in_x>
|
||||
class Arr_construct_curve_end_impl;
|
||||
|
||||
template <typename Geom_traits>
|
||||
class Arr_construct_curve_end_impl<Geom_traits, true> : public Arr_construct_curve_end_base<Geom_traits>
|
||||
template <typename GeomTraits>
|
||||
class Arr_construct_curve_end_impl<GeomTraits, true> : public Arr_construct_curve_end_base<GeomTraits>
|
||||
{
|
||||
using Approx_geom_traits = Arr_approximation_geometry_traits;
|
||||
using Point_2 = typename Geom_traits::Point_2;
|
||||
using X_monotone_curve = typename Geom_traits::X_monotone_curve_2;
|
||||
using Parameter_space_in_x_2 = typename Geom_traits::Parameter_space_in_x_2;
|
||||
using Parameter_space_in_y_2 = typename Geom_traits::Parameter_space_in_y_2;
|
||||
using Approx_geom_traits = Arr_approximation_geometry_traits<GeomTraits>;
|
||||
using Point_2 = typename Traits_adaptor<GeomTraits>::Point_2;
|
||||
using X_monotone_curve = typename Traits_adaptor<GeomTraits>::X_monotone_curve_2;
|
||||
using Parameter_space_in_x_2 = typename GeomTraits::Parameter_space_in_x_2;
|
||||
using Parameter_space_in_y_2 = typename GeomTraits::Parameter_space_in_y_2;
|
||||
|
||||
public:
|
||||
Arr_construct_curve_end_impl(const Geom_traits& traits)
|
||||
: Arr_construct_curve_end_base<Geom_traits>(traits)
|
||||
Arr_construct_curve_end_impl(const GeomTraits& traits)
|
||||
: Arr_construct_curve_end_base<GeomTraits>(traits)
|
||||
, m_param_space_in_x(traits.parameter_space_in_x_2_object())
|
||||
, m_param_space_in_y(traits.parameter_space_in_y_2_object()) {}
|
||||
|
||||
|
|
@ -67,16 +68,16 @@ private:
|
|||
Parameter_space_in_y_2 m_param_space_in_y;
|
||||
};
|
||||
|
||||
template <typename Geom_traits>
|
||||
class Arr_construct_curve_end_impl<Geom_traits, false> : public Arr_construct_curve_end_base<Geom_traits>
|
||||
template <typename GeomTraits>
|
||||
class Arr_construct_curve_end_impl<GeomTraits, false> : public Arr_construct_curve_end_base<GeomTraits>
|
||||
{
|
||||
using Approx_geom_traits = Arr_approximation_geometry_traits;
|
||||
using Point_2 = typename Geom_traits::Point_2;
|
||||
using X_monotone_curve = typename Geom_traits::X_monotone_curve_2;
|
||||
using Approx_geom_traits = Arr_approximation_geometry_traits<GeomTraits>;
|
||||
using Point_2 = typename Traits_adaptor<GeomTraits>::Point_2;
|
||||
using X_monotone_curve = typename Traits_adaptor<GeomTraits>::X_monotone_curve_2;
|
||||
|
||||
public:
|
||||
Arr_construct_curve_end_impl(const Geom_traits& traits)
|
||||
: Arr_construct_curve_end_base<Geom_traits>(traits) {}
|
||||
Arr_construct_curve_end_impl(const GeomTraits& traits)
|
||||
: Arr_construct_curve_end_base<GeomTraits>(traits) {}
|
||||
|
||||
/**
|
||||
* @brief Construct the min or max vertex of the x-monotone curve based on the curve end enum.
|
||||
|
|
@ -92,10 +93,13 @@ public:
|
|||
|
||||
} // namespace internal
|
||||
|
||||
template <typename Geom_traits>
|
||||
template <typename GeomTraits>
|
||||
using Arr_construct_curve_end =
|
||||
internal::Arr_construct_curve_end_impl<Geom_traits, has_parameter_space_in_x_2<Geom_traits>::value>;
|
||||
internal::Arr_construct_curve_end_impl<GeomTraits,
|
||||
Traits_adaptor<GeomTraits>::Has_unbounded_curves &&
|
||||
has_parameter_space_in_x_2<GeomTraits>::value>;
|
||||
|
||||
} // namespace draw_aos
|
||||
} // namespace CGAL
|
||||
|
||||
#endif // CGAL_ARR_CONSTRUCT_CURVE_END_H
|
||||
|
|
@ -1,45 +1,164 @@
|
|||
#ifndef CGAL_DRAW_AOS_ARR_CONSTRUCT_SEGMENTS_H
|
||||
#define CGAL_DRAW_AOS_ARR_CONSTRUCT_SEGMENTS_H
|
||||
#include "CGAL/Draw_aos/helpers.h"
|
||||
|
||||
#include "CGAL/CORE/BigRat.h"
|
||||
#include <CGAL/Arr_circle_segment_traits_2.h>
|
||||
#include <CGAL/number_utils.h>
|
||||
#include <CGAL/Polynomial_traits_d.h>
|
||||
#include <CGAL/Draw_aos/type_utils.h>
|
||||
|
||||
namespace CGAL {
|
||||
namespace draw_aos {
|
||||
|
||||
template <typename GeomTraits, bool HasConstructXMonotoneCurve2>
|
||||
class Arr_construct_segment_impl;
|
||||
|
||||
// Default implementation for traits that models Construct_x_monotone_curve_2
|
||||
template <typename GeomTraits>
|
||||
class Arr_construct_segment_impl<GeomTraits, true>
|
||||
{
|
||||
using Point_2 = typename Traits_adaptor<GeomTraits>::Point_2;
|
||||
using X_monotone_curve_2 = typename Traits_adaptor<GeomTraits>::X_monotone_curve_2;
|
||||
using Construct_x_monotone_curve_2 = typename GeomTraits::Construct_x_monotone_curve_2;
|
||||
using FT = typename Traits_adaptor<GeomTraits>::FT;
|
||||
|
||||
public:
|
||||
Arr_construct_segment_impl(const GeomTraits& traits)
|
||||
: m_cst_x_curve(traits.construct_x_monotone_curve_2_object()) {}
|
||||
|
||||
X_monotone_curve_2 operator()(FT x1, FT y1, FT x2, FT y2) const {
|
||||
return m_cst_x_curve(Point_2(x1, y1), Point_2(x2, y2));
|
||||
}
|
||||
|
||||
private:
|
||||
const Construct_x_monotone_curve_2 m_cst_x_curve;
|
||||
};
|
||||
|
||||
// Specialization for Arr_circle_segment_traits_2
|
||||
template <typename Kernel>
|
||||
class Arr_construct_segment_impl<Arr_circle_segment_traits_2<Kernel>, false>
|
||||
{
|
||||
using Geom_traits = Arr_circle_segment_traits_2<Kernel>;
|
||||
using Point_2 = typename Traits_adaptor<Geom_traits>::Point_2;
|
||||
using X_monotone_curve_2 = typename Traits_adaptor<Geom_traits>::X_monotone_curve_2;
|
||||
using Line_2 = typename X_monotone_curve_2::Line_2;
|
||||
using Approximate_2 = typename Geom_traits::Approximate_2;
|
||||
using NT = typename Traits_adaptor<Geom_traits>::FT;
|
||||
using FT = typename Kernel::FT;
|
||||
|
||||
public:
|
||||
Arr_construct_segment_impl(const Geom_traits& traits) {}
|
||||
|
||||
X_monotone_curve_2 operator()(NT x1, NT y1, NT x2, NT y2) const {
|
||||
using Kernel_point_2 = typename Kernel::Point_2;
|
||||
return X_monotone_curve_2(Kernel_point_2(CGAL::to_double(x1), CGAL::to_double(y1)),
|
||||
Kernel_point_2(CGAL::to_double(x2), CGAL::to_double(y2)));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename GeomTraits>
|
||||
class Arr_construct_segment_impl<GeomTraits, false>
|
||||
{
|
||||
static_assert(false, "Not implemented yet!");
|
||||
};
|
||||
|
||||
template <typename GeomTraits>
|
||||
using Arr_construct_segment =
|
||||
Arr_construct_segment_impl<GeomTraits, has_construct_x_monotone_curve_2<GeomTraits>::value>;
|
||||
|
||||
template <typename GeomTraits>
|
||||
class Arr_construct_vertical_segment
|
||||
{
|
||||
using Point_2 = Geom_traits::Point_2;
|
||||
using X_monotone_curve_2 = Geom_traits::X_monotone_curve_2;
|
||||
using FT = Geom_traits::FT;
|
||||
using Point_2 = typename Traits_adaptor<GeomTraits>::Point_2;
|
||||
using X_monotone_curve_2 = typename Traits_adaptor<GeomTraits>::X_monotone_curve_2;
|
||||
using FT = typename Traits_adaptor<GeomTraits>::FT;
|
||||
|
||||
public:
|
||||
Arr_construct_vertical_segment(const Geom_traits& traits)
|
||||
: m_traits(traits) {}
|
||||
Arr_construct_vertical_segment(const GeomTraits& traits)
|
||||
: m_cst_seg(traits) {}
|
||||
|
||||
X_monotone_curve_2 operator()(const FT& x, const FT& ymin, const FT& ymax) const {
|
||||
auto cst_x_curve = m_traits.construct_x_monotone_curve_2_object();
|
||||
return cst_x_curve(Point_2(x, ymin), Point_2(x, ymax));
|
||||
}
|
||||
X_monotone_curve_2 operator()(FT x, FT ymin, FT ymax) const { return m_cst_seg(x, ymin, x, ymax); }
|
||||
|
||||
private:
|
||||
const Geom_traits& m_traits;
|
||||
const Arr_construct_segment<GeomTraits> m_cst_seg;
|
||||
};
|
||||
|
||||
template <typename GeomTraits>
|
||||
class Arr_construct_horizontal_segment
|
||||
{
|
||||
using Point_2 = Geom_traits::Point_2;
|
||||
using X_monotone_curve_2 = Geom_traits::X_monotone_curve_2;
|
||||
using FT = Geom_traits::FT;
|
||||
using Point_2 = typename Traits_adaptor<GeomTraits>::Point_2;
|
||||
using X_monotone_curve_2 = typename Traits_adaptor<GeomTraits>::X_monotone_curve_2;
|
||||
using FT = typename Traits_adaptor<GeomTraits>::FT;
|
||||
|
||||
public:
|
||||
Arr_construct_horizontal_segment(const Geom_traits& traits)
|
||||
: m_traits(traits) {}
|
||||
Arr_construct_horizontal_segment(const GeomTraits& traits)
|
||||
: m_cst_seg(traits) {}
|
||||
|
||||
X_monotone_curve_2 operator()(FT y, FT xmin, FT xmax) const {
|
||||
auto cst_x_curve = m_traits.construct_x_monotone_curve_2_object();
|
||||
return cst_x_curve(Point_2(xmin, y), Point_2(xmax, y));
|
||||
}
|
||||
X_monotone_curve_2 operator()(FT y, FT xmin, FT xmax) const { return m_cst_seg(xmin, y, xmax, y); }
|
||||
|
||||
private:
|
||||
const Geom_traits& m_traits;
|
||||
const Arr_construct_segment<GeomTraits> m_cst_seg;
|
||||
};
|
||||
|
||||
// Arr_construct_vertical_segment Specialization for Arr_rational_function_traits_2
|
||||
template <typename Kernel>
|
||||
class Arr_construct_vertical_segment<Arr_rational_function_traits_2<Kernel>>
|
||||
{
|
||||
using Geom_traits = Arr_rational_function_traits_2<Kernel>;
|
||||
using Point_2 = typename Traits_adaptor<Geom_traits>::Point_2;
|
||||
using X_monotone_curve_2 = typename Traits_adaptor<Geom_traits>::X_monotone_curve_2;
|
||||
using Construct_x_monotone_curve_2 = typename Geom_traits::Construct_x_monotone_curve_2;
|
||||
using FT = typename Traits_adaptor<Geom_traits>::FT;
|
||||
using Polynomial_1 = typename Geom_traits::Polynomial_1;
|
||||
|
||||
public:
|
||||
Arr_construct_vertical_segment(const Geom_traits&) {}
|
||||
|
||||
X_monotone_curve_2 operator()(FT x0, FT ymin, FT ymax) const {
|
||||
Geom_traits traits;
|
||||
auto cst_x_curve = traits.construct_x_monotone_curve_2_object();
|
||||
|
||||
// We could only construct a near vertical segment when dealing with rational functions.
|
||||
Polynomial_1 x = CGAL::shift(Polynomial_1(1), 1);
|
||||
Polynomial_1 x0_num(CORE::numerator(x0.lower()));
|
||||
Polynomial_1 x0_denum(CORE::denominator(x0.lower()));
|
||||
double k = 100;
|
||||
double xmin = ymin.to_double() / k + x0.to_double();
|
||||
double xmax = ymax.to_double() / k + x0.to_double();
|
||||
Polynomial_1 p_num = x0_num * k * x - k * x0_denum;
|
||||
Polynomial_1 p_denum = x0_denum;
|
||||
return cst_x_curve(p_num, p_denum, xmin, xmax);
|
||||
}
|
||||
};
|
||||
|
||||
// Arr_construct_horizontal_segment Specialization for Arr_rational_function_traits_2
|
||||
template <typename Kernel>
|
||||
class Arr_construct_horizontal_segment<Arr_rational_function_traits_2<Kernel>>
|
||||
{
|
||||
using Geom_traits = Arr_rational_function_traits_2<Kernel>;
|
||||
using Point_2 = typename Traits_adaptor<Geom_traits>::Point_2;
|
||||
using X_monotone_curve_2 = typename Traits_adaptor<Geom_traits>::X_monotone_curve_2;
|
||||
using FT = typename Traits_adaptor<Geom_traits>::FT;
|
||||
using Polynomial_1 = typename Geom_traits::Polynomial_1;
|
||||
using Construct_x_monotone_curve_2 = typename Geom_traits::Construct_x_monotone_curve_2;
|
||||
|
||||
public:
|
||||
Arr_construct_horizontal_segment(const Geom_traits&) {}
|
||||
|
||||
X_monotone_curve_2 operator()(FT y, FT xmin, FT xmax) const {
|
||||
// The traits object is stateful. Currently there's a problem with internal cache that an exception will be
|
||||
// triggered after constructing a number of segments.
|
||||
// So we create a new traits object instead of reusing an old one.
|
||||
Geom_traits traits;
|
||||
auto cst_x_curve = traits.construct_x_monotone_curve_2_object();
|
||||
// TODO: only works for CORE now, support other number types
|
||||
Polynomial_1 num(CORE::numerator(y.lower()));
|
||||
Polynomial_1 denum(CORE::denominator(y.lower()));
|
||||
return cst_x_curve(num, denum, xmin, xmax);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace draw_aos
|
||||
} // namespace CGAL
|
||||
|
||||
#endif
|
||||
|
|
@ -1,9 +1,12 @@
|
|||
|
||||
#ifndef CGAL_DRAW_AOS_ARR_GRAPH_CONN_H
|
||||
#define CGAL_DRAW_AOS_ARR_GRAPH_CONN_H
|
||||
#include "CGAL/Union_find.h"
|
||||
#include "CGAL/unordered_flat_map.h"
|
||||
#include <boost/range/iterator_range.hpp>
|
||||
|
||||
#include <CGAL/Arr_enums.h>
|
||||
#include <CGAL/Union_find.h>
|
||||
#include <CGAL/unordered_flat_map.h>
|
||||
|
||||
namespace CGAL {
|
||||
/**
|
||||
* @brief Arr_graph_conn provides fast connectivity queries for arrangement vertices
|
||||
|
|
@ -23,13 +26,14 @@ private:
|
|||
const auto& target = he->target();
|
||||
|
||||
auto [source_it, source_inserted] = m_lookup.try_emplace(source, Union_find_handle());
|
||||
auto [target_it, target_inserted] = m_lookup.try_emplace(target, Union_find_handle());
|
||||
if(source_inserted) {
|
||||
source_it->second = m_uf.make_set(source);
|
||||
}
|
||||
auto [target_it, target_inserted] = m_lookup.try_emplace(target, Union_find_handle());
|
||||
if(target_inserted) {
|
||||
target_it->second = m_uf.make_set(target);
|
||||
}
|
||||
|
||||
m_uf.unify_sets(source_it->second, target_it->second);
|
||||
}
|
||||
|
||||
|
|
@ -37,8 +41,13 @@ private:
|
|||
|
||||
public:
|
||||
Arr_graph_conn(const Arr& arr) {
|
||||
for(const auto& eh : arr.edge_handles()) {
|
||||
insert_halfedge(eh);
|
||||
m_lookup.reserve(arr.number_of_vertices());
|
||||
|
||||
for(const auto& he : arr.halfedge_handles()) {
|
||||
if(he->direction() != ARR_LEFT_TO_RIGHT) {
|
||||
continue;
|
||||
}
|
||||
insert_halfedge(he);
|
||||
}
|
||||
|
||||
for(const auto& vh : arr.vertex_handles()) {
|
||||
|
|
|
|||
|
|
@ -1,21 +1,21 @@
|
|||
#ifndef CGAL_DRAW_AOS_ARR_CREATE_PORTALS_H
|
||||
#define CGAL_DRAW_AOS_ARR_CREATE_PORTALS_H
|
||||
|
||||
#include "CGAL/Arr_vertical_decomposition_2.h"
|
||||
#include "CGAL/Draw_aos/Arr_approximate_point_2.h"
|
||||
#include "CGAL/Draw_aos/Arr_construct_segments.h"
|
||||
#include "CGAL/Draw_aos/helpers.h"
|
||||
#include "CGAL/Draw_aos/Arr_graph_conn.h"
|
||||
#include "CGAL/Object.h"
|
||||
#include "CGAL/basic.h"
|
||||
#include "CGAL/unordered_flat_map.h"
|
||||
#include <boost/iterator/function_output_iterator.hpp>
|
||||
#include <CGAL/Draw_aos/helpers.h>
|
||||
#include <CGAL/Draw_aos/Arr_approximation_geometry_traits.h>
|
||||
#include <limits>
|
||||
#include <utility>
|
||||
|
||||
#include <boost/iterator/function_output_iterator.hpp>
|
||||
|
||||
#include <CGAL/Arr_vertical_decomposition_2.h>
|
||||
#include <CGAL/Object.h>
|
||||
#include <CGAL/unordered_flat_map.h>
|
||||
#include <CGAL/Draw_aos/Arr_approximate_point_2_at_x.h>
|
||||
#include <CGAL/Draw_aos/Arr_approximate_point_2.h>
|
||||
#include <CGAL/Draw_aos/Arr_construct_segments.h>
|
||||
#include <CGAL/Draw_aos/Arr_graph_conn.h>
|
||||
#include <CGAL/Draw_aos/type_utils.h>
|
||||
|
||||
namespace CGAL {
|
||||
namespace draw_aos {
|
||||
|
||||
/**
|
||||
* @brief Portals are virtual vertical segments that connect the outer
|
||||
* connected component boundary (ccb) of a face with its inner ccbs.
|
||||
|
|
@ -25,15 +25,16 @@ namespace CGAL {
|
|||
* hits another ccb. Eventually, faces of the arrangement become hole-free and can
|
||||
* be drawn with Graphics_scene.
|
||||
*/
|
||||
template <typename Arrangement>
|
||||
class Arr_portals
|
||||
{
|
||||
|
||||
using Vertex_const_handle = Arrangement::Vertex_const_handle;
|
||||
using Halfedge_const_handle = Arrangement::Halfedge_const_handle;
|
||||
using Face_const_handle = Arrangement::Face_const_handle;
|
||||
using Point_2 = Geom_traits::Point_2;
|
||||
using Approx_point = Arr_approximation_geometry_traits::Approx_point;
|
||||
using X_monotone_curve_2 = Geom_traits::X_monotone_curve_2;
|
||||
using Geom_traits = typename Arrangement::Geometry_traits_2;
|
||||
using Vertex_const_handle = typename Arrangement::Vertex_const_handle;
|
||||
using Halfedge_const_handle = typename Arrangement::Halfedge_const_handle;
|
||||
using Face_const_handle = typename Arrangement::Face_const_handle;
|
||||
using Point_2 = typename Traits_adaptor<Geom_traits>::Point_2;
|
||||
using Approx_point = typename Arr_approximation_geometry_traits<Geom_traits>::Approx_point;
|
||||
using X_monotone_curve_2 = typename Traits_adaptor<Geom_traits>::X_monotone_curve_2;
|
||||
using Feature_const = std::variant<Vertex_const_handle, Halfedge_const_handle, Face_const_handle>;
|
||||
|
||||
public:
|
||||
|
|
@ -43,33 +44,10 @@ public:
|
|||
// Map from a feature to its portals sorted by the x coordinate of the virtual vertical segments.
|
||||
using Feature_portals_map = unordered_flat_map<Feature_const, Portal_vector>;
|
||||
|
||||
private:
|
||||
// Use this function to locate the intersection point of a vertical ray shooted from a point
|
||||
// to it's upper x-monotone curve(it can't be vertical, or we should've got its min vertex from vertical
|
||||
// decomposition).
|
||||
static Point_2 upper_intersection(const Geom_traits& traits, const Point_2& pt, const X_monotone_curve_2& curve) {
|
||||
Arr_construct_vertical_segment cst_vertical_segment(traits);
|
||||
Point_2 intersection_point;
|
||||
auto intersect = traits.intersect_2_object();
|
||||
auto vertical_line = cst_vertical_segment(pt.x(), pt.y(), std::numeric_limits<double>::max());
|
||||
bool found_intersection = false;
|
||||
|
||||
using Multiplicity = Geom_traits::Multiplicity;
|
||||
using Intersect_point = std::pair<Point_2, Multiplicity>;
|
||||
using Intersect_curve = X_monotone_curve_2;
|
||||
using Intersect_type = std::variant<Intersect_point, Intersect_curve>;
|
||||
|
||||
intersect(curve, vertical_line, boost::make_function_output_iterator([&](const Intersect_type& res) {
|
||||
found_intersection = true;
|
||||
if(std::holds_alternative<Intersect_point>(res)) {
|
||||
intersection_point = std::get<Intersect_point>(res).first;
|
||||
return;
|
||||
}
|
||||
CGAL_assertion(false && "Unexpected intersection type");
|
||||
}));
|
||||
|
||||
return found_intersection ? intersection_point : Point_2(pt.x(), std::numeric_limits<double>::max());
|
||||
}
|
||||
public:
|
||||
Arr_portals(const Geom_traits& traits)
|
||||
: m_approx_pt_at_x(traits)
|
||||
, m_approx_pt(traits) {}
|
||||
|
||||
public:
|
||||
Feature_portals_map create(const Arrangement& arr) const {
|
||||
|
|
@ -79,11 +57,12 @@ public:
|
|||
Arr_graph_conn conn(arr);
|
||||
auto visited_ccbs = std::unordered_set<Vertex_const_handle>();
|
||||
Feature_portals_map feature_portals;
|
||||
auto intersect = arr.traits()->intersect_2_object();
|
||||
auto approx_pt = Arr_approximate_point_2<Geom_traits>(*arr.traits());
|
||||
const auto& traits = *arr.geometry_traits();
|
||||
auto intersect = traits.intersect_2_object();
|
||||
|
||||
auto func_out_iter = boost::make_function_output_iterator([&](const Vert_decomp_entry& entry) {
|
||||
const auto& [vh, obj_pair] = entry;
|
||||
const auto& above_feat = obj_pair.second;
|
||||
|
||||
const auto& ccb_main_vertex = conn.ccb_representative_vertex(vh);
|
||||
if(visited_ccbs.find(ccb_main_vertex) != visited_ccbs.end()) {
|
||||
|
|
@ -91,7 +70,6 @@ public:
|
|||
return;
|
||||
}
|
||||
|
||||
const auto& above_feat = obj_pair.second;
|
||||
if(Vertex_const_handle above_vh; CGAL::assign(above_vh, above_feat)) {
|
||||
if(conn.is_connected(above_vh, vh)) {
|
||||
// This upper vertex is connected to vh, skip it
|
||||
|
|
@ -99,10 +77,10 @@ public:
|
|||
}
|
||||
|
||||
const auto& [it, _] = feature_portals.try_emplace(above_vh, std::vector<Portal>{});
|
||||
if((above_vh)->is_at_open_boundary()) {
|
||||
if(above_vh->is_at_open_boundary()) {
|
||||
it->second.emplace_back(std::nullopt, vh);
|
||||
} else {
|
||||
it->second.emplace_back(approx_pt((above_vh)->point()), vh);
|
||||
it->second.emplace_back(m_approx_pt(above_vh->point()), vh);
|
||||
}
|
||||
} else if(Halfedge_const_handle above_he; CGAL::assign(above_he, above_feat)) {
|
||||
if(conn.is_connected((above_he)->source(), vh)) {
|
||||
|
|
@ -110,11 +88,11 @@ public:
|
|||
}
|
||||
|
||||
const auto& [it, _] = feature_portals.try_emplace(above_he, std::vector<Portal>{});
|
||||
if((above_he)->is_fictitious()) {
|
||||
if(above_he->is_fictitious()) {
|
||||
it->second.emplace_back(std::nullopt, vh);
|
||||
return;
|
||||
} else {
|
||||
it->second.emplace_back(m_approx_pt_at_x(above_he->curve(), vh->point().x()).value(), vh);
|
||||
}
|
||||
it->second.emplace_back(approx_pt(upper_intersection(*arr.traits(), vh->point(), (above_he)->curve())), vh);
|
||||
} else if(Face_const_handle above_fh; CGAL::assign(above_fh, above_feat)) {
|
||||
// We don't create portals for the unbounded face in bounded arrangements.
|
||||
CGAL_assertion(above_fh->is_unbounded() && !above_fh->has_outer_ccb());
|
||||
|
|
@ -128,6 +106,12 @@ public:
|
|||
decompose(arr, func_out_iter);
|
||||
return feature_portals;
|
||||
}
|
||||
|
||||
private:
|
||||
const Arr_approximate_point_2_at_x<Geom_traits> m_approx_pt_at_x;
|
||||
const Arr_approximate_point_2<Geom_traits> m_approx_pt;
|
||||
};
|
||||
|
||||
} // namespace draw_aos
|
||||
} // namespace CGAL
|
||||
#endif // CGAL_DRAW_AOS_ARR_CREATE_PORTALS_H
|
||||
|
|
@ -1,24 +1,29 @@
|
|||
#ifndef CGAL_DRAW_AOS_ARR_RENDER_CONTEXT_H
|
||||
#define CGAL_DRAW_AOS_ARR_RENDER_CONTEXT_H
|
||||
#include "CGAL/Arr_point_location_result.h"
|
||||
#include "CGAL/Arr_trapezoid_ric_point_location.h"
|
||||
#include "CGAL/Bbox_2.h"
|
||||
#include "CGAL/Draw_aos/Arr_approximate_point_2.h"
|
||||
#include "CGAL/Draw_aos/Arr_approximation_cache.h"
|
||||
#include "CGAL/Draw_aos/Arr_construct_curve_end.h"
|
||||
#include "CGAL/Draw_aos/Arr_construct_segments.h"
|
||||
#include <cstdlib>
|
||||
#include <limits>
|
||||
#include <memory>
|
||||
#include <algorithm>
|
||||
#include <atomic>
|
||||
#include <chrono>
|
||||
|
||||
#include <CGAL/Bbox_2.h>
|
||||
#include <CGAL/Arr_point_location_result.h>
|
||||
#include <CGAL/Arr_trapezoid_ric_point_location.h>
|
||||
#include <CGAL/Arrangement_2.h>
|
||||
#include <CGAL/Draw_aos/helpers.h>
|
||||
#include <cstdlib>
|
||||
#include <CGAL/Draw_aos/Arr_approximate_point_2.h>
|
||||
#include <CGAL/Draw_aos/Arr_approximation_cache.h>
|
||||
#include <CGAL/Draw_aos/Arr_construct_curve_end.h>
|
||||
#include <CGAL/Draw_aos/Arr_construct_segments.h>
|
||||
#include <CGAL/Draw_aos/Arr_portals.h>
|
||||
#include <CGAL/Draw_aos/type_utils.h>
|
||||
|
||||
#if defined(CGAL_DRAW_AOS_DEBUG)
|
||||
#include <fstream>
|
||||
#include <iterator>
|
||||
#include <limits>
|
||||
#include <memory>
|
||||
#endif
|
||||
|
||||
namespace CGAL {
|
||||
namespace draw_aos {
|
||||
|
||||
class Arr_cancellable_context_mixin
|
||||
{
|
||||
|
|
@ -50,23 +55,18 @@ private:
|
|||
std::shared_ptr<std::atomic<bool>> m_done;
|
||||
};
|
||||
|
||||
template <typename GeomTraits>
|
||||
class Arr_bounds_context_mixin
|
||||
{
|
||||
using Approx_point = Arr_approximation_geometry_traits::Approx_point;
|
||||
using Approx_point = typename Arr_approximation_geometry_traits<GeomTraits>::Approx_point;
|
||||
using Point_2 = typename Traits_adaptor<GeomTraits>::Point_2;
|
||||
using FT = typename Traits_adaptor<GeomTraits>::FT;
|
||||
|
||||
protected:
|
||||
Arr_bounds_context_mixin(const Bbox_2& bbox)
|
||||
: m_bbox(bbox) {}
|
||||
|
||||
public:
|
||||
enum class Side_of_boundary {
|
||||
Left,
|
||||
Right,
|
||||
Bottom,
|
||||
Top,
|
||||
None,
|
||||
};
|
||||
|
||||
double xmin() const { return m_bbox.xmin(); }
|
||||
double xmax() const { return m_bbox.xmax(); }
|
||||
double ymin() const { return m_bbox.ymin(); }
|
||||
|
|
@ -74,64 +74,43 @@ public:
|
|||
|
||||
const Bbox_2& bbox() const { return m_bbox; }
|
||||
|
||||
template <typename FT>
|
||||
bool strictly_contains_x(FT x) const {
|
||||
return xmin() < x && x <= xmax();
|
||||
}
|
||||
bool strictly_contains_x(double x) const { return xmin() < x && x <= xmax(); }
|
||||
bool strictly_contains_x(FT x) const { return to_ft(xmin()) < x && x <= to_ft(xmax()); }
|
||||
|
||||
template <typename FT>
|
||||
bool strictly_contains_y(FT y) const {
|
||||
return ymin() < y && y <= ymax();
|
||||
}
|
||||
bool strictly_contains_y(double y) const { return ymin() < y && y <= ymax(); }
|
||||
bool strictly_contains_y(FT y) const { return to_ft(ymin()) < y && y <= to_ft(ymax()); }
|
||||
|
||||
template <typename Point>
|
||||
bool strictly_contains(const Point& pt) const {
|
||||
return strictly_contains_x(pt.x()) && strictly_contains_y(pt.y());
|
||||
}
|
||||
bool strictly_contains(Point_2 pt) const { return strictly_contains_x(pt.x()) && strictly_contains_y(pt.y()); }
|
||||
bool strictly_contains(Approx_point pt) const { return strictly_contains_x(pt.x()) && strictly_contains_y(pt.y()); }
|
||||
|
||||
template <typename FT>
|
||||
bool contains_x(FT x) const {
|
||||
return xmin() <= x && x <= xmax();
|
||||
}
|
||||
bool contains_x(double x) const { return xmin() <= x && x <= xmax(); }
|
||||
bool contains_x(FT x) const { return to_ft(xmin()) <= x && x <= to_ft(xmax()); }
|
||||
|
||||
template <typename FT>
|
||||
bool contains_y(FT y) const {
|
||||
return ymin() <= y && y <= ymax();
|
||||
}
|
||||
bool contains_y(double y) const { return ymin() <= y && y <= ymax(); }
|
||||
bool contains_y(FT y) const { return to_ft(ymin()) <= y && y <= to_ft(ymax()); }
|
||||
|
||||
template <typename Point>
|
||||
bool contains(const Point& pt) const {
|
||||
return contains_x(pt.x()) && contains_y(pt.y());
|
||||
}
|
||||
bool contains(Approx_point pt) const { return contains_x(pt.x()) && contains_y(pt.y()); }
|
||||
bool contains(Point_2 pt) const { return contains_x(pt.x()) && contains_y(pt.y()); }
|
||||
|
||||
template <typename Point>
|
||||
bool is_on_boundary(const Point& pt) const {
|
||||
bool is_on_boundary(Approx_point pt) const {
|
||||
return (pt.x() == xmin() || pt.x() == xmax()) && contains_y(pt.y()) ||
|
||||
(pt.y() == ymin() || pt.y() == ymax()) && contains_x(pt.x());
|
||||
}
|
||||
|
||||
template <typename Point>
|
||||
Side_of_boundary shared_boundary_side(const Point& pt1, const Point& pt2) const {
|
||||
if(pt1.x() == xmin() && pt2.x() == xmin() && contains_y(pt1.y()) && contains_y(pt2.y())) {
|
||||
return Side_of_boundary::Left;
|
||||
} else if(pt1.x() == xmax() && pt2.x() == xmax() && contains_y(pt1.y()) && contains_y(pt2.y())) {
|
||||
return Side_of_boundary::Right;
|
||||
} else if(pt1.y() == ymin() && pt2.y() == ymin() && contains_x(pt1.x()) && contains_x(pt2.x())) {
|
||||
return Side_of_boundary::Bottom;
|
||||
} else if(pt1.y() == ymax() && pt2.y() == ymax() && contains_x(pt1.x()) && contains_x(pt2.x())) {
|
||||
return Side_of_boundary::Top;
|
||||
}
|
||||
return Side_of_boundary::None;
|
||||
bool is_on_boundary(Point_2 pt) const {
|
||||
return (pt.x() == to_ft(xmin()) || pt.x() == to_ft(xmax())) && contains_y(pt.y()) ||
|
||||
(pt.y() == to_ft(ymin()) || pt.y() == to_ft(ymax())) && contains_x(pt.x());
|
||||
}
|
||||
|
||||
private:
|
||||
const Bbox_2 m_bbox;
|
||||
const Construct_coordinate<GeomTraits> to_ft;
|
||||
};
|
||||
|
||||
template <typename GeomTraits>
|
||||
class Arr_geom_traits_context_mixin
|
||||
{
|
||||
public:
|
||||
Arr_geom_traits_context_mixin(const Geom_traits& _traits)
|
||||
Arr_geom_traits_context_mixin(const GeomTraits& _traits)
|
||||
: traits(_traits)
|
||||
, cst_curve_end(_traits)
|
||||
, cst_horizontal_segment(_traits)
|
||||
|
|
@ -141,68 +120,88 @@ public:
|
|||
, is_vertical_2(_traits.is_vertical_2_object())
|
||||
, approx_pt(_traits) {}
|
||||
|
||||
const Geom_traits& traits;
|
||||
const Arr_construct_curve_end<Geom_traits> cst_curve_end;
|
||||
const Arr_construct_vertical_segment cst_vertical_segment;
|
||||
const Arr_construct_horizontal_segment cst_horizontal_segment;
|
||||
const Geom_traits::Intersect_2 intersect_2;
|
||||
const Geom_traits::Compare_xy_2 compare_xy_2;
|
||||
const Geom_traits::Is_vertical_2 is_vertical_2;
|
||||
const Arr_approximate_point_2<Geom_traits> approx_pt;
|
||||
const GeomTraits& traits;
|
||||
const Arr_construct_curve_end<GeomTraits> cst_curve_end;
|
||||
const Arr_construct_vertical_segment<GeomTraits> cst_vertical_segment;
|
||||
const Arr_construct_horizontal_segment<GeomTraits> cst_horizontal_segment;
|
||||
const typename Traits_adaptor<GeomTraits>::Intersect_2 intersect_2;
|
||||
const typename Traits_adaptor<GeomTraits>::Compare_xy_2 compare_xy_2;
|
||||
const typename Traits_adaptor<GeomTraits>::Is_vertical_2 is_vertical_2;
|
||||
const Arr_approximate_point_2<GeomTraits> approx_pt;
|
||||
};
|
||||
|
||||
class Arr_render_context : public Arr_cancellable_context_mixin, public Arr_geom_traits_context_mixin
|
||||
template <typename Arrangement>
|
||||
class Arr_render_context : public Arr_cancellable_context_mixin,
|
||||
public Arr_geom_traits_context_mixin<typename Arrangement::Geometry_traits_2>
|
||||
{
|
||||
using Point_location = Arr_trapezoid_ric_point_location<Arrangement>;
|
||||
using Feature_portals_map = typename Arr_portals<Arrangement>::Feature_portals_map;
|
||||
using Cancellable_context_mixin = Arr_cancellable_context_mixin;
|
||||
using Geom_traits_context_mixin = Arr_geom_traits_context_mixin<typename Arrangement::Geometry_traits_2>;
|
||||
|
||||
public:
|
||||
Arr_render_context(const Arrangement& arr, const Point_location& pl, double approx_error)
|
||||
: Arr_cancellable_context_mixin()
|
||||
, Arr_geom_traits_context_mixin(*arr.traits())
|
||||
Arr_render_context(const Arrangement& arr,
|
||||
const Point_location& pl,
|
||||
const Feature_portals_map& feature_portals,
|
||||
double approx_error)
|
||||
: Cancellable_context_mixin()
|
||||
, Geom_traits_context_mixin(*arr.geometry_traits())
|
||||
, arr(arr)
|
||||
, point_location(pl)
|
||||
, counter(std::make_shared<std::size_t>(0)) // TODO: remove this after debugging
|
||||
, approx_error(approx_error) {}
|
||||
, feature_portals(feature_portals)
|
||||
, approx_error(approx_error) {
|
||||
#if defined(CGAL_DRAW_AOS_DEBUG) && defined(CGAL_DRAW_AOS_TRIANGULATOR_DEBUG_FILE_DIR)
|
||||
std::filesystem::path debug_file_dir(CGAL_DRAW_AOS_TRIANGULATOR_DEBUG_FILE_DIR);
|
||||
// clear the index file.
|
||||
std::filesystem::remove(debug_file_dir / "index.txt");
|
||||
#endif
|
||||
}
|
||||
|
||||
public:
|
||||
const double approx_error;
|
||||
const Arrangement& arr;
|
||||
std::shared_ptr<std::size_t> counter; // TODO: remove this after debugging
|
||||
const Point_location& point_location;
|
||||
const Feature_portals_map& feature_portals;
|
||||
|
||||
#if defined(CGAL_DRAW_AOS_DEBUG)
|
||||
std::shared_ptr<int> debug_counter = std::make_shared<int>(0);
|
||||
#endif
|
||||
};
|
||||
|
||||
class Arr_bounded_render_context : public Arr_render_context, public Arr_bounds_context_mixin
|
||||
template <typename Arrangement>
|
||||
class Arr_bounded_render_context : public Arr_render_context<Arrangement>,
|
||||
public Arr_bounds_context_mixin<typename Arrangement::Geometry_traits_2>
|
||||
{
|
||||
using Approx_point = Arr_approximation_geometry_traits::Approx_point;
|
||||
using Point_2 = Geom_traits::Point_2;
|
||||
using Geom_traits = typename Arrangement::Geometry_traits_2;
|
||||
using Approx_point = typename Arr_approximation_geometry_traits<Geom_traits>::Approx_point;
|
||||
using Point_2 = typename Traits_adaptor<Geom_traits>::Point_2;
|
||||
using Render_context = Arr_render_context<Arrangement>;
|
||||
using Bounds_context_mixin = Arr_bounds_context_mixin<Geom_traits>;
|
||||
using Approx_cache = Arr_approximation_cache<Arrangement>;
|
||||
|
||||
constexpr static double ep_base = std::numeric_limits<double>::epsilon();
|
||||
|
||||
public:
|
||||
Arr_bounded_render_context(const Arr_render_context& ctx, const Bbox_2& bbox, Arr_approximation_cache& cache)
|
||||
: Arr_render_context(ctx)
|
||||
Arr_bounded_render_context(const Render_context& ctx, const Bbox_2& bbox, Approx_cache& cache)
|
||||
: Render_context(ctx)
|
||||
, Bounds_context_mixin(bbox)
|
||||
, ep_xmin(std::max(std::abs(ep_base * bbox.xmin()), ep_base))
|
||||
, ep_xmax(std::max(std::abs(ep_base * bbox.xmax()), ep_base))
|
||||
, ep_ymin(std::max(std::abs(ep_base * bbox.ymin()), ep_base))
|
||||
, ep_ymax(std::max(std::abs(ep_base * bbox.ymax()), ep_base))
|
||||
, Arr_bounds_context_mixin(bbox)
|
||||
, cache(cache) {
|
||||
, cache(cache) {}
|
||||
|
||||
// TODO: remove this after debugging
|
||||
std::ofstream ofs_index("/Users/shep/codes/aos_2_js_helper/shapes.txt", std::ios::out | std::ios::trunc);
|
||||
}
|
||||
Approx_point make_on_boundary(const Approx_point& pt) const {
|
||||
double x = pt.x(), y = pt.y();
|
||||
|
||||
Approx_point approx_pt_on_boundary(const Point_2& pt) const {
|
||||
double x = this->approx_pt(pt, 0);
|
||||
double y = this->approx_pt(pt, 1);
|
||||
|
||||
if(std::abs(x - xmin()) < ep_xmin) {
|
||||
x = xmin();
|
||||
} else if(std::abs(x - xmax()) < ep_xmax) {
|
||||
x = xmax();
|
||||
} else if(std::abs(y - ymin()) < ep_ymin) {
|
||||
y = ymin();
|
||||
} else if(std::abs(y - ymax()) < ep_ymax) {
|
||||
y = ymax();
|
||||
if(std::abs(x - this->xmin()) < ep_xmin) {
|
||||
x = this->xmin();
|
||||
} else if(std::abs(x - this->xmax()) < ep_xmax) {
|
||||
x = this->xmax();
|
||||
} else if(std::abs(y - this->ymin()) < ep_ymin) {
|
||||
y = this->ymin();
|
||||
} else if(std::abs(y - this->ymax()) < ep_ymax) {
|
||||
y = this->ymax();
|
||||
} else {
|
||||
// We shall not call this function if not approximated from a boundary point.
|
||||
CGAL_assertion(false && "Failed to match point to the boundary");
|
||||
|
|
@ -212,7 +211,7 @@ public:
|
|||
}
|
||||
|
||||
public:
|
||||
Arr_approximation_cache& cache;
|
||||
Approx_cache& cache;
|
||||
|
||||
private:
|
||||
// floating point epsilon at boundary coordinates
|
||||
|
|
@ -236,5 +235,6 @@ private:
|
|||
const Context& m_ctx;
|
||||
};
|
||||
|
||||
} // namespace draw_aos
|
||||
} // namespace CGAL
|
||||
#endif // CGAL_DRAW_AOS_ARR_RENDER_CONTEXT_H
|
||||
|
|
@ -16,12 +16,10 @@
|
|||
#ifndef ARR_VIEWER_H
|
||||
#define ARR_VIEWER_H
|
||||
|
||||
#include "CGAL/Draw_aos/type_utils.h"
|
||||
#include <array>
|
||||
#include <cstddef>
|
||||
#include <iterator>
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include <limits>
|
||||
|
||||
#include <boost/iterator/function_output_iterator.hpp>
|
||||
#include <boost/range/iterator_range.hpp>
|
||||
|
|
@ -33,28 +31,30 @@
|
|||
#include <QtGui/QMouseEvent>
|
||||
#include <QtGui/QKeyEvent>
|
||||
|
||||
#include "CGAL/Arr_trapezoid_ric_point_location.h"
|
||||
#include "CGAL/Arrangement_on_surface_2.h"
|
||||
#include <CGAL/Qt/camera.h>
|
||||
#include <CGAL/Arr_linear_traits_2.h>
|
||||
#include <CGAL/Arr_segment_traits_2.h>
|
||||
#include <CGAL/Basic_viewer.h>
|
||||
#include "CGAL/Bbox_2.h"
|
||||
#include <CGAL/Draw_aos/helpers.h>
|
||||
#include "CGAL/Draw_aos/Arr_bounded_renderer.h"
|
||||
#include "CGAL/Draw_aos/Arr_render_context.h"
|
||||
#include "CGAL/Graphics_scene.h"
|
||||
#include "CGAL/Graphics_scene_options.h"
|
||||
#include "CGAL/Qt/camera.h"
|
||||
#include "CGAL/unordered_flat_map.h"
|
||||
#include <CGAL/Bbox_2.h>
|
||||
#include <CGAL/Graphics_scene.h>
|
||||
#include <CGAL/Graphics_scene_options.h>
|
||||
#include <CGAL/Draw_aos/Arr_bounded_renderer.h>
|
||||
#include <CGAL/Draw_aos/Arr_render_context.h>
|
||||
|
||||
namespace CGAL {
|
||||
namespace draw_aos {
|
||||
|
||||
class Arr_viewer : public Qt::Basic_viewer {
|
||||
template <typename Arrangement, typename GSOptions>
|
||||
class Arr_viewer : public Qt::Basic_viewer
|
||||
{
|
||||
using Basic_viewer = Qt::Basic_viewer;
|
||||
using Vertex_const_handle = Arrangement::Vertex_const_handle;
|
||||
using Halfedge_const_handle = Arrangement::Halfedge_const_handle;
|
||||
using Face_const_handle = Arrangement::Face_const_handle;
|
||||
using Graphics_scene_options =
|
||||
CGAL::Graphics_scene_options<Arrangement, Vertex_const_handle, Halfedge_const_handle, Face_const_handle>;
|
||||
using Point_location = CGAL::Arr_trapezoid_ric_point_location<Arrangement>;
|
||||
using Vertex_const_handle = typename Arrangement::Vertex_const_handle;
|
||||
using Halfedge_const_handle = typename Arrangement::Halfedge_const_handle;
|
||||
using Face_const_handle = typename Arrangement::Face_const_handle;
|
||||
using Feature_portal_map = typename Arr_portals<Arrangement>::Feature_portals_map;
|
||||
using Graphics_scene_options = GSOptions;
|
||||
using Point_location = Arr_trapezoid_ric_point_location<Arrangement>;
|
||||
using Geom_traits = typename Arrangement::Geometry_traits_2;
|
||||
|
||||
private:
|
||||
// Function to check if the camera's state has changed
|
||||
|
|
@ -64,7 +64,7 @@ private:
|
|||
this->camera_->computeModelViewMatrix();
|
||||
this->camera_->getProjectionMatrix(proj_mat.data());
|
||||
this->camera_->getModelViewMatrix(mv_mat.data());
|
||||
if (proj_mat == m_last_proj_matrix && mv_mat == m_last_modelview_matrix) {
|
||||
if(proj_mat == m_last_proj_matrix && mv_mat == m_last_modelview_matrix) {
|
||||
return false;
|
||||
}
|
||||
m_last_proj_matrix = proj_mat;
|
||||
|
|
@ -72,18 +72,6 @@ private:
|
|||
return true;
|
||||
}
|
||||
|
||||
// Bbox_2 initial_bbox() const {
|
||||
// Bbox_2 bbox;
|
||||
// for(const auto& vh : m_arr.vertex_handles()) {
|
||||
// bbox += vh->point().bbox();
|
||||
// }
|
||||
// if(bbox.x_span() == 0 || bbox.y_span() == 0) {
|
||||
// // make a default bbox around the degenrate rect
|
||||
// bbox = Bbox_2(bbox.xmin() - 1, bbox.ymin() - 1, bbox.xmax() + 1, bbox.ymax() + 1);
|
||||
// }
|
||||
// return bbox;
|
||||
// }
|
||||
|
||||
/**
|
||||
* @brief Computes the bounding box of the view from orthogonal camera.
|
||||
*
|
||||
|
|
@ -105,9 +93,10 @@ private:
|
|||
double ymin = std::numeric_limits<double>::max();
|
||||
double ymax = std::numeric_limits<double>::lowest();
|
||||
|
||||
for (const QVector4D& corner : clip_space_corners) {
|
||||
for(const QVector4D& corner : clip_space_corners) {
|
||||
QVector4D world = inverse_mvp * corner;
|
||||
if (world.w() != 0.0) world /= world.w();
|
||||
if(world.w() != 0.0)
|
||||
world /= world.w();
|
||||
double x = world.x();
|
||||
double y = world.y();
|
||||
|
||||
|
|
@ -121,40 +110,47 @@ private:
|
|||
}
|
||||
|
||||
double get_approx_error(const Bbox_2& bbox) const {
|
||||
if constexpr(Traits_adaptor<Geom_traits>::Approximation_sizing_factor == 0.0) {
|
||||
return std::numeric_limits<double>::max();
|
||||
}
|
||||
std::array<GLint, 4> viewport;
|
||||
camera_->getViewport(viewport.data());
|
||||
double width = static_cast<double>(viewport[2]);
|
||||
// return bbox.x_span() / std::min(600.0, width);
|
||||
// We are testing linear traits, lets set it to inf
|
||||
return 10000;
|
||||
double viewport_width = static_cast<double>(viewport[2]);
|
||||
double bbox_xspan = bbox.x_span();
|
||||
return bbox_xspan / viewport_width * Traits_adaptor<Geom_traits>::Approximation_sizing_factor;
|
||||
}
|
||||
|
||||
public:
|
||||
Arr_viewer(QWidget* parent,
|
||||
const Arrangement& arr,
|
||||
Graphics_scene_options options,
|
||||
const char* title = "Arrangement Viewer") :
|
||||
Basic_viewer(parent, m_scene, title),
|
||||
m_scene_options(options),
|
||||
m_arr(arr),
|
||||
m_pl(arr)
|
||||
{}
|
||||
const char* title = "Arrangement Viewer")
|
||||
: Basic_viewer(parent, m_scene, title)
|
||||
, m_scene_options(options)
|
||||
, m_arr(arr)
|
||||
, m_feature_portals(Arr_portals<Arrangement>(*arr.geometry_traits()).create(arr))
|
||||
, m_pl(arr) {}
|
||||
|
||||
void render_arr(const Arrangement& arr, const Point_location& pl, const Bbox_2& bbox) {
|
||||
Arr_render_context ctx(arr, pl, get_approx_error(bbox));
|
||||
Arr_bounded_renderer renderer(ctx, bbox);
|
||||
void render_arr(const Bbox_2& bbox) {
|
||||
Arr_render_context<Arrangement> ctx(m_arr, m_pl, m_feature_portals, get_approx_error(bbox));
|
||||
Arr_bounded_renderer<Arrangement> renderer(ctx, bbox);
|
||||
const auto& cache = renderer.render();
|
||||
|
||||
#if defined(CGAL_DRAW_AOS_DEBUG)
|
||||
std::cout << "Rendering arrangement with " << cache.face_cache_size() << " visible faces, "
|
||||
<< cache.halfedge_cache_size() << " visible halfedges, " << cache.vertex_cache_size()
|
||||
<< " visible vertices." << std::endl;
|
||||
#endif
|
||||
|
||||
// add faces
|
||||
for (const auto& [fh, face_tris] : cache.face_cache()) {
|
||||
for(const auto& [fh, face_tris] : cache.face_cache()) {
|
||||
const auto& points = face_tris.points;
|
||||
const auto& tris = face_tris.triangles;
|
||||
bool draw_face = m_scene_options.colored_face(arr, fh);
|
||||
for (const auto& t : tris) {
|
||||
if (draw_face) {
|
||||
m_scene.face_begin(m_scene_options.face_color(arr, fh));
|
||||
}
|
||||
else {
|
||||
bool draw_face = m_scene_options.colored_face(m_arr, fh);
|
||||
for(const auto& t : tris) {
|
||||
if(draw_face) {
|
||||
m_scene.face_begin(m_scene_options.face_color(m_arr, fh));
|
||||
} else {
|
||||
m_scene.face_begin();
|
||||
}
|
||||
for(const auto idx : t) {
|
||||
|
|
@ -165,55 +161,67 @@ public:
|
|||
}
|
||||
|
||||
// add edges
|
||||
for (const auto& [he, polyline] : cache.halfedge_cache()) {
|
||||
if (polyline.size() < 2) {
|
||||
continue; // skip degenerate edges
|
||||
for(const auto& [he, polyline] : cache.halfedge_cache()) {
|
||||
if(polyline.size() < 2) {
|
||||
continue;
|
||||
}
|
||||
|
||||
bool draw_colored_edge = m_scene_options.colored_edge(arr, he);
|
||||
auto color = draw_colored_edge ? m_scene_options.edge_color(arr, he) : CGAL::IO::Color();
|
||||
for (size_t i = 0; i < polyline.size() - 1; ++i) {
|
||||
bool draw_colored_edge = m_scene_options.colored_edge(m_arr, he);
|
||||
auto color = draw_colored_edge ? m_scene_options.edge_color(m_arr, he) : CGAL::IO::Color();
|
||||
for(size_t i = 0; i < polyline.size() - 1; ++i) {
|
||||
const auto& cur_pt = polyline[i];
|
||||
const auto& next_pt = polyline[i + 1];
|
||||
auto mid_pt = CGAL::midpoint(cur_pt, next_pt);
|
||||
if (mid_pt.x() <= bbox.xmin() || mid_pt.x() > bbox.xmax() || mid_pt.y() <= bbox.ymin() ||
|
||||
if(mid_pt.x() <= bbox.xmin() || mid_pt.x() > bbox.xmax() || mid_pt.y() <= bbox.ymin() ||
|
||||
mid_pt.y() > bbox.ymax())
|
||||
{
|
||||
continue;
|
||||
}
|
||||
if (draw_colored_edge) {
|
||||
if(draw_colored_edge) {
|
||||
m_scene.add_segment(cur_pt, next_pt, color);
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
m_scene.add_segment(cur_pt, next_pt);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// add vertices
|
||||
for (const auto& [vh, pt] : cache.vertex_cache()) {
|
||||
if (m_scene_options.colored_vertex(arr, vh)) {
|
||||
m_scene.add_point(pt, m_scene_options.vertex_color(arr, vh));
|
||||
}
|
||||
else {
|
||||
for(const auto& [vh, pt] : cache.vertex_cache()) {
|
||||
if(m_scene_options.colored_vertex(m_arr, vh)) {
|
||||
m_scene.add_point(pt, m_scene_options.vertex_color(m_arr, vh));
|
||||
} else {
|
||||
m_scene.add_point(pt);
|
||||
}
|
||||
}
|
||||
|
||||
// If there's nothing to render, we fill the bbox with background color.
|
||||
// This is to keep the Basic_viewer working in 2D mode.
|
||||
if(m_scene.empty()) {
|
||||
m_scene.face_begin(CGAL::IO::Color(255, 255, 255)); // White, by now
|
||||
using Approx_point = typename Arr_approximation_geometry_traits<Geom_traits>::Approx_point;
|
||||
m_scene.add_point_in_face(Approx_point(bbox.xmin(), bbox.ymin()));
|
||||
m_scene.add_point_in_face(Approx_point(bbox.xmax(), bbox.ymin()));
|
||||
m_scene.add_point_in_face(Approx_point(bbox.xmax(), bbox.ymax()));
|
||||
m_scene.add_point_in_face(Approx_point(bbox.xmin(), bbox.ymax()));
|
||||
m_scene.face_end();
|
||||
}
|
||||
}
|
||||
|
||||
void rerender(Bbox_2 bbox) {
|
||||
m_scene.clear();
|
||||
render_arr(m_arr, m_pl, bbox);
|
||||
render_arr(bbox);
|
||||
Basic_viewer::redraw();
|
||||
}
|
||||
|
||||
virtual void draw() override {
|
||||
if(is_camera_changed()) {
|
||||
Bbox_2 bbox = view_bbox_from_camera();
|
||||
// shrink the bbox by 10% for testing
|
||||
#if defined(CGAL_DRAW_AOS_DEBUG)
|
||||
double dx = (bbox.xmax() - bbox.xmin()) * 0.1;
|
||||
double dy = (bbox.ymax() - bbox.ymin()) * 0.1;
|
||||
bbox = Bbox_2(bbox.xmin() + dx, bbox.ymin() + dy, bbox.xmax() - dx, bbox.ymax() - dy);
|
||||
std::cout << "Camera changed, recomputing arrangement bounding box: " << bbox << std::endl;
|
||||
#endif
|
||||
rerender(bbox);
|
||||
}
|
||||
Basic_viewer::draw();
|
||||
|
|
@ -226,36 +234,12 @@ private:
|
|||
Graphics_scene_options m_scene_options;
|
||||
Arrangement m_arr;
|
||||
Point_location m_pl;
|
||||
Feature_portal_map m_feature_portals;
|
||||
QMatrix4x4 m_last_proj_matrix;
|
||||
QMatrix4x4 m_last_modelview_matrix;
|
||||
};
|
||||
|
||||
void draw_viewer(const Arrangement& arr) {
|
||||
Qt::init_ogl_context(4, 3);
|
||||
int argc;
|
||||
QApplication app(argc, nullptr);
|
||||
Graphics_scene_options<Arrangement, Arrangement::Vertex_const_handle, Arrangement::Halfedge_const_handle,
|
||||
Arrangement::Face_const_handle>
|
||||
gso;
|
||||
gso.enable_faces();
|
||||
gso.enable_edges();
|
||||
gso.enable_vertices();
|
||||
gso.face_color = [](const Arrangement&, const Arrangement::Face_const_handle& fh) -> CGAL::IO::Color {
|
||||
CGAL::Random random((size_t(&*fh)));
|
||||
return get_random_color(random);
|
||||
};
|
||||
gso.colored_face = [](const Arrangement&, const Arrangement::Face_const_handle&) { return true; };
|
||||
gso.vertex_color = [](const Arrangement&, const Arrangement::Vertex_const_handle& vh) -> CGAL::IO::Color {
|
||||
CGAL::Random random((size_t(&*vh)));
|
||||
return get_random_color(random);
|
||||
};
|
||||
// Arr_viewer viewer(app.activeWindow(), move_degenerate_features(arr), gso, "Arrangement Viewer");
|
||||
Arr_viewer viewer(app.activeWindow(), arr, gso, "Arrangement Viewer");
|
||||
std::cout << "Preprocess complete" << std::endl;
|
||||
viewer.show();
|
||||
app.exec();
|
||||
}
|
||||
|
||||
} // namespace draw_aos
|
||||
} // namespace CGAL
|
||||
|
||||
#endif
|
||||
|
|
|
|||
|
|
@ -1,20 +0,0 @@
|
|||
#ifndef CGAL_DRAW_AOS_HELPERS_H
|
||||
#define CGAL_DRAW_AOS_HELPERS_H
|
||||
#include "CGAL/Arr_linear_traits_2.h"
|
||||
#include <CGAL/Arr_segment_traits_2.h>
|
||||
#include <CGAL/Arrangement_2.h>
|
||||
namespace CGAL {
|
||||
|
||||
using Exact_kernel = CGAL::Exact_predicates_exact_constructions_kernel;
|
||||
// using Geom_traits = Arr_segment_traits_2<Exact_kernel>;
|
||||
using Geom_traits = CGAL::Arr_linear_traits_2<Exact_kernel>;
|
||||
using Arrangement = Arrangement_2<Geom_traits>;
|
||||
|
||||
struct Inner_ccb_tag
|
||||
{};
|
||||
struct Outer_ccb_tag
|
||||
{};
|
||||
|
||||
} // namespace CGAL
|
||||
|
||||
#endif // CGAL_DRAW_AOS_HELPERS_H
|
||||
|
|
@ -0,0 +1,283 @@
|
|||
#ifndef CGAL_DRAW_AOS_TYPE_UTILS_H
|
||||
#define CGAL_DRAW_AOS_TYPE_UTILS_H
|
||||
#include "CGAL/Arr_polycurve_traits_2.h"
|
||||
#include "CGAL/Arr_polyline_traits_2.h"
|
||||
#include "CGAL/Cartesian.h"
|
||||
#include <type_traits>
|
||||
|
||||
#include <CGAL/Arr_segment_traits_2.h>
|
||||
#include <CGAL/Arr_linear_traits_2.h>
|
||||
#include <CGAL/Arr_circle_segment_traits_2.h>
|
||||
#include <CGAL/Arr_conic_traits_2.h>
|
||||
#include <CGAL/Arr_circular_arc_traits_2.h>
|
||||
#include <CGAL/Arr_Bezier_curve_traits_2.h>
|
||||
#include <CGAL/Arr_geodesic_arc_on_sphere_traits_2.h>
|
||||
#include <CGAL/Arr_rational_function_traits_2.h>
|
||||
#include <CGAL/Arr_algebraic_segment_traits_2.h>
|
||||
#include <CGAL/Arr_circular_line_arc_traits_2.h>
|
||||
|
||||
namespace CGAL {
|
||||
namespace draw_aos {
|
||||
|
||||
enum class Side_of_boundary {
|
||||
Top = 0,
|
||||
Left = 1,
|
||||
Bottom = 2,
|
||||
Right = 3,
|
||||
None = -1,
|
||||
};
|
||||
|
||||
template <typename, typename = std::void_t<>>
|
||||
struct has_construct_x_monotone_curve_2 : std::false_type
|
||||
{};
|
||||
|
||||
template <typename T>
|
||||
struct has_construct_x_monotone_curve_2<T, std::void_t<typename T::Construct_x_monotone_curve_2>> : std::true_type
|
||||
{};
|
||||
|
||||
template <typename, typename = std::void_t<>>
|
||||
struct has_approximate_2_object : std::false_type
|
||||
{};
|
||||
|
||||
// Specialization: detection succeeds if decltype(T::approximate_2_object()) is valid
|
||||
template <typename T>
|
||||
struct has_approximate_2_object<T, std::void_t<decltype(std::declval<T>().approximate_2_object())>> : std::true_type
|
||||
{};
|
||||
|
||||
// Convenience variable
|
||||
template <typename T>
|
||||
inline constexpr bool has_approximate_2_object_v = has_approximate_2_object<T>::value;
|
||||
|
||||
// Primary templates: detection fails by default
|
||||
// Does a class have operator()(const Point&)?
|
||||
template <typename, typename, typename = std::void_t<>>
|
||||
struct has_operator_point : std::false_type
|
||||
{};
|
||||
|
||||
// Specialization: detection succeeds if decltype works out
|
||||
template <typename T, typename A>
|
||||
struct has_operator_point<T, A, std::void_t<decltype(std::declval<A>()(std::declval<const typename T::Point_2&>()))>>
|
||||
: std::true_type
|
||||
{};
|
||||
|
||||
// Convenience variable
|
||||
template <typename T, typename A>
|
||||
inline constexpr bool has_operator_point_v = has_operator_point<T, A>::value;
|
||||
|
||||
// Primary templates: detection fails by default
|
||||
// Does a class have operator()(const X_monotone_curve&)?
|
||||
template <typename, typename, typename, typename = std::void_t<>>
|
||||
struct has_operator_xcv : std::false_type
|
||||
{};
|
||||
|
||||
template <typename T, typename A, typename O>
|
||||
struct has_operator_xcv<T,
|
||||
A,
|
||||
O,
|
||||
std::void_t<decltype(std::declval<A&>()(std::declval<const typename T::X_monotone_curve_2&>(),
|
||||
std::declval<double>(),
|
||||
std::declval<O>(),
|
||||
std::declval<bool>()))>> : std::true_type
|
||||
{};
|
||||
|
||||
// Convenience variable
|
||||
template <typename T, typename A>
|
||||
constexpr bool has_operator_xcv_v = has_operator_xcv<T, A, void*>::value;
|
||||
|
||||
template <typename GeomTraits>
|
||||
struct Traits_adaptor_base
|
||||
{
|
||||
public:
|
||||
using Geom_traits = GeomTraits;
|
||||
using Point_2 = typename Geom_traits::Point_2;
|
||||
using X_monotone_curve_2 = typename Geom_traits::X_monotone_curve_2;
|
||||
using Intersect_2 = typename Geom_traits::Intersect_2;
|
||||
using Is_vertical_2 = typename Geom_traits::Is_vertical_2;
|
||||
using Compare_xy_2 = typename Geom_traits::Compare_xy_2;
|
||||
};
|
||||
|
||||
template <typename GeomTraits>
|
||||
struct Traits_adaptor;
|
||||
|
||||
template <typename Kernel>
|
||||
struct Traits_adaptor<Arr_segment_traits_2<Kernel>> : public Traits_adaptor_base<Arr_segment_traits_2<Kernel>>
|
||||
{
|
||||
private:
|
||||
using Geom_traits = Arr_segment_traits_2<Kernel>;
|
||||
|
||||
public:
|
||||
constexpr static bool Has_unbounded_curves = false;
|
||||
constexpr static double Approximation_sizing_factor = 1.0;
|
||||
using FT = typename Kernel::FT;
|
||||
using Approximate_2 = typename Geom_traits::Approximate_2;
|
||||
using Approximate_number_type = typename Geom_traits::Approximate_number_type;
|
||||
using Approximate_kernel = typename Geom_traits::Approximate_kernel;
|
||||
using Approximate_point_2 = typename Geom_traits::Approximate_point_2;
|
||||
};
|
||||
|
||||
template <typename SegmentTraits>
|
||||
struct Traits_adaptor<Arr_polyline_traits_2<SegmentTraits>>
|
||||
: public Traits_adaptor_base<Arr_polyline_traits_2<SegmentTraits>>
|
||||
{
|
||||
private:
|
||||
using Geom_traits = Arr_polyline_traits_2<SegmentTraits>;
|
||||
using Sub_traits = SegmentTraits;
|
||||
using Adapted_sub_traits = Traits_adaptor<Sub_traits>;
|
||||
|
||||
public:
|
||||
constexpr static bool Has_unbounded_curves = false;
|
||||
constexpr static double Approximation_sizing_factor = 1.0;
|
||||
using FT = typename Adapted_sub_traits::FT;
|
||||
using Approximate_2 = typename Geom_traits::Approximate_2;
|
||||
using Approximate_number_type = typename Adapted_sub_traits::Approximate_number_type;
|
||||
using Approximate_kernel = typename Adapted_sub_traits::Approximate_kernel;
|
||||
using Approximate_point_2 = typename Adapted_sub_traits::Approximate_point_2;
|
||||
};
|
||||
|
||||
template <typename SubcurveTraits>
|
||||
struct Traits_adaptor<Arr_polycurve_traits_2<SubcurveTraits>>
|
||||
: public Traits_adaptor_base<Arr_polycurve_traits_2<SubcurveTraits>>
|
||||
{
|
||||
private:
|
||||
using Sub_traits = SubcurveTraits;
|
||||
using Geom_traits = Arr_polycurve_traits_2<Sub_traits>;
|
||||
using Adapted_sub_traits = Traits_adaptor<Sub_traits>;
|
||||
|
||||
public:
|
||||
constexpr static bool Has_unbounded_curves = false;
|
||||
constexpr static double Approximation_sizing_factor = 1.0;
|
||||
using FT = typename Adapted_sub_traits::FT;
|
||||
using Approximate_2 = typename Geom_traits::Approximate_2;
|
||||
using Approximate_number_type = typename Adapted_sub_traits::Approximate_number_type;
|
||||
using Approximate_kernel = typename Adapted_sub_traits::Approximate_kernel;
|
||||
using Approximate_point_2 = typename Adapted_sub_traits::Approximate_point_2;
|
||||
};
|
||||
|
||||
template <typename Kernel>
|
||||
struct Traits_adaptor<Arr_linear_traits_2<Kernel>> : public Traits_adaptor_base<Arr_linear_traits_2<Kernel>>
|
||||
{
|
||||
private:
|
||||
using Geom_traits = Arr_segment_traits_2<Kernel>;
|
||||
|
||||
public:
|
||||
constexpr static bool Has_unbounded_curves = true;
|
||||
constexpr static double Approximation_sizing_factor = 0.0;
|
||||
using FT = typename Kernel::FT;
|
||||
using Approximate_2 = typename Geom_traits::Approximate_2;
|
||||
using Approximate_number_type = typename Geom_traits::Approximate_number_type;
|
||||
using Approximate_kernel = typename Geom_traits::Approximate_kernel;
|
||||
using Approximate_point_2 = typename Geom_traits::Approximate_point_2;
|
||||
};
|
||||
|
||||
template <typename RatKernel, typename AlgKernel, typename NtTraits>
|
||||
struct Traits_adaptor<Arr_conic_traits_2<RatKernel, AlgKernel, NtTraits>>
|
||||
: public Traits_adaptor_base<Arr_conic_traits_2<RatKernel, AlgKernel, NtTraits>>
|
||||
{
|
||||
private:
|
||||
using Geom_traits = Arr_conic_traits_2<RatKernel, AlgKernel, NtTraits>;
|
||||
|
||||
public:
|
||||
constexpr static bool Has_unbounded_curves = false;
|
||||
constexpr static double Approximation_sizing_factor = 1.0;
|
||||
using FT = typename AlgKernel::FT;
|
||||
using Approximate_2 = typename Geom_traits::Approximate_2;
|
||||
using Approximate_number_type = typename Geom_traits::Approximate_number_type;
|
||||
using Approximate_kernel = typename Geom_traits::Approximate_kernel;
|
||||
using Approximate_point_2 = typename Geom_traits::Approximate_point_2;
|
||||
};
|
||||
|
||||
template <typename Kernel>
|
||||
struct Traits_adaptor<Arr_circle_segment_traits_2<Kernel>>
|
||||
: public Traits_adaptor_base<Arr_circle_segment_traits_2<Kernel>>
|
||||
{
|
||||
private:
|
||||
using Geom_traits = Arr_circle_segment_traits_2<Kernel>;
|
||||
using Base = Traits_adaptor_base<Geom_traits>;
|
||||
|
||||
public:
|
||||
constexpr static bool Has_unbounded_curves = false;
|
||||
constexpr static double Approximation_sizing_factor = 0.5;
|
||||
using FT = typename Base::Point_2::CoordNT;
|
||||
using Approximate_2 = typename Geom_traits::Approximate_2;
|
||||
using Approximate_number_type = typename Geom_traits::Approximate_number_type;
|
||||
using Approximate_kernel = typename Geom_traits::Approximate_kernel;
|
||||
using Approximate_point_2 = typename Geom_traits::Approximate_point_2;
|
||||
};
|
||||
|
||||
template <typename RatKernel, typename AlgKernel, typename NtTraits>
|
||||
struct Traits_adaptor<Arr_Bezier_curve_traits_2<RatKernel, AlgKernel, NtTraits>>
|
||||
: public Traits_adaptor_base<Arr_Bezier_curve_traits_2<RatKernel, AlgKernel, NtTraits>>
|
||||
{
|
||||
static_assert(false, "Approximate_2 not yet modeled by this geometry traits class.");
|
||||
};
|
||||
|
||||
template <typename Kernel>
|
||||
struct Traits_adaptor<Arr_circular_line_arc_traits_2<Kernel>>
|
||||
: public Traits_adaptor_base<Arr_circular_line_arc_traits_2<Kernel>>
|
||||
{
|
||||
static_assert(false, "Approximate_2 not yet modeled by this geometry traits class.");
|
||||
};
|
||||
|
||||
template <typename Kernel>
|
||||
struct Traits_adaptor<Arr_rational_function_traits_2<Kernel>>
|
||||
: public Traits_adaptor_base<Arr_rational_function_traits_2<Kernel>>
|
||||
{
|
||||
private:
|
||||
using Geom_traits = Arr_rational_function_traits_2<Kernel>;
|
||||
|
||||
public:
|
||||
constexpr static bool Has_unbounded_curves = true;
|
||||
constexpr static double Approximation_sizing_factor = 5.0;
|
||||
using FT = typename Geom_traits::Algebraic_real_1;
|
||||
using Approximate_2 = typename Geom_traits::Approximate_2;
|
||||
// Currently, Approximate_number_type is defined as Bound in Arr_rational_function_traits_2,
|
||||
// And there's no Approximate_kernel defined.
|
||||
using Approximate_number_type = double;
|
||||
using Approximate_kernel = Cartesian<double>;
|
||||
using Approximate_point_2 = typename Approximate_kernel::Point_2;
|
||||
};
|
||||
|
||||
template <typename GeomTraits>
|
||||
class Construct_coordinate
|
||||
{
|
||||
using FT = typename Traits_adaptor<GeomTraits>::FT;
|
||||
|
||||
public:
|
||||
FT operator()(double val) const { return FT(val); }
|
||||
};
|
||||
|
||||
template <typename Kernel>
|
||||
class Construct_coordinate<Arr_rational_function_traits_2<Kernel>>
|
||||
{
|
||||
using FT = typename Traits_adaptor<Arr_rational_function_traits_2<Kernel>>::FT;
|
||||
using Bound = typename Kernel::Bound;
|
||||
|
||||
public:
|
||||
FT operator()(double val) const { return FT(Bound(val)); }
|
||||
};
|
||||
|
||||
template <typename GeomTraits>
|
||||
class Arr_approximation_geometry_traits
|
||||
{
|
||||
using Adapted_traits = Traits_adaptor<GeomTraits>;
|
||||
|
||||
public:
|
||||
using Approx_point = typename Adapted_traits::Approximate_point_2;
|
||||
using Approx_nt = typename Adapted_traits::Approximate_number_type;
|
||||
using Approx_kernel = typename Adapted_traits::Approximate_kernel;
|
||||
using Point_geom = Approx_point;
|
||||
using Apporx_point_vec = std::vector<Point_geom>;
|
||||
using Polyline_geom = Apporx_point_vec;
|
||||
using Triangle = std::array<std::size_t, 3>;
|
||||
using Triangle_vec = std::vector<Triangle>;
|
||||
struct Triangulated_face
|
||||
{
|
||||
Apporx_point_vec points;
|
||||
Triangle_vec triangles;
|
||||
};
|
||||
};
|
||||
|
||||
} // namespace draw_aos
|
||||
} // namespace CGAL
|
||||
|
||||
#endif // CGAL_DRAW_AOS_TYPE_UTILS_H
|
||||
|
|
@ -16,22 +16,6 @@
|
|||
#ifndef CGAL_DRAW_ARRANGEMENT_2_H
|
||||
#define CGAL_DRAW_ARRANGEMENT_2_H
|
||||
|
||||
#include <CGAL/license/Arrangement_on_surface_2.h>
|
||||
|
||||
#include <CGAL/Draw_aos/helpers.h>
|
||||
#include <CGAL/Draw_aos/Arr_viewer.h>
|
||||
#include <CGAL/Draw_aos/Arr_bounded_renderer.h>
|
||||
#include <CGAL/Draw_aos/Arr_bounded_approximate_curve_2.h>
|
||||
#include <CGAL/Draw_aos/Arr_bounded_approximate_face_2.h>
|
||||
#include <CGAL/Draw_aos/Arr_bounded_approximate_point_2.h>
|
||||
#include <CGAL/Draw_aos/Arr_approximation_cache.h>
|
||||
#include <CGAL/Draw_aos/Arr_bounded_compute_y_at_x.h>
|
||||
#include <CGAL/Draw_aos/Arr_render_context.h>
|
||||
#include <CGAL/Draw_aos/Arr_bounded_face_triangulator.h>
|
||||
#include <CGAL/Draw_aos/Arr_approximation_geometry_traits.h>
|
||||
|
||||
#include <CGAL/config.h>
|
||||
|
||||
#include <cstdlib>
|
||||
#include <type_traits>
|
||||
#include <unordered_map>
|
||||
|
|
@ -43,6 +27,9 @@
|
|||
#include <CGAL/Graphics_scene.h>
|
||||
#include <CGAL/Graphics_scene_options.h>
|
||||
#include <CGAL/Random.h>
|
||||
#include <CGAL/license/Arrangement_on_surface_2.h>
|
||||
#include <CGAL/config.h>
|
||||
#include <CGAL/Draw_aos/Arr_viewer.h>
|
||||
|
||||
namespace CGAL {
|
||||
|
||||
|
|
@ -606,47 +593,46 @@ protected:
|
|||
|
||||
#define CGAL_ARR_TYPE CGAL::Arrangement_on_surface_2<GeometryTraits_2, TopologyTraits>
|
||||
|
||||
///
|
||||
template <typename GeometryTraits_2, typename TopologyTraits, class GSOptions>
|
||||
void add_to_graphics_scene(const CGAL_ARR_TYPE& aos, CGAL::Graphics_scene& graphics_scene, const GSOptions& gso) {
|
||||
draw_function_for_arrangement_2::Draw_arr_tool dar(aos, graphics_scene, gso);
|
||||
dar.add_elements();
|
||||
}
|
||||
|
||||
///
|
||||
template <typename GeometryTraits_2, typename TopologyTraits>
|
||||
void add_to_graphics_scene(const CGAL_ARR_TYPE& aos, CGAL::Graphics_scene& graphics_scene) {
|
||||
CGAL::Graphics_scene_options<CGAL_ARR_TYPE, typename CGAL_ARR_TYPE::Vertex_const_handle,
|
||||
typename CGAL_ARR_TYPE::Halfedge_const_handle, typename CGAL_ARR_TYPE::Face_const_handle>
|
||||
gso;
|
||||
// colored face?
|
||||
gso.colored_face = [](const CGAL_ARR_TYPE&, typename CGAL_ARR_TYPE::Face_const_handle) -> bool { return true; };
|
||||
|
||||
// face color
|
||||
gso.face_color = [](const CGAL_ARR_TYPE&, typename CGAL_ARR_TYPE::Face_const_handle fh) -> CGAL::IO::Color {
|
||||
CGAL::Random random((unsigned int)(std::size_t)(&*fh));
|
||||
return get_random_color(random);
|
||||
};
|
||||
|
||||
add_to_graphics_scene(aos, graphics_scene, gso);
|
||||
}
|
||||
|
||||
/// Draw an arrangement on surface.
|
||||
template <typename GeometryTraits_2, typename TopologyTraits, class GSOptions>
|
||||
void draw(const CGAL_ARR_TYPE& aos,
|
||||
const GSOptions& gso,
|
||||
const char* title = "2D Arrangement on Surface Basic Viewer") {
|
||||
CGAL::Graphics_scene graphics_scene;
|
||||
add_to_graphics_scene(aos, graphics_scene, gso);
|
||||
draw_graphics_scene(graphics_scene, title);
|
||||
Qt::init_ogl_context(4, 3);
|
||||
int argc;
|
||||
QApplication app(argc, nullptr);
|
||||
auto viewer = draw_aos::Arr_viewer(app.activeWindow(), aos, gso, title);
|
||||
viewer.show();
|
||||
app.exec();
|
||||
}
|
||||
|
||||
/// Draw an arrangement on surface.
|
||||
template <typename GeometryTraits_2, typename TopologyTraits>
|
||||
void draw(const CGAL_ARR_TYPE& aos, const char* title = "2D Arrangement on Surface Basic Viewer") {
|
||||
CGAL::Graphics_scene graphics_scene;
|
||||
add_to_graphics_scene(aos, graphics_scene);
|
||||
draw_graphics_scene(graphics_scene, title);
|
||||
using Arrangement = CGAL_ARR_TYPE;
|
||||
using Face_const_handle = typename Arrangement::Face_const_handle;
|
||||
using Vertex_const_handle = typename Arrangement::Vertex_const_handle;
|
||||
using Halfedge_const_handle = typename Arrangement::Halfedge_const_handle;
|
||||
|
||||
Qt::init_ogl_context(4, 3);
|
||||
int argc;
|
||||
QApplication app(argc, nullptr);
|
||||
Graphics_scene_options<Arrangement, Vertex_const_handle, Halfedge_const_handle, Face_const_handle> gso;
|
||||
gso.enable_faces();
|
||||
gso.enable_edges();
|
||||
gso.enable_vertices();
|
||||
gso.face_color = [](const Arrangement&, const Face_const_handle& fh) -> CGAL::IO::Color {
|
||||
CGAL::Random random((size_t(fh.ptr())));
|
||||
return get_random_color(random);
|
||||
};
|
||||
gso.colored_face = [](const Arrangement&, const Face_const_handle&) { return true; };
|
||||
gso.vertex_color = [](const Arrangement&, const Vertex_const_handle& vh) -> CGAL::IO::Color {
|
||||
CGAL::Random random((size_t(vh.ptr())));
|
||||
return get_random_color(random);
|
||||
};
|
||||
auto viewer = draw_aos::Arr_viewer(app.activeWindow(), aos, gso, "Arrangement Viewer");
|
||||
viewer.show();
|
||||
app.exec();
|
||||
}
|
||||
|
||||
#undef CGAL_ARR_TYPE
|
||||
|
|
|
|||
|
|
@ -118,7 +118,6 @@ set(IS_BETWEEN_CW 26)
|
|||
set(COMPARE_CW_AROUND_POINT 27)
|
||||
set(PUSH_BACK 28)
|
||||
set(PUSH_FRONT 29)
|
||||
set(APPROXIMATE 30)
|
||||
set(NUMBER_OF_POINTS 32)
|
||||
set(COMPARE_ENDPOINTS_XY 33)
|
||||
set(CONSTRUCT_OPPOSITE 34)
|
||||
|
|
@ -241,30 +240,22 @@ function(execute_commands_old_structure data_dir traits_type_name)
|
|||
# the old structure is default, so this function executes all commands
|
||||
# except the commands that are given as arguments
|
||||
|
||||
set(commands_indicator_APPROXIMATE 1)
|
||||
set(commands_indicator_ARE_MERGEABLE 1)
|
||||
set(commands_indicator_ASSERTIONS 1)
|
||||
set(commands_indicator_COMPARE 1)
|
||||
set(commands_indicator_VERTEX 1)
|
||||
set(commands_indicator_IS_VERTICAL 1)
|
||||
set(commands_indicator_COMPARE_Y_AT_X 1)
|
||||
set(commands_indicator_COMPARE_Y_AT_X_LEFT 1)
|
||||
set(commands_indicator_COMPARE_Y_AT_X_RIGHT 1)
|
||||
set(commands_indicator_CONSTRUCTOR 1)
|
||||
set(commands_indicator_INTERSECT 1)
|
||||
set(commands_indicator_IS_VERTICAL 1)
|
||||
set(commands_indicator_MAKE_X_MONOTONE 1)
|
||||
set(commands_indicator_MERGE 1)
|
||||
set(commands_indicator_INTERSECT 1)
|
||||
set(commands_indicator_SPLIT 1)
|
||||
set(commands_indicator_VERTEX 1)
|
||||
|
||||
set(commands_indicator_ARE_MERGEABLE 1)
|
||||
set(commands_indicator_MERGE 1)
|
||||
set(commands_indicator_ASSERTIONS 1)
|
||||
set(commands_indicator_CONSTRUCTOR 1)
|
||||
foreach(arg ${ARGN})
|
||||
set(commands_indicator_${arg} 0)
|
||||
endforeach()
|
||||
|
||||
if(commands_indicator_APPROXIMATE)
|
||||
run_trapped_test(test_traits
|
||||
data/empty.zero data/${data_dir}/approximate.xcv
|
||||
data/empty.zero data/${data_dir}/approximate ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_COMPARE)
|
||||
run_trapped_test(test_traits
|
||||
data/compare.pt data/empty.zero
|
||||
|
|
@ -287,21 +278,18 @@ function(execute_commands_old_structure data_dir traits_type_name)
|
|||
endif()
|
||||
if(commands_indicator_COMPARE_Y_AT_X_LEFT)
|
||||
run_trapped_test(test_traits
|
||||
data/${data_dir}/compare_y_at_x_left.pt
|
||||
data/${data_dir}/compare_y_at_x_left.xcv
|
||||
data/${data_dir}/compare_y_at_x_left.pt data/${data_dir}/compare_y_at_x_left.xcv
|
||||
data/empty.zero data/${data_dir}/compare_y_at_x_left ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_COMPARE_Y_AT_X_RIGHT)
|
||||
run_trapped_test(test_traits
|
||||
data/${data_dir}/compare_y_at_x_right.pt
|
||||
data/${data_dir}/compare_y_at_x_right.xcv
|
||||
data/${data_dir}/compare_y_at_x_right.pt data/${data_dir}/compare_y_at_x_right.xcv
|
||||
data/empty.zero data/${data_dir}/compare_y_at_x_right ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_MAKE_X_MONOTONE)
|
||||
run_trapped_test(test_traits
|
||||
data/empty.zero data/${data_dir}/make_x_monotone.xcv
|
||||
data/${data_dir}/make_x_monotone.cv
|
||||
data/${data_dir}/make_x_monotone ${traits_type_name})
|
||||
data/${data_dir}/make_x_monotone.cv data/${data_dir}/make_x_monotone ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_INTERSECT)
|
||||
run_trapped_test(test_traits
|
||||
|
|
@ -331,8 +319,7 @@ function(execute_commands_old_structure data_dir traits_type_name)
|
|||
if(commands_indicator_CONSTRUCTOR)
|
||||
run_trapped_test(test_traits
|
||||
data/empty.zero data/${data_dir}/constructor.xcv
|
||||
data/${data_dir}/constructor.cv data/${data_dir}/constructor
|
||||
${traits_type_name})
|
||||
data/${data_dir}/constructor.cv data/${data_dir}/constructor ${traits_type_name})
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
|
|
@ -345,166 +332,133 @@ function(execute_commands_new_structure data_dir traits_type_name)
|
|||
# the new structure is not default, so this function executes only
|
||||
# commands that are given as arguments
|
||||
|
||||
set(commands_indicator_APPROXIMATE 0)
|
||||
set(commands_indicator_ARE_MERGEABLE 0)
|
||||
set(commands_indicator_ASSERTIONS 0)
|
||||
set(commands_indicator_COMPARE 0)
|
||||
set(commands_indicator_COMPARE_ENDPOINTS_XY 0)
|
||||
set(commands_indicator_COMPARE_X_NEAR_BOUNDARY 0)
|
||||
set(commands_indicator_VERTEX 0)
|
||||
set(commands_indicator_IS_VERTICAL 0)
|
||||
set(commands_indicator_COMPARE_X_ON_BOUNDARY 0)
|
||||
set(commands_indicator_COMPARE_X_NEAR_BOUNDARY 0)
|
||||
set(commands_indicator_COMPARE_Y_NEAR_BOUNDARY 0)
|
||||
set(commands_indicator_PARAMETER_SPACE_X 0)
|
||||
set(commands_indicator_PARAMETER_SPACE_Y 0)
|
||||
set(commands_indicator_COMPARE_Y_AT_X 0)
|
||||
set(commands_indicator_COMPARE_Y_AT_X_LEFT 0)
|
||||
set(commands_indicator_COMPARE_Y_AT_X_RIGHT 0)
|
||||
set(commands_indicator_COMPARE_Y_NEAR_BOUNDARY 0)
|
||||
set(commands_indicator_CONSTRUCTOR 0)
|
||||
set(commands_indicator_CONSTRUCT_OPPOSITE 0)
|
||||
set(commands_indicator_EQUAL 0)
|
||||
set(commands_indicator_INTERSECT 0)
|
||||
set(commands_indicator_IS_VERTICAL 0)
|
||||
set(commands_indicator_MAKE_X_MONOTONE 0)
|
||||
set(commands_indicator_INTERSECT 0)
|
||||
set(commands_indicator_SPLIT 0)
|
||||
set(commands_indicator_ARE_MERGEABLE 0)
|
||||
set(commands_indicator_MERGE 0)
|
||||
set(commands_indicator_NUMBER_OF_POINTS 0)
|
||||
set(commands_indicator_PARAMETER_SPACE_X 0)
|
||||
set(commands_indicator_PARAMETER_SPACE_Y 0)
|
||||
set(commands_indicator_ASSERTIONS 0)
|
||||
set(commands_indicator_CONSTRUCTOR 0)
|
||||
set(commands_indicator_EQUAL 0)
|
||||
set(commands_indicator_PUSH_BACK 0)
|
||||
set(commands_indicator_PUSH_FRONT 0)
|
||||
set(commands_indicator_SPLIT 0)
|
||||
set(commands_indicator_NUMBER_OF_POINTS 0)
|
||||
set(commands_indicator_COMPARE_ENDPOINTS_XY 0)
|
||||
set(commands_indicator_CONSTRUCT_OPPOSITE 0)
|
||||
set(commands_indicator_TRIM 0)
|
||||
set(commands_indicator_VERTEX 0)
|
||||
|
||||
foreach(arg ${ARGN})
|
||||
set(commands_indicator_${arg} 1)
|
||||
endforeach()
|
||||
|
||||
if(commands_indicator_APPROXIMATE)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/approximate ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_COMPARE)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/compare ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/compare ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_VERTEX)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/vertex ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/vertex ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_IS_VERTICAL)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/is_vertical ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/is_vertical ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_COMPARE_X_ON_BOUNDARY)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/compare_x_on_boundary ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/compare_x_on_boundary ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_COMPARE_X_NEAR_BOUNDARY)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/compare_x_near_boundary ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/compare_x_near_boundary ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_COMPARE_Y_NEAR_BOUNDARY)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/compare_y_near_boundary ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/compare_y_near_boundary ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_PARAMETER_SPACE_X)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/parameter_space_x ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/parameter_space_x ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_PARAMETER_SPACE_Y)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/parameter_space_y ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/parameter_space_y ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_COMPARE_Y_AT_X)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/compare_y_at_x ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/compare_y_at_x ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_COMPARE_Y_AT_X_LEFT)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/compare_y_at_x_left ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/compare_y_at_x_left ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_COMPARE_Y_AT_X_RIGHT)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/compare_y_at_x_right ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/compare_y_at_x_right ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_MAKE_X_MONOTONE)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/make_x_monotone ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/make_x_monotone ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_INTERSECT)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/intersect ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/intersect ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_SPLIT)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/split ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/split ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_ARE_MERGEABLE)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/are_mergeable ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/are_mergeable ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_MERGE)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/merge ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/merge ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_ASSERTIONS)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/assertions ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/assertions ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_CONSTRUCTOR)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/constructor ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/constructor ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_EQUAL)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/equal ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/equal ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_PUSH_BACK)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/push_back ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/push_back ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_PUSH_FRONT)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/push_front ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/push_front ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_NUMBER_OF_POINTS)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/number_of_points ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/number_of_points ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_COMPARE_ENDPOINTS_XY)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/compare_endpoints_xy ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/compare_endpoints_xy ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_CONSTRUCT_OPPOSITE)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/construct_opposite ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/construct_opposite ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_TRIM)
|
||||
run_trapped_test(test_traits data/${data_dir}/points
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves
|
||||
data/${data_dir}/trim ${traits_type_name})
|
||||
data/${data_dir}/xcurves data/${data_dir}/curves data/${data_dir}/trim ${traits_type_name})
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
|
|
@ -513,32 +467,26 @@ function(execute_commands_traits_adaptor data_dir traits_type_name)
|
|||
# the new structure is not default, so this function executes only
|
||||
# commands that are given as arguments
|
||||
|
||||
set(commands_indicator_ARE_MERGEABLE 0)
|
||||
set(commands_indicator_COMPARE_CW_AROUND_POINT 0)
|
||||
set(commands_indicator_COMPARE_XY 0)
|
||||
set(commands_indicator_COMPARE_Y_AT_X_LEFT 0)
|
||||
set(commands_indicator_COMPARE_X_NEAR_BOUNDARY 0)
|
||||
set(commands_indicator_COMPARE_Y_NEAR_BOUNDARY 0)
|
||||
set(commands_indicator_COMPARE_X_ON_BOUNDARY 0)
|
||||
set(commands_indicator_COMPARE_Y_POSITION 0)
|
||||
set(commands_indicator_IS_BETWEEN_CW 0)
|
||||
set(commands_indicator_IS_BOUNDED 0)
|
||||
set(commands_indicator_IS_IN_X_RANGE 0)
|
||||
set(commands_indicator_MERGE 0)
|
||||
set(commands_indicator_PARAMETER_SPACE_X 0)
|
||||
set(commands_indicator_PARAMETER_SPACE_Y 0)
|
||||
set(commands_indicator_COMPARE_XY 0)
|
||||
set(commands_indicator_COMPARE_X_ON_BOUNDARY 0)
|
||||
set(commands_indicator_COMPARE_X_NEAR_BOUNDARY 0)
|
||||
set(commands_indicator_COMPARE_Y_NEAR_BOUNDARY 0)
|
||||
set(commands_indicator_COMPARE_Y_AT_X_LEFT 0)
|
||||
set(commands_indicator_ARE_MERGEABLE 0)
|
||||
set(commands_indicator_MERGE 0)
|
||||
set(commands_indicator_X_ON_IDENTIFICATION 0)
|
||||
set(commands_indicator_Y_ON_IDENTIFICATION 0)
|
||||
|
||||
set(commands_indicator_IS_BOUNDED 0)
|
||||
set(commands_indicator_IS_IN_X_RANGE 0)
|
||||
set(commands_indicator_COMPARE_Y_POSITION 0)
|
||||
set(commands_indicator_IS_BETWEEN_CW 0)
|
||||
set(commands_indicator_COMPARE_CW_AROUND_POINT 0)
|
||||
foreach(arg ${ARGN})
|
||||
set(commands_indicator_${arg} 1)
|
||||
endforeach()
|
||||
|
||||
if(commands_indicator_ARE_MERGEABLE)
|
||||
run_trapped_test(test_traits_adaptor data/test_adaptor/${data_dir}/points
|
||||
data/test_adaptor/${data_dir}/xcurves data/test_adaptor/${data_dir}/curves
|
||||
data/test_adaptor/${data_dir}/are_mergeable ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_PARAMETER_SPACE_X)
|
||||
run_trapped_test(test_traits_adaptor data/test_adaptor/${data_dir}/points
|
||||
data/test_adaptor/${data_dir}/xcurves data/test_adaptor/${data_dir}/curves
|
||||
|
|
@ -576,6 +524,11 @@ function(execute_commands_traits_adaptor data_dir traits_type_name)
|
|||
data/test_adaptor/${data_dir}/xcurves data/test_adaptor/${data_dir}/curves
|
||||
data/test_adaptor/${data_dir}/compare_y_at_x_left ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_ARE_MERGEABLE)
|
||||
run_trapped_test(test_traits_adaptor data/test_adaptor/${data_dir}/points
|
||||
data/test_adaptor/${data_dir}/xcurves data/test_adaptor/${data_dir}/curves
|
||||
data/test_adaptor/${data_dir}/are_mergeable ${traits_type_name})
|
||||
endif()
|
||||
if(commands_indicator_MERGE)
|
||||
run_trapped_test(test_traits_adaptor data/test_adaptor/${data_dir}/points
|
||||
data/test_adaptor/${data_dir}/xcurves data/test_adaptor/${data_dir}/curves
|
||||
|
|
@ -629,7 +582,7 @@ function(test_segment_traits_adaptor)
|
|||
|
||||
compile_test_with_flags(test_traits_adaptor segments "${flags}")
|
||||
# if [ -n "${SUCCESS}" ] ; then
|
||||
execute_commands_traits_adaptor(segments segments_traits_adaptor
|
||||
execute_commands_traits_adaptor( segments segments_traits_adaptor
|
||||
COMPARE_XY COMPARE_Y_POSITION COMPARE_CW_AROUND_POINT COMPARE_Y_AT_X_LEFT
|
||||
ARE_MERGEABLE MERGE IS_IN_X_RANGE IS_BETWEEN_CW)
|
||||
endfunction()
|
||||
|
|
@ -645,7 +598,7 @@ function(test_linear_traits_adaptor)
|
|||
|
||||
compile_test_with_flags( test_traits_adaptor linear "${flags}")
|
||||
|
||||
execute_commands_traits_adaptor(linear linear_traits_adaptor
|
||||
execute_commands_traits_adaptor( linear linear_traits_adaptor
|
||||
COMPARE_XY COMPARE_Y_AT_X_LEFT ARE_MERGEABLE MERGE IS_IN_X_RANGE
|
||||
COMPARE_Y_POSITION IS_BETWEEN_CW COMPARE_CW_AROUND_POINT)
|
||||
endfunction()
|
||||
|
|
@ -662,7 +615,7 @@ function(test_spherical_arcs_traits_adaptor)
|
|||
|
||||
compile_test_with_flags( test_traits_adaptor geodesic_arcs_on_sphere "${flags}")
|
||||
|
||||
execute_commands_traits_adaptor(spherical_arcs spherical_arcs_traits_adaptor
|
||||
execute_commands_traits_adaptor( spherical_arcs spherical_arcs_traits_adaptor
|
||||
COMPARE_XY COMPARE_Y_AT_X_LEFT ARE_MERGEABLE MERGE IS_IN_X_RANGE
|
||||
COMPARE_Y_POSITION IS_BETWEEN_CW COMPARE_CW_AROUND_POINT)
|
||||
endfunction()
|
||||
|
|
@ -690,7 +643,7 @@ function(test_construction_segments)
|
|||
set(kernel ${CARTESIAN_KERNEL})
|
||||
set(geom_traits ${SEGMENT_GEOM_TRAITS})
|
||||
set(flags "-DTEST_NT=${nt} -DTEST_KERNEL=${kernel} -DTEST_GEOM_TRAITS=${geom_traits}")
|
||||
compile_and_run_with_flags(test_construction segments "${flags}")
|
||||
compile_and_run_with_flags( test_construction segments "${flags}")
|
||||
endfunction()
|
||||
|
||||
#---------------------------------------------------------------------#
|
||||
|
|
@ -702,7 +655,7 @@ function(test_construction_linear_curves)
|
|||
set(geom_traits ${LINEAR_GEOM_TRAITS})
|
||||
set(topol_traits ${PLANAR_UNBOUNDED_TOPOL_TRAITS})
|
||||
set(flags "-DTEST_NT=${nt} -DTEST_KERNEL=${kernel} -DTEST_GEOM_TRAITS=${geom_traits} -DTEST_TOPOL_TRAITS=${topol_traits}")
|
||||
compile_and_run_with_flags(test_construction linear "${flags}")
|
||||
compile_and_run_with_flags( test_construction linear "${flags}")
|
||||
endfunction()
|
||||
|
||||
#---------------------------------------------------------------------#
|
||||
|
|
@ -714,7 +667,7 @@ function(test_construction_spherical_arcs)
|
|||
set(geom_traits ${GEODESIC_ARC_ON_SPHERE_GEOM_TRAITS})
|
||||
set(topol_traits ${SPHERICAL_TOPOL_TRAITS})
|
||||
set(flags "-DTEST_NT=${nt} -DTEST_KERNEL=${kernel} -DTEST_GEOM_TRAITS=${geom_traits} -DTEST_TOPOL_TRAITS=${topol_traits}")
|
||||
compile_and_run_with_flags(test_construction geodesic_arcs_on_sphere "${flags}")
|
||||
compile_and_run_with_flags( test_construction geodesic_arcs_on_sphere "${flags}")
|
||||
endfunction()
|
||||
|
||||
#---------------------------------------------------------------------#
|
||||
|
|
@ -725,7 +678,7 @@ function(test_construction_polylines)
|
|||
set(kernel ${CARTESIAN_KERNEL})
|
||||
set(geom_traits ${POLYLINE_GEOM_TRAITS})
|
||||
set(flags "-DTEST_NT=${nt} -DTEST_KERNEL=${kernel} -DTEST_GEOM_TRAITS=${geom_traits}")
|
||||
compile_and_run_with_flags(test_construction polylines "${flags}")
|
||||
compile_and_run_with_flags( test_construction polylines "${flags}")
|
||||
endfunction()
|
||||
|
||||
|
||||
|
|
@ -884,16 +837,14 @@ function(test_segment_traits)
|
|||
|
||||
compile_test_with_flags(test_traits segments "${flags}")
|
||||
|
||||
execute_commands_old_structure(segments segment_traits
|
||||
APPROXIMATE ARE_MERGEABLE COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT
|
||||
COMPARE_Y_AT_X_RIGHT CONSTRUCTOR IS_VERTICAL VERTEX)
|
||||
execute_commands_old_structure( segments segment_traits
|
||||
VERTEX IS_VERTICAL COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT CONSTRUCTOR
|
||||
COMPARE_Y_AT_X_RIGHT ARE_MERGEABLE)
|
||||
|
||||
execute_commands_new_structure( segments segment_traits
|
||||
ARE_MERGEABLE
|
||||
COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT
|
||||
IS_VERTICAL)
|
||||
IS_VERTICAL COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT ARE_MERGEABLE)
|
||||
|
||||
run_trapped_test(test_traits
|
||||
run_trapped_test( test_traits
|
||||
data/segments/vertex.pt data/segments/xcurves
|
||||
data/empty.zero data/segments/vertex segment_traits)
|
||||
endfunction()
|
||||
|
|
@ -910,13 +861,11 @@ function(test_non_caching_segment_traits)
|
|||
compile_test_with_flags(test_traits non_caching_segments "${flags}")
|
||||
|
||||
execute_commands_old_structure(segments non_caching_segment_traits
|
||||
APPROXIMATE ARE_MERGEABLE ASSERTIONS
|
||||
COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT CONSTRUCTOR COMPARE_Y_AT_X_RIGHT
|
||||
IS_VERTICAL VERTEX)
|
||||
VERTEX IS_VERTICAL COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT CONSTRUCTOR
|
||||
COMPARE_Y_AT_X_RIGHT ARE_MERGEABLE ASSERTIONS)
|
||||
|
||||
execute_commands_new_structure(segments segment_traits
|
||||
COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT
|
||||
IS_VERTICAL)
|
||||
IS_VERTICAL COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT)
|
||||
|
||||
run_trapped_test(test_traits
|
||||
data/segments/vertex.pt data/segments/xcurves
|
||||
|
|
@ -945,20 +894,23 @@ function(test_polycurve_conic_traits)
|
|||
# Execute_command_new_structure will only run the test on functors provided as the third, fourth and so on arguments.
|
||||
# To see how the input data directory should be structured for each functor, check the execute_commands_new_structure function in this file.
|
||||
execute_commands_new_structure(polycurves_conics polycurve_conic_traits
|
||||
ARE_MERGEABLE
|
||||
COMPARE_ENDPOINTS_XY COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT COMPARE_Y_AT_X_RIGHT
|
||||
CONSTRUCT_OPPOSITE
|
||||
EQUAL
|
||||
COMPARE_Y_AT_X
|
||||
INTERSECT
|
||||
EQUAL
|
||||
IS_VERTICAL
|
||||
MAKE_X_MONOTONE
|
||||
MERGE
|
||||
NUMBER_OF_POINTS
|
||||
SPLIT
|
||||
ARE_MERGEABLE
|
||||
COMPARE_Y_AT_X_LEFT
|
||||
COMPARE_Y_AT_X_RIGHT
|
||||
MAKE_X_MONOTONE
|
||||
PUSH_BACK
|
||||
PUSH_FRONT
|
||||
TRIM
|
||||
VERTEX)
|
||||
NUMBER_OF_POINTS
|
||||
VERTEX
|
||||
CONSTRUCT_OPPOSITE
|
||||
MERGE
|
||||
COMPARE_ENDPOINTS_XY
|
||||
TRIM)
|
||||
|
||||
endfunction()
|
||||
|
||||
|
|
@ -973,21 +925,23 @@ function(test_polycurve_circular_arc_traits)
|
|||
|
||||
compile_test_with_flags(test_traits circular_arc_polycurve "${flags}")
|
||||
|
||||
execute_commands_new_structure(polycurves_circular_arcs
|
||||
polycurve_circular_arc_traits
|
||||
ARE_MERGEABLE
|
||||
COMPARE_ENDPOINTS_XY COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT COMPARE_Y_AT_X_RIGHT
|
||||
CONSTRUCT_OPPOSITE
|
||||
execute_commands_new_structure(polycurves_circular_arcs polycurve_circular_arc_traits
|
||||
COMPARE_Y_AT_X
|
||||
EQUAL
|
||||
INTERSECT
|
||||
IS_VERTICAL
|
||||
SPLIT
|
||||
ARE_MERGEABLE
|
||||
COMPARE_Y_AT_X_LEFT
|
||||
COMPARE_Y_AT_X_RIGHT
|
||||
MAKE_X_MONOTONE
|
||||
MERGE
|
||||
NUMBER_OF_POINTS
|
||||
PUSH_BACK
|
||||
PUSH_FRONT
|
||||
SPLIT
|
||||
VERTEX)
|
||||
NUMBER_OF_POINTS
|
||||
VERTEX
|
||||
CONSTRUCT_OPPOSITE
|
||||
MERGE
|
||||
COMPARE_ENDPOINTS_XY
|
||||
INTERSECT)
|
||||
endfunction()
|
||||
|
||||
#---------------------------------------------------------------------#
|
||||
|
|
@ -1006,15 +960,15 @@ function(test_polycurve_bezier_traits)
|
|||
compile_test_with_flags(test_traits bezier_polycurve "${flags}")
|
||||
|
||||
execute_commands_new_structure(polycurves_bezier test_polycurve_bezier_traits
|
||||
ARE_MERGEABLE
|
||||
COMPARE_ENDPOINTS_XY
|
||||
MERGE
|
||||
EQUAL
|
||||
IS_VERTICAL
|
||||
NUMBER_OF_POINTS
|
||||
MERGE
|
||||
PUSH_BACK
|
||||
PUSH_FRONT
|
||||
VERTEX
|
||||
ARE_MERGEABLE
|
||||
COMPARE_ENDPOINTS_XY
|
||||
# TODO (add data for these tests)
|
||||
# COMPARE_Y_AT_X
|
||||
# SPLIT
|
||||
|
|
@ -1039,8 +993,8 @@ function(test_polyline_traits)
|
|||
compile_test_with_flags(test_traits test_polylines "${flags}")
|
||||
|
||||
execute_commands_old_structure(polylines polyline_traits
|
||||
APPROXIMATE ARE_MERGEABLE
|
||||
COMPARE_Y_AT_X_LEFT COMPARE_Y_AT_X_RIGHT CONSTRUCTOR)
|
||||
CONSTRUCTOR COMPARE_Y_AT_X_LEFT
|
||||
COMPARE_Y_AT_X_RIGHT ARE_MERGEABLE)
|
||||
endfunction()
|
||||
|
||||
#---------------------------------------------------------------------#
|
||||
|
|
@ -1055,8 +1009,8 @@ function(test_non_caching_polyline_traits)
|
|||
compile_test_with_flags(test_traits non_caching_polylines "${flags}")
|
||||
|
||||
execute_commands_old_structure(polylines non_caching_polyline_traits
|
||||
APPROXIMATE ARE_MERGEABLE
|
||||
COMPARE_Y_AT_X_LEFT COMPARE_Y_AT_X_RIGHT CONSTRUCTOR)
|
||||
CONSTRUCTOR COMPARE_Y_AT_X_LEFT
|
||||
COMPARE_Y_AT_X_RIGHT ARE_MERGEABLE)
|
||||
endfunction()
|
||||
|
||||
#---------------------------------------------------------------------#
|
||||
|
|
@ -1071,39 +1025,32 @@ function(test_linear_traits)
|
|||
compile_test_with_flags(test_traits linear "${flags}")
|
||||
|
||||
execute_commands_old_structure(linear/segments linear_traits.segments
|
||||
APPROXIMATE ARE_MERGEABLE
|
||||
COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT COMPARE_Y_AT_X_RIGHT CONSTRUCTOR
|
||||
IS_VERTICAL VERTEX)
|
||||
VERTEX IS_VERTICAL COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT
|
||||
COMPARE_Y_AT_X_RIGHT CONSTRUCTOR ARE_MERGEABLE)
|
||||
|
||||
execute_commands_new_structure(linear/segments linear_traits.segments
|
||||
COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT
|
||||
IS_VERTICAL)
|
||||
IS_VERTICAL COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT)
|
||||
|
||||
run_trapped_test(test_traits
|
||||
data/linear/segments/vertex.pt data/linear/segments/xcurves
|
||||
data/empty.zero data/linear/segments/vertex linear_traits.segments)
|
||||
|
||||
execute_commands_old_structure(linear/rays linear_traits.rays
|
||||
APPROXIMATE ARE_MERGEABLE
|
||||
COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT COMPARE_Y_AT_X_RIGHT CONSTRUCTOR
|
||||
IS_VERTICAL VERTEX)
|
||||
VERTEX IS_VERTICAL COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT
|
||||
COMPARE_Y_AT_X_RIGHT CONSTRUCTOR ARE_MERGEABLE)
|
||||
|
||||
execute_commands_new_structure(linear/rays linear_traits.rays
|
||||
COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT
|
||||
IS_VERTICAL)
|
||||
IS_VERTICAL COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT)
|
||||
|
||||
run_trapped_test(test_traits
|
||||
data/linear/rays/vertex.pt data/linear/rays/xcurves
|
||||
data/empty.zero data/linear/rays/vertex linear_traits.rays)
|
||||
|
||||
execute_commands_new_structure(linear/lines linear_traits.lines
|
||||
COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT
|
||||
COMPARE_X_ON_BOUNDARY COMPARE_X_NEAR_BOUNDARY COMPARE_Y_NEAR_BOUNDARY
|
||||
IS_VERTICAL
|
||||
INTERSECT
|
||||
MERGE
|
||||
IS_VERTICAL COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT INTERSECT
|
||||
SPLIT MERGE
|
||||
PARAMETER_SPACE_X PARAMETER_SPACE_Y
|
||||
SPLIT)
|
||||
COMPARE_X_ON_BOUNDARY COMPARE_X_NEAR_BOUNDARY COMPARE_Y_NEAR_BOUNDARY)
|
||||
endfunction()
|
||||
|
||||
#---------------------------------------------------------------------#
|
||||
|
|
@ -1122,13 +1069,11 @@ function(test_conic_traits)
|
|||
compile_test_with_flags(test_traits conics "${flags}")
|
||||
|
||||
execute_commands_old_structure(conics conic_traits
|
||||
APPROXIMATE ARE_MERGEABLE COMPARE_Y_AT_X_LEFT COMPARE_Y_AT_X_RIGHT
|
||||
INTERSECT SPLIT MERGE)
|
||||
INTERSECT SPLIT MERGE COMPARE_Y_AT_X_LEFT
|
||||
COMPARE_Y_AT_X_RIGHT ARE_MERGEABLE)
|
||||
|
||||
execute_commands_new_structure(conics conic_traits
|
||||
INTERSECT
|
||||
MERGE
|
||||
SPLIT)
|
||||
INTERSECT SPLIT MERGE)
|
||||
|
||||
run_trapped_test(test_traits
|
||||
data/conics/compare.pt data/empty.zero
|
||||
|
|
@ -1147,13 +1092,11 @@ function(test_line_arc_traits)
|
|||
compile_test_with_flags(test_traits line_arcs "${flags}")
|
||||
|
||||
execute_commands_old_structure(circular_lines line_arc_traits
|
||||
APPROXIMATE ARE_MERGEABLE ASSERTIONS
|
||||
COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT COMPARE_Y_AT_X_RIGHT
|
||||
IS_VERTICAL MERGE VERTEX)
|
||||
VERTEX IS_VERTICAL COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT
|
||||
ASSERTIONS COMPARE_Y_AT_X_RIGHT MERGE ARE_MERGEABLE)
|
||||
|
||||
execute_commands_new_structure(circular_lines line_arc_traits
|
||||
COMPARE_Y_AT_X
|
||||
IS_VERTICAL)
|
||||
IS_VERTICAL COMPARE_Y_AT_X)
|
||||
|
||||
run_trapped_test(test_traits
|
||||
data/circular_lines/compare.pt data/empty.zero
|
||||
|
|
@ -1176,14 +1119,11 @@ function(test_circular_arc_traits)
|
|||
compile_test_with_flags(test_traits circular_arcs "${flags}")
|
||||
|
||||
execute_commands_old_structure(circular_arcs circular_arc_traits
|
||||
APPROXIMATE ARE_MERGEABLE ASSERTIONS
|
||||
COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT COMPARE_Y_AT_X_RIGHT
|
||||
IS_VERTICAL MERGE VERTEX)
|
||||
VERTEX IS_VERTICAL COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT
|
||||
ASSERTIONS COMPARE_Y_AT_X_RIGHT MERGE ARE_MERGEABLE)
|
||||
|
||||
execute_commands_new_structure(circular_arcs circular_arc_traits
|
||||
COMPARE_Y_AT_X
|
||||
IS_VERTICAL
|
||||
VERTEX)
|
||||
VERTEX IS_VERTICAL COMPARE_Y_AT_X)
|
||||
endfunction()
|
||||
|
||||
#---------------------------------------------------------------------#
|
||||
|
|
@ -1198,13 +1138,11 @@ function(test_circular_line_arc_traits)
|
|||
compile_test_with_flags(test_traits circular_line_arcs "${flags}")
|
||||
|
||||
execute_commands_old_structure(circular_line_arcs circular_line_arc_traits
|
||||
APPROXIMATE ARE_MERGEABLE ASSERTIONS
|
||||
COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT COMPARE_Y_AT_X_RIGHT CONSTRUCTOR
|
||||
IS_VERTICAL MERGE VERTEX)
|
||||
VERTEX IS_VERTICAL CONSTRUCTOR COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT
|
||||
ASSERTIONS COMPARE_Y_AT_X_RIGHT MERGE ARE_MERGEABLE)
|
||||
|
||||
execute_commands_new_structure(circular_line_arcs circular_line_arc_traits
|
||||
COMPARE_Y_AT_X
|
||||
IS_VERTICAL)
|
||||
IS_VERTICAL COMPARE_Y_AT_X)
|
||||
|
||||
run_trapped_test(test_traits
|
||||
data/circular_line_arcs/vertex.pt data/circular_line_arcs/xcurves
|
||||
|
|
@ -1223,12 +1161,8 @@ function(test_circle_segments_traits)
|
|||
compile_test_with_flags(test_traits circle_segments "${flags}")
|
||||
|
||||
execute_commands_old_structure(circle_segments circle_segments_traits
|
||||
APPROXIMATE ARE_MERGEABLE
|
||||
COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT COMPARE_Y_AT_X_RIGHT CONSTRUCTOR
|
||||
IS_VERTICAL VERTEX)
|
||||
|
||||
execute_commands_new_structure(circle_segments circle_segments_traits
|
||||
APPROXIMATE)
|
||||
VERTEX IS_VERTICAL COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT
|
||||
COMPARE_Y_AT_X_RIGHT CONSTRUCTOR ARE_MERGEABLE)
|
||||
|
||||
run_trapped_test(test_traits
|
||||
data/circle_segments/points data/circle_segments/xcurves.8
|
||||
|
|
@ -1266,8 +1200,8 @@ function(test_bezier_traits)
|
|||
compile_test_with_flags(test_traits Bezier "${flags}")
|
||||
|
||||
execute_commands_old_structure(bezier bezier_traits
|
||||
APPROXIMATE ARE_MERGEABLE ASSERTIONS
|
||||
COMPARE_Y_AT_X_LEFT COMPARE_Y_AT_X_RIGHT CONSTRUCTOR SPLIT)
|
||||
COMPARE_Y_AT_X_LEFT COMPARE_Y_AT_X_RIGHT SPLIT
|
||||
CONSTRUCTOR ASSERTIONS ARE_MERGEABLE)
|
||||
endfunction()
|
||||
|
||||
#---------------------------------------------------------------------#
|
||||
|
|
@ -1283,14 +1217,14 @@ function(test_spherical_arc_traits)
|
|||
compile_test_with_flags(test_traits geodesic_arcs_on_sphere "${flags}")
|
||||
|
||||
execute_commands_old_structure(spherical_arcs spherical_arc_traits
|
||||
APPROXIMATE ARE_MERGEABLE ASSERTIONS
|
||||
COMPARE COMPARE_Y_AT_X_LEFT COMPARE_Y_AT_X_RIGHT INTERSECT CONSTRUCTOR
|
||||
MAKE_X_MONOTONE MERGE SPLIT)
|
||||
COMPARE_Y_AT_X_LEFT COMPARE_Y_AT_X_RIGHT INTERSECT
|
||||
CONSTRUCTOR
|
||||
COMPARE MAKE_X_MONOTONE SPLIT MERGE ASSERTIONS ARE_MERGEABLE)
|
||||
|
||||
execute_commands_new_structure(spherical_arcs spherical_arc_traits
|
||||
APPROXIMATE
|
||||
COMPARE_X_ON_BOUNDARY COMPARE_X_NEAR_BOUNDARY COMPARE_Y_NEAR_BOUNDARY
|
||||
INTERSECT)
|
||||
INTERSECT
|
||||
COMPARE_X_ON_BOUNDARY COMPARE_X_NEAR_BOUNDARY
|
||||
COMPARE_Y_NEAR_BOUNDARY)
|
||||
|
||||
run_trapped_test(test_traits
|
||||
data/spherical_arcs/compare.pt data/spherical_arcs/compare.xcv
|
||||
|
|
@ -1317,12 +1251,8 @@ function(test_rational_arc_traits)
|
|||
data/empty.zero data/compare rational_arc_traits)
|
||||
|
||||
execute_commands_new_structure(rational_arcs rational_arc_traits
|
||||
COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT
|
||||
COMPARE_X_ON_BOUNDARY COMPARE_X_NEAR_BOUNDARY COMPARE_Y_NEAR_BOUNDARY
|
||||
IS_VERTICAL
|
||||
MERGE
|
||||
SPLIT
|
||||
VERTEX)
|
||||
VERTEX IS_VERTICAL COMPARE_Y_AT_X COMPARE_Y_AT_X_LEFT SPLIT MERGE
|
||||
COMPARE_X_ON_BOUNDARY COMPARE_X_NEAR_BOUNDARY COMPARE_Y_NEAR_BOUNDARY)
|
||||
endfunction()
|
||||
|
||||
#---------------------------------------------------------------------#
|
||||
|
|
@ -1343,13 +1273,8 @@ function(test_algebraic_traits_gmp)
|
|||
|
||||
execute_commands_new_structure(algebraic algebraic_traits_gmp
|
||||
COMPARE COMPARE_Y_AT_X COMPARE_Y_AT_X_RIGHT COMPARE_Y_AT_X_LEFT
|
||||
IS_VERTICAL
|
||||
INTERSECT
|
||||
MAKE_X_MONOTONE
|
||||
MERGE
|
||||
PARAMETER_SPACE_X PARAMETER_SPACE_Y
|
||||
SPLIT
|
||||
VERTEX)
|
||||
MAKE_X_MONOTONE IS_VERTICAL VERTEX SPLIT MERGE INTERSECT
|
||||
PARAMETER_SPACE_X PARAMETER_SPACE_Y)
|
||||
endfunction()
|
||||
|
||||
#---------------------------------------------------------------------#
|
||||
|
|
@ -1367,13 +1292,8 @@ function(test_algebraic_traits_leda)
|
|||
|
||||
execute_commands_new_structure(algebraic algebraic_traits_leda
|
||||
COMPARE COMPARE_Y_AT_X COMPARE_Y_AT_X_RIGHT COMPARE_Y_AT_X_LEFT
|
||||
IS_VERTICAL
|
||||
INTERSECT
|
||||
MAKE_X_MONOTONE
|
||||
MERGE
|
||||
PARAMETER_SPACE_X PARAMETER_SPACE_Y
|
||||
SPLIT
|
||||
VERTEX)
|
||||
MAKE_X_MONOTONE IS_VERTICAL VERTEX SPLIT MERGE INTERSECT
|
||||
PARAMETER_SPACE_X PARAMETER_SPACE_Y)
|
||||
endfunction()
|
||||
|
||||
|
||||
|
|
@ -1395,38 +1315,10 @@ function(test_algebraic_traits_core)
|
|||
|
||||
execute_commands_new_structure(algebraic algebraic_traits_core
|
||||
COMPARE COMPARE_Y_AT_X COMPARE_Y_AT_X_RIGHT COMPARE_Y_AT_X_LEFT
|
||||
IS_VERTICAL
|
||||
INTERSECT
|
||||
MAKE_X_MONOTONE
|
||||
MERGE
|
||||
PARAMETER_SPACE_X PARAMETER_SPACE_Y
|
||||
SPLIT
|
||||
VERTEX)
|
||||
MAKE_X_MONOTONE IS_VERTICAL VERTEX SPLIT MERGE INTERSECT
|
||||
PARAMETER_SPACE_X PARAMETER_SPACE_Y)
|
||||
endfunction()
|
||||
|
||||
#---------------------------------------------------------------------#
|
||||
# Draw_aos tests
|
||||
#---------------------------------------------------------------------#
|
||||
|
||||
function (test_drawing_planar)
|
||||
set(nt ${CGAL_GMPQ_NT})
|
||||
set(kernel ${CARTESIAN_KERNEL})
|
||||
set(geom_traits ${POLYLINE_GEOM_TRAITS})
|
||||
set(flags "-DCGAL_USE_BASIC_VIEWER")
|
||||
compile_test_with_flags(test_drawing_planar drawing "${flags}")
|
||||
# target_link_libraries(test_drawing_planar PRIVATE Qt6::Core Qt6::Gui Qt6::Widgets)
|
||||
target_link_libraries(test_drawing_planar PRIVATE CGAL::CGAL_Basic_viewer CGAL::CGAL_Qt6)
|
||||
endfunction()
|
||||
|
||||
function (test_drawing_spherical)
|
||||
set(nt ${CGAL_GMPQ_NT})
|
||||
set(kernel ${CARTESIAN_KERNEL})
|
||||
set(geom_traits ${POLYLINE_GEOM_TRAITS})
|
||||
set(flags "-DTEST_NT=${nt} -DTEST_KERNEL=${kernel} -DTEST_GEOM_TRAITS=${geom_traits}")
|
||||
|
||||
compile_test_with_flags(test_drawing_spherical drawing "${flags}")
|
||||
target_link_libraries(test_drawing_spherical PRIVATE CGAL::CGAL_Basic_viewer CGAL::CGAL_Qt6)
|
||||
endfunction()
|
||||
|
||||
configure("")
|
||||
compile_and_run(construction_test_suite_generator)
|
||||
|
|
@ -1509,10 +1401,6 @@ compile_and_run(test_io)
|
|||
compile_and_run(test_sgm)
|
||||
|
||||
compile_and_run(test_polycurve_intersection)
|
||||
|
||||
test_drawing_planar()
|
||||
test_drawing_spherical()
|
||||
|
||||
if(CGAL_DISABLE_GMP)
|
||||
get_directory_property(LIST_OF_TESTS TESTS)
|
||||
foreach(_test ${LIST_OF_TESTS})
|
||||
|
|
|
|||
|
|
@ -1,454 +0,0 @@
|
|||
|
||||
#include "CGAL/Arr_algebraic_segment_traits_2.h"
|
||||
#include "CGAL/Arr_circle_segment_traits_2.h"
|
||||
#include "CGAL/Arr_conic_traits_2.h"
|
||||
#include "CGAL/Arr_default_dcel.h"
|
||||
#include "CGAL/Arr_enums.h"
|
||||
#include "CGAL/Arr_linear_traits_2.h"
|
||||
#include "CGAL/Arr_rational_function_traits_2.h"
|
||||
#include "CGAL/Arr_segment_traits_2.h"
|
||||
#include "CGAL/Arr_spherical_topology_traits_2.h"
|
||||
#include "CGAL/Arrangement_2.h"
|
||||
#include "CGAL/Arrangement_on_surface_2.h"
|
||||
#include "CGAL/CORE_algebraic_number_traits.h"
|
||||
#include "CGAL/Draw_aos/Arr_viewer.h"
|
||||
#include <array>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include "CGAL/Exact_predicates_exact_constructions_kernel.h"
|
||||
#include "CGAL/Exact_predicates_inexact_constructions_kernel.h"
|
||||
#include <CGAL/draw_arrangement_2.h>
|
||||
#include <vector>
|
||||
|
||||
// void draw_segments_arr_1() {
|
||||
// using Exact_kernel = CGAL::Exact_predicates_exact_constructions_kernel;
|
||||
// using Segment_traits = CGAL::Arr_segment_traits_2<Exact_kernel>;
|
||||
// using Point_2 = Segment_traits::Point_2;
|
||||
// using Arrangement = CGAL::Arrangement_2<Segment_traits>;
|
||||
// // Make a square
|
||||
// Arrangement arr;
|
||||
// auto traits = arr.traits();
|
||||
// auto cst_x_curve = traits->construct_x_monotone_curve_2_object();
|
||||
// auto square = {cst_x_curve({0, 0}, {5, 0}), cst_x_curve({5, 0}, {5, 5}), cst_x_curve({5, 5}, {0, 5}),
|
||||
// cst_x_curve({0, 5}, {0, 0})};
|
||||
// insert(arr, square.begin(), square.end());
|
||||
// auto hole_triangle = {
|
||||
// cst_x_curve({1, 1}, {2, 1}),
|
||||
// cst_x_curve({2, 1}, {2, 2}),
|
||||
// cst_x_curve({2, 2}, {1, 1}),
|
||||
// };
|
||||
// insert(arr, hole_triangle.begin(), hole_triangle.end());
|
||||
// // CGAL::draw_viewer(arr);
|
||||
// }
|
||||
|
||||
// void draw_segments_arr_2() {
|
||||
// using Exact_kernel = CGAL::Exact_predicates_exact_constructions_kernel;
|
||||
// using Segment_traits = CGAL::Arr_segment_traits_2<Exact_kernel>;
|
||||
// using Point_2 = Segment_traits::Point_2;
|
||||
// using X_monotone_curve_2 = Segment_traits::X_monotone_curve_2;
|
||||
// using Arrangement = CGAL::Arrangement_2<Segment_traits>;
|
||||
// Arrangement arr;
|
||||
// auto traits = arr.traits();
|
||||
// auto cst_x_curve = traits->construct_x_monotone_curve_2_object();
|
||||
// // make a hexagon centered at the origin with radius 10
|
||||
// double radius = 10.0;
|
||||
// std::array<Point_2, 6> hexagon_points = {{
|
||||
// {radius * cos(0 * CGAL_PI / 3), radius * sin(0 * CGAL_PI / 3)}, // 0°
|
||||
// {radius * cos(1 * CGAL_PI / 3), radius * sin(1 * CGAL_PI / 3)}, // 60°
|
||||
// {radius * cos(2 * CGAL_PI / 3), radius * sin(2 * CGAL_PI / 3)}, // 120°
|
||||
// {radius * cos(3 * CGAL_PI / 3), radius * sin(3 * CGAL_PI / 3)}, // 180°
|
||||
// {radius * cos(4 * CGAL_PI / 3), radius * sin(4 * CGAL_PI / 3)}, // 240°
|
||||
// {radius * cos(5 * CGAL_PI / 3), radius * sin(5 * CGAL_PI / 3)}, // 300°
|
||||
// }};
|
||||
// std::array<X_monotone_curve_2, 6> hexagon;
|
||||
// for(size_t i = 0; i < hexagon_points.size(); ++i) {
|
||||
// size_t next_i = (i + 1) % hexagon_points.size();
|
||||
// hexagon[i] = cst_x_curve(hexagon_points[i], hexagon_points[next_i]);
|
||||
// }
|
||||
// // rect hole
|
||||
// auto hole_rectangle = {cst_x_curve({-2, -2}, {2, -2}), cst_x_curve({2, -2}, {2, 2}), cst_x_curve({2, 2}, {-2, 2}),
|
||||
// cst_x_curve({-2, 2}, {-2, -2})};
|
||||
// // iso vertex inside rect hole
|
||||
// auto iso_vertex_inside_hole = Point_2{0.5, 0.5};
|
||||
// // degenerate segment below the rect hole
|
||||
// auto degenerate_segment = cst_x_curve({0, -3}, {1, -3});
|
||||
|
||||
// CGAL::insert_point(arr, iso_vertex_inside_hole);
|
||||
// CGAL::insert(arr, hexagon.begin(), hexagon.end());
|
||||
// CGAL::insert(arr, hole_rectangle.begin(), hole_rectangle.end());
|
||||
// CGAL::insert(arr, degenerate_segment);
|
||||
// CGAL::draw_viewer(arr);
|
||||
// }
|
||||
|
||||
// void draw_segments_arr_3() {
|
||||
// // generate random segments and draw them
|
||||
// using Exact_kernel = CGAL::Exact_predicates_exact_constructions_kernel;
|
||||
// using Segment_traits = CGAL::Arr_segment_traits_2<Exact_kernel>;
|
||||
// using Point_2 = Segment_traits::Point_2;
|
||||
// using Arrangement = CGAL::Arrangement_2<Segment_traits>;
|
||||
// using X_monotone_curve_2 = Segment_traits::X_monotone_curve_2;
|
||||
// using Random = CGAL::Random;
|
||||
|
||||
// Arrangement arr;
|
||||
// auto traits = arr.traits();
|
||||
// auto cst_x_curve = traits->construct_x_monotone_curve_2_object();
|
||||
// Random random;
|
||||
// std::vector<X_monotone_curve_2> segments;
|
||||
// std::cout << "Generating random segments..." << std::endl;
|
||||
// for(int i = 0; i < 100; ++i) {
|
||||
// // generate random points
|
||||
// Point_2 p1(random.get_double(-100, 100), random.get_double(-100, 100));
|
||||
// Point_2 p2(random.get_double(-100, 100), random.get_double(-100, 100));
|
||||
// // create a segment
|
||||
// X_monotone_curve_2 seg = cst_x_curve(p1, p2);
|
||||
// segments.push_back(seg);
|
||||
// }
|
||||
|
||||
// std::cout << "Inserting segments into the arrangement..." << std::endl;
|
||||
// // insert segments into the arrangement
|
||||
// CGAL::insert(arr, segments.begin(), segments.end());
|
||||
|
||||
// // draw the arrangement
|
||||
// // CGAL::draw_viewer(arr);
|
||||
// }
|
||||
|
||||
// void draw_segments_arr_4() {
|
||||
// using Exact_kernel = CGAL::Exact_predicates_exact_constructions_kernel;
|
||||
// using Segment_traits = CGAL::Arr_segment_traits_2<Exact_kernel>;
|
||||
// using Point_2 = Segment_traits::Point_2;
|
||||
// using X_monotone_curve_2 = Segment_traits::X_monotone_curve_2;
|
||||
// using Arrangement = CGAL::Arrangement_2<Segment_traits>;
|
||||
// Arrangement arr;
|
||||
// auto traits = arr.traits();
|
||||
// auto cst_x_curve = traits->construct_x_monotone_curve_2_object();
|
||||
|
||||
// std::vector<X_monotone_curve_2> segments;
|
||||
|
||||
// std::vector<Point_2> polyline1{
|
||||
// {6, -21}, {6, -3}, {13, -3}, {13, -12}, {18, -12}, {18, -4}, {18, -3}, {25, -3}, {25, -21}, {6, -21},
|
||||
// };
|
||||
// for(size_t i = 0; i < polyline1.size() - 1; ++i) {
|
||||
// segments.push_back(cst_x_curve(polyline1[i], polyline1[i + 1]));
|
||||
// }
|
||||
|
||||
// std::vector<Point_2> polyline2{
|
||||
// {-27, -14}, {-24, -14}, {-21, -16}, {-19, -18}, {-18, -21}, {-17, -24}, {-18, -28}, {-19, -30}, {-22, -32},
|
||||
// {-24, -33}, {-29, -33}, {-34, -33}, {-38, -32}, {-43, -30}, {-46, -29}, {-50, -25}, {-53, -21}, {-53, -17},
|
||||
// {-54, -12}, {-53, -7}, {-52, -2}, {-50, 2}, {-45, 5}, {-40, 6}, {-34, 7}, {-29, 7}, {-23, 7},
|
||||
// {-20, 6}, {-18, 5}, {-16, 2}, {-15, 0}, {-16, -3}, {-17, -3}, {-18, -1}, {-19, 1}, {-20, 4},
|
||||
// {-22, 4}, {-26, 4}, {-28, 4}, {-31, 4}, {-33, 4}, {-37, 4}, {-41, 3}, {-44, 2}, {-47, 1},
|
||||
// {-48, 0}, {-49, -2}, {-50, -5}, {-51, -8}, {-51, -13}, {-51, -16}, {-50, -18}, {-49, -22}, {-46, -24},
|
||||
// {-42, -27}, {-40, -29}, {-36, -29}, {-32, -30}, {-28, -31}, {-24, -31}, {-21, -30}, {-19, -28}, {-19, -25},
|
||||
// {-20, -23}, {-21, -21}, {-24, -18}, {-26, -16}, {-27, -15}, {-27, -14},
|
||||
// };
|
||||
// for(size_t i = 0; i < polyline2.size() - 1; ++i) {
|
||||
// segments.push_back(cst_x_curve(polyline2[i], polyline2[i + 1]));
|
||||
// }
|
||||
|
||||
// CGAL::insert(arr, segments.begin(), segments.end());
|
||||
|
||||
// CGAL::draw_viewer(arr);
|
||||
// }
|
||||
|
||||
// void draw_segments_arr_5() {
|
||||
// using Exact_kernel = CGAL::Exact_predicates_exact_constructions_kernel;
|
||||
// using Segment_traits = CGAL::Arr_segment_traits_2<Exact_kernel>;
|
||||
// using Point_2 = Segment_traits::Point_2;
|
||||
// using X_monotone_curve_2 = Segment_traits::X_monotone_curve_2;
|
||||
// using Arrangement = CGAL::Arrangement_2<Segment_traits>;
|
||||
// Arrangement arr;
|
||||
// auto traits = arr.traits();
|
||||
// auto cst_x_curve = traits->construct_x_monotone_curve_2_object();
|
||||
|
||||
// std::vector<X_monotone_curve_2> segments;
|
||||
|
||||
// std::vector<Point_2> polyline1{
|
||||
// {11, 23}, {12, -13}, {17, -13}, {18, 1}, {18, 16}, {18, 23}, {15, 35}, {15, 44}, {18, 47}, {19, 42},
|
||||
// {19, 37}, {20, 28}, {23, 21}, {23, 9}, {24, -7}, {22, -15}, {20, -19}, {15, -19}, {10, -16}, {7, -14},
|
||||
// {7, -3}, {5, 11}, {1, 20}, {0, 35}, {1, 45}, {3, 51}, {5, 53}, {11, 53}, {19, 53}, {23, 49},
|
||||
// {25, 40}, {28, 31}, {34, 16}, {35, 7}, {38, -11}, {44, -11}, {43, -7}, {43, -5}, {42, 7}, {40, 23},
|
||||
// {38, 30}, {35, 49}, {19, 57}, {8, 58}, {-2, 55}, {-2, 30}, {-3, 15}, {-3, -16}, {1, -20}, {12, -22},
|
||||
// {20, -22}, {25, -21}, {26, -14}, {28, -3}, {27, 15}, {23, 31}, {22, 44}, {20, 49}, {15, 49}, {10, 46},
|
||||
// {8, 39}, {8, 32}, {8, 28}, {11, 23},
|
||||
// };
|
||||
// for(size_t i = 0; i < polyline1.size() - 1; ++i) {
|
||||
// segments.push_back(cst_x_curve(polyline1[i], polyline1[i + 1]));
|
||||
// }
|
||||
|
||||
// CGAL::insert(arr, segments.begin(), segments.end());
|
||||
|
||||
// CGAL::draw_viewer(arr);
|
||||
// }
|
||||
|
||||
// void draw_segments_arr_6() {
|
||||
// using Exact_kernel = CGAL::Exact_predicates_exact_constructions_kernel;
|
||||
// using Segment_traits = CGAL::Arr_segment_traits_2<Exact_kernel>;
|
||||
// using Point_2 = Segment_traits::Point_2;
|
||||
// using X_monotone_curve_2 = Segment_traits::X_monotone_curve_2;
|
||||
// using Arrangement = CGAL::Arrangement_2<Segment_traits>;
|
||||
// Arrangement arr;
|
||||
// auto traits = arr.traits();
|
||||
// auto cst_x_curve = traits->construct_x_monotone_curve_2_object();
|
||||
|
||||
// std::vector<X_monotone_curve_2> segments;
|
||||
|
||||
// std::vector<Point_2> polyline1{
|
||||
// {9, -3}, {11, -34}, {26, -34}, {26, -8}, {26, -34}, {36, -34}, {36, -31}, {36, -27}, {37, -23}, {41, -23},
|
||||
// {47, -23}, {49, -16}, {49, -2}, {42, 10}, {41, 0}, {41, -19}, {41, 0}, {42, 10}, {30, 10}, {28, 6},
|
||||
// {28, 2}, {29, -30}, {28, 2}, {28, 6}, {30, 10}, {42, 10}, {29, 16}, {18, 12}, {9, -3},
|
||||
// };
|
||||
// for(size_t i = 0; i < polyline1.size() - 1; ++i) {
|
||||
// segments.push_back(cst_x_curve(polyline1[i], polyline1[i + 1]));
|
||||
// }
|
||||
|
||||
// CGAL::insert(arr, segments.begin(), segments.end());
|
||||
|
||||
// CGAL::draw_viewer(arr);
|
||||
// }
|
||||
|
||||
// void draw_linear_arr_1() {
|
||||
// using Exact_kernel = CGAL::Exact_predicates_exact_constructions_kernel;
|
||||
// using Traits = CGAL::Arr_linear_traits_2<Exact_kernel>;
|
||||
// using Point_2 = Traits::Point_2;
|
||||
// using Line_2 = Traits::Line_2;
|
||||
// using Ray_2 = Traits::Ray_2;
|
||||
// using Curve_2 = Traits::Curve_2;
|
||||
// using Arrangement = CGAL::Arrangement_2<Traits>;
|
||||
// using Face_const_handle = Arrangement::Face_const_handle;
|
||||
// using Halfedge_const_handle = Arrangement::Halfedge_const_iterator;
|
||||
// using X_monotone_curve_2 = Traits::X_monotone_curve_2;
|
||||
|
||||
// Arrangement arr;
|
||||
// auto x_axis = X_monotone_curve_2(Ray_2(Point_2(0, 0), Point_2(1, 0)));
|
||||
// auto y_axis = X_monotone_curve_2(Ray_2(Point_2(0, 0), Point_2(0, 1)));
|
||||
// CGAL::insert(arr, x_axis);
|
||||
// CGAL::insert(arr, y_axis);
|
||||
|
||||
// CGAL::draw_viewer(arr);
|
||||
// }
|
||||
|
||||
void draw_linear_arr_2() {
|
||||
using Exact_kernel = CGAL::Exact_predicates_exact_constructions_kernel;
|
||||
using Traits = CGAL::Arr_linear_traits_2<Exact_kernel>;
|
||||
using Point_2 = Traits::Point_2;
|
||||
using Line_2 = Traits::Line_2;
|
||||
using Segment_2 = Traits::Segment_2;
|
||||
using Ray_2 = Traits::Ray_2;
|
||||
using Curve_2 = Traits::Curve_2;
|
||||
using Arrangement = CGAL::Arrangement_2<Traits>;
|
||||
using Face_const_handle = Arrangement::Face_const_handle;
|
||||
using Halfedge_const_handle = Arrangement::Halfedge_const_iterator;
|
||||
using X_monotone_curve_2 = Traits::X_monotone_curve_2;
|
||||
|
||||
Arrangement arr;
|
||||
auto& traits = *arr.traits();
|
||||
// Insert a n*n grid, each cell is a square of size 5
|
||||
int n = 5;
|
||||
for(int i = 0; i < n; ++i) {
|
||||
Point_2 p1(i * 5, 0);
|
||||
Point_2 p2(i * 5, 1);
|
||||
CGAL::insert(arr, Curve_2(Line_2(p1, p2)));
|
||||
}
|
||||
for(int i = 0; i < n; ++i) {
|
||||
Point_2 p1(0, i * 5);
|
||||
Point_2 p2(1, i * 5);
|
||||
CGAL::insert(arr, Curve_2(Line_2(p1, p2)));
|
||||
}
|
||||
// Generate a inner square(2*2) for all cells
|
||||
// And an inner triangle for each square
|
||||
for(int i = 0; i < n; ++i) {
|
||||
for(int j = 0; j < n; ++j) {
|
||||
Point_2 p1(i * 5 + 1, j * 5 + 1);
|
||||
Point_2 p2(i * 5 + 4, j * 5 + 4);
|
||||
CGAL::insert(arr, Curve_2(Segment_2(p1, Point_2(p2.x(), p1.y()))));
|
||||
CGAL::insert(arr, Curve_2(Segment_2(Point_2(p1.x(), p2.y()), p2)));
|
||||
CGAL::insert(arr, Curve_2(Segment_2(p1, Point_2(p1.x(), p2.y()))));
|
||||
CGAL::insert(arr, Curve_2(Segment_2(Point_2(p2.x(), p1.y()), p2)));
|
||||
|
||||
// Insert a triangle inside the square
|
||||
Point_2 tri_p1(i * 5 + 2, j * 5 + 2);
|
||||
Point_2 tri_p2(i * 5 + 3, j * 5 + 2);
|
||||
Point_2 tri_p3(i * 5 + 2.5, j * 5 + 3);
|
||||
CGAL::insert(arr, Curve_2(Segment_2(tri_p1, tri_p2)));
|
||||
CGAL::insert(arr, Curve_2(Segment_2(tri_p2, tri_p3)));
|
||||
CGAL::insert(arr, Curve_2(Segment_2(tri_p3, tri_p1)));
|
||||
|
||||
// Connect the triangle to the square
|
||||
Point_2 top(i * 5 + 2.5, j * 5 + 4);
|
||||
CGAL::insert(arr, Curve_2(Segment_2(tri_p1, top)));
|
||||
}
|
||||
}
|
||||
std::cout << "Arrangement has " << arr.number_of_faces() << " faces." << std::endl;
|
||||
CGAL::draw_viewer(arr);
|
||||
}
|
||||
|
||||
// void draw_linear_arr_3() {
|
||||
// using Exact_kernel = CGAL::Exact_predicates_exact_constructions_kernel;
|
||||
// using Traits = CGAL::Arr_linear_traits_2<Exact_kernel>;
|
||||
// using Point_2 = Traits::Point_2;
|
||||
// using Line_2 = Traits::Line_2;
|
||||
// using Segment_2 = Traits::Segment_2;
|
||||
// using Ray_2 = Traits::Ray_2;
|
||||
// using Curve_2 = Traits::Curve_2;
|
||||
// using Arrangement = CGAL::Arrangement_2<Traits>;
|
||||
// using Face_const_handle = Arrangement::Face_const_handle;
|
||||
// using Halfedge_const_handle = Arrangement::Halfedge_const_iterator;
|
||||
// using X_monotone_curve_2 = Traits::X_monotone_curve_2;
|
||||
|
||||
// std::vector<Point_2> points{
|
||||
// {11, 23}, {12, -13}, {17, -13}, {18, 1}, {18, 16}, {18, 23}, {15, 35}, {15, 44}, {18, 47}, {19, 42},
|
||||
// {19, 37}, {20, 28}, {23, 21}, {23, 9}, {24, -7}, {22, -15}, {20, -19}, {15, -19}, {10, -16}, {7, -14},
|
||||
// {7, -3}, {5, 11}, {1, 20}, {0, 35}, {1, 45}, {3, 51}, {5, 53}, {11, 53}, {19, 53}, {23, 49},
|
||||
// {25, 40}, {28, 31}, {34, 16}, {35, 7}, {38, -11}, {44, -11}, {43, -7}, {43, -5}, {42, 7}, {40, 23},
|
||||
// {38, 30}, {35, 49}, {19, 57}, {8, 58}, {-2, 55}, {-2, 30}, {-3, 15}, {-3, -16}, {1, -20}, {12, -22},
|
||||
// {20, -22}, {25, -21}, {26, -14}, {28, -3}, {27, 15}, {23, 31}, {22, 44}, {20, 49}, {15, 49}, {10, 46},
|
||||
// {8, 39}, {8, 32}, {8, 28}, {11, 23},
|
||||
// };
|
||||
|
||||
// Arrangement arr;
|
||||
// auto& traits = *arr.traits();
|
||||
// std::vector<X_monotone_curve_2> segments;
|
||||
// for(size_t i = 0; i < points.size() - 1; ++i) {
|
||||
// Point_2 p1 = points[i];
|
||||
// Point_2 p2 = points[i + 1];
|
||||
// // create a segment
|
||||
// X_monotone_curve_2 seg = traits.construct_x_monotone_curve_2_object()(p1, p2);
|
||||
// segments.push_back(seg);
|
||||
// }
|
||||
|
||||
// // insert segments into the arrangement
|
||||
// CGAL::insert(arr, segments.begin(), segments.end());
|
||||
|
||||
// CGAL::draw_viewer(arr);
|
||||
// }
|
||||
// // supports segments
|
||||
// void draw_circle_segs_arr() {
|
||||
// using Exact_kernel = CGAL::Exact_predicates_exact_constructions_kernel;
|
||||
// using Traits = CGAL::Arr_circle_segment_traits_2<Exact_kernel>;
|
||||
// using Point_2 = Traits::Point_2;
|
||||
// using Curve_2 = Traits::Curve_2;
|
||||
// using Arrangement = CGAL::Arrangement_2<Traits>;
|
||||
|
||||
// auto traits = Traits();
|
||||
// Arrangement arr;
|
||||
// auto cv1 = Curve_2(Exact_kernel::Circle_2({0, 0}, 10));
|
||||
// CGAL::insert(arr, cv1);
|
||||
// CGAL::draw(arr);
|
||||
// }
|
||||
|
||||
// void draw_conic_arcs_arr() {
|
||||
// using Nt_traits = CGAL::CORE_algebraic_number_traits;
|
||||
// using Rational = Nt_traits::Rational;
|
||||
// using Rat_kernel = CGAL::Cartesian<Rational>;
|
||||
// using Rat_point = Rat_kernel::Point_2;
|
||||
// using Rat_segment = Rat_kernel::Segment_2;
|
||||
// using Rat_circle = Rat_kernel::Circle_2;
|
||||
// using Algebraic = Nt_traits::Algebraic;
|
||||
// using Alg_kernel = CGAL::Cartesian<Algebraic>;
|
||||
// using Traits = CGAL::Arr_conic_traits_2<Rat_kernel, Alg_kernel, Nt_traits>;
|
||||
// using Point = Traits::Point_2;
|
||||
// using Conic_arc = Traits::Curve_2;
|
||||
// using X_monotone_conic_arc = Traits::X_monotone_curve_2;
|
||||
// using Arrangement = CGAL::Arrangement_2<Traits>;
|
||||
|
||||
// Arrangement arr;
|
||||
// auto traits = Traits();
|
||||
// auto cst_x_curve = traits.construct_curve_2_object();
|
||||
|
||||
// auto vert_seg = cst_x_curve(Rat_segment(Rat_point(0, 0), Rat_point(1, 0)));
|
||||
// auto hor_seg = cst_x_curve(Rat_segment(Rat_point(0, 0), Rat_point(0, 1)));
|
||||
|
||||
// CGAL::insert(arr, vert_seg);
|
||||
// CGAL::insert(arr, hor_seg);
|
||||
|
||||
// CGAL::draw(arr);
|
||||
// }
|
||||
|
||||
// void draw_algebraic_arr() {
|
||||
// #if CGAL_USE_GMP && CGAL_USE_MPFI
|
||||
// #include <CGAL/Gmpz.h>
|
||||
// using Integer = CGAL::Gmpz;
|
||||
// #elif CGAL_USE_CORE
|
||||
// #include <CGAL/CORE_BigInt.h>
|
||||
// using Integer = CORE::BigInt;
|
||||
// #else
|
||||
// #include <CGAL/leda_integer.h>
|
||||
// using Integer = LEDA::integer;
|
||||
// #endif
|
||||
// using Traits = CGAL::Arr_algebraic_segment_traits_2<Integer>;
|
||||
// using Arrangement = CGAL::Arrangement_2<Traits>;
|
||||
// using Polynomial = Traits::Polynomial_2;
|
||||
// using X_monotone_curve_2 = Traits::X_monotone_curve_2;
|
||||
// using Parameter_space_in_x_2 = Traits::Parameter_space_in_x_2;
|
||||
|
||||
// Arrangement arr;
|
||||
// auto traits = arr.traits();
|
||||
// X_monotone_curve_2 cv;
|
||||
// auto param_space_in_x = traits->parameter_space_in_x_2_object();
|
||||
// auto ctr_cv = traits->construct_curve_2_object();
|
||||
// Polynomial x = CGAL::shift(Polynomial(1), 1, 0);
|
||||
// Polynomial y = CGAL::shift(Polynomial(1), 1, 1);
|
||||
// auto cst_x_curve = traits->construct_x_monotone_segment_2_object();
|
||||
// auto curve = ctr_cv(CGAL::ipower(x, 4) + CGAL::ipower(y, 3) - 1);
|
||||
// CGAL::insert(arr, curve);
|
||||
// // CGAL::draw(arr);
|
||||
// }
|
||||
|
||||
// void draw_rational_arr() {
|
||||
// using AK1 = CGAL::Algebraic_kernel_d_1<CORE::BigInt>;
|
||||
// using Traits = CGAL::Arr_rational_function_traits_2<AK1>;
|
||||
// using Arrangement = CGAL::Arrangement_2<Traits>;
|
||||
// using Polynomial = Traits::Polynomial_1;
|
||||
// using Alg_real = Traits::Algebraic_real_1;
|
||||
// using Bound = Traits::Bound;
|
||||
|
||||
// auto traits = Traits();
|
||||
// auto approx = traits.approximate_2_object();
|
||||
// auto cst_x_curve = traits.construct_x_monotone_curve_2_object();
|
||||
// Arrangement arr;
|
||||
// Polynomial x = CGAL::shift(Polynomial(1), 1);
|
||||
// Polynomial P1 = CGAL::ipower(x, 4) - 6 * x * x + 8;
|
||||
// Alg_real l(Bound(-2.1)), r(Bound(2.1));
|
||||
// auto cv1 = cst_x_curve(P1, l, r);
|
||||
// CGAL::insert(arr, cv1);
|
||||
// // CGAL::draw(arr);
|
||||
// }
|
||||
|
||||
// void draw_spherical_arr() {
|
||||
// using Exact_kernel = CGAL::Exact_predicates_exact_constructions_kernel;
|
||||
// using Direction_3 = Exact_kernel::Direction_3;
|
||||
// using Geodesic_traits = CGAL::Arr_geodesic_arc_on_sphere_traits_2<Exact_kernel>;
|
||||
// using Spherical_topo_traits = CGAL::Arr_spherical_topology_traits_2<Geodesic_traits>;
|
||||
// using Arrangement = CGAL::Arrangement_on_surface_2<Geodesic_traits, Spherical_topo_traits>;
|
||||
// using Point_2 = Geodesic_traits::Point_2;
|
||||
|
||||
// Arrangement arr;
|
||||
// auto traits = arr.geometry_traits();
|
||||
// auto cst_pt = traits->construct_point_2_object();
|
||||
// auto cst_param = traits->parameter_space_in_x_2_object();
|
||||
|
||||
// Point_2 p1 = cst_pt(Direction_3(1, 0, 0));
|
||||
// }
|
||||
|
||||
using Kernel = CGAL::Exact_predicates_inexact_constructions_kernel;
|
||||
using Point = Kernel::Point_2;
|
||||
// void write_polyline(std::string filename, const std::vector<Point>& points) {
|
||||
// std::ofstream ofs_index("/Users/shep/codes/aos_2_js_helper/shapes.txt");
|
||||
// ofs_index << filename << std::endl;
|
||||
// std::ofstream ofs("/Users/shep/codes/aos_2_js_helper/" + filename);
|
||||
// for(const auto& pt : points) {
|
||||
// ofs << pt << "\n";
|
||||
// }
|
||||
// ofs << std::endl;
|
||||
// }
|
||||
|
||||
int main() {
|
||||
// draw_segments_arr_6();
|
||||
draw_linear_arr_2();
|
||||
// test_zone();
|
||||
// draw_conic_arcs_arr();
|
||||
// draw_algebraic_arr();
|
||||
// draw_rational_arr();
|
||||
// draw_circle_segs_arr();
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -1,118 +0,0 @@
|
|||
#include "CGAL/Constrained_triangulation_2.h"
|
||||
#include "CGAL/Graphics_scene.h"
|
||||
#include "CGAL/Triangulation_data_structure_2.h"
|
||||
#include "CGAL/Triangulation_vertex_base_with_info_2.h"
|
||||
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
|
||||
#include <algorithm>
|
||||
#include <cstddef>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include "CGAL/Random.h"
|
||||
#include "CGAL/IO/Color.h"
|
||||
#include "CGAL/draw_triangulation_2.h"
|
||||
#include "CGAL/mark_domain_in_triangulation.h"
|
||||
#include <CGAL/Graphics_scene_options.h>
|
||||
|
||||
template <class PT>
|
||||
struct Polygon_triangulation_gs_options : public CGAL::Graphics_scene_options<typename PT::Triangulation,
|
||||
typename PT::Vertex_handle,
|
||||
typename PT::Finite_edges_iterator,
|
||||
typename PT::Finite_faces_iterator>
|
||||
{
|
||||
using T2 = typename PT::Triangulation;
|
||||
template <class IPM>
|
||||
Polygon_triangulation_gs_options(IPM ipm) {
|
||||
this->colored_face = [](const T2&, const typename PT::Finite_faces_iterator) -> bool { return true; };
|
||||
|
||||
this->face_color = [ipm](const T2&, const typename PT::Finite_faces_iterator fh) -> CGAL::IO::Color {
|
||||
if(!get(ipm, fh)) {
|
||||
std::cout << "Face not in domain, returning black color." << std::endl;
|
||||
return CGAL::IO::Color(0, 0, 0);
|
||||
}
|
||||
CGAL::Random random((unsigned int)(std::size_t)(&*fh));
|
||||
return CGAL::get_random_color(random);
|
||||
};
|
||||
|
||||
this->draw_face = [ipm](const T2&, const typename PT::Finite_faces_iterator fh) -> bool { return true; };
|
||||
|
||||
this->draw_edge = [ipm](const T2& pt, const typename PT::Finite_edges_iterator eh) -> bool {
|
||||
typename PT::Face_handle fh1 = eh->first;
|
||||
typename PT::Face_handle fh2 = pt.mirror_edge(*eh).first;
|
||||
return get(ipm, fh1) || get(ipm, fh2);
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
int main() {
|
||||
using K = CGAL::Exact_predicates_inexact_constructions_kernel;
|
||||
using Vb = CGAL::Triangulation_vertex_base_with_info_2<size_t, K>;
|
||||
using Fb = CGAL::Constrained_triangulation_face_base_2<K>;
|
||||
using Tds = CGAL::Triangulation_data_structure_2<Vb, Fb>;
|
||||
using Cdt = CGAL::Constrained_triangulation_2<K, Tds, CGAL::Exact_predicates_tag>;
|
||||
using Point = K::Point_2;
|
||||
|
||||
Cdt cdt;
|
||||
std::vector<Point> outer = {{4, 1}, {4, 4}, {2.5, 4}, {2.32026, 3.28104}, {2.32026, 2.64052},
|
||||
{2.5, 3}, {3, 2}, {2.32026, 2}, {2.32026, 3.28104}, {2.5, 4},
|
||||
{2.32026, 4}, {2.32026, 1}, {4, 1}};
|
||||
std::vector<Point> inner = {Point(0, 0), Point(0.5, 0), Point(0.5, 0.5), Point(0.5, 0),
|
||||
Point(1, 0), Point(1, 1), Point(0, 1)};
|
||||
std::vector<Point> outer_constraint = {{4, 1},
|
||||
{4, 4},
|
||||
{2.5, 4},
|
||||
{2.32026, 3.28104},
|
||||
{1.32026, 3.28104},
|
||||
{1.32026, 2.64052},
|
||||
{2.32026, 2.64052},
|
||||
{2.5, 3},
|
||||
{3, 2},
|
||||
{2.32026, 2},
|
||||
{1.32026, 2},
|
||||
{1.32026, 3.28104},
|
||||
{2.32026, 3.28104},
|
||||
{2.5, 4},
|
||||
{2.32026, 4},
|
||||
{1.32026, 4},
|
||||
{1.32026, 1},
|
||||
{2.32026, 1},
|
||||
{4, 1}};
|
||||
|
||||
auto add_info = [](const Point& p) { return std::make_pair(p, 1); };
|
||||
|
||||
cdt.insert_with_info<std::pair<Point, size_t>>(boost::make_transform_iterator(outer.begin(), add_info),
|
||||
boost::make_transform_iterator(outer.end(), add_info));
|
||||
// cdt.insert_with_info<std::pair<Point, size_t>>(boost::make_transform_iterator(inner.begin(), add_info),
|
||||
// boost::make_transform_iterator(inner.end(), add_info));
|
||||
cdt.insert_constraint(outer_constraint.begin(), outer_constraint.end(), true);
|
||||
// cdt.insert_constraint(inner.begin(), inner.end(), true);
|
||||
using In_domain_map = CGAL::unordered_flat_map<typename Cdt::Face_handle, bool>;
|
||||
In_domain_map in_domain_map;
|
||||
boost::associative_property_map<In_domain_map> in_domain(in_domain_map);
|
||||
|
||||
CGAL::mark_domain_in_triangulation(cdt, in_domain);
|
||||
|
||||
std::cout << "Number of faces in triangulation: " << cdt.number_of_faces() << std::endl;
|
||||
|
||||
CGAL::Graphics_scene_options<Cdt::Triangulation, Cdt::Vertex_handle, Cdt::Finite_edges_iterator,
|
||||
Cdt::Finite_faces_iterator>
|
||||
gso;
|
||||
gso.face_color = [&](const Cdt::Triangulation&, const typename Cdt::Finite_faces_iterator fh) -> CGAL::IO::Color {
|
||||
if(!in_domain_map[fh]) {
|
||||
return CGAL::IO::Color(255, 255, 255); // black for faces not in domain
|
||||
}
|
||||
std::array<std::size_t, 3> vertices;
|
||||
for(int i = 0; i < 3; ++i) {
|
||||
vertices[i] = fh->vertex(i)->info();
|
||||
}
|
||||
if(std::any_of(vertices.begin(), vertices.end(), [](auto idx) { return idx == 0; })) {
|
||||
return CGAL::IO::Color(255, 255, 255);
|
||||
}
|
||||
CGAL::Random rand((std::size_t)(&*fh));
|
||||
return CGAL::get_random_color(rand);
|
||||
};
|
||||
gso.colored_face = [&](const Cdt::Triangulation&, const typename Cdt::Finite_faces_iterator) -> bool {
|
||||
return true; // always color faces
|
||||
};
|
||||
|
||||
CGAL::draw(cdt, gso, "Polygon Triangulation Viewer");
|
||||
}
|
||||
Loading…
Reference in New Issue