remove color from doc and add eps for latex version

This commit is contained in:
Sébastien Loriot 2009-06-25 07:55:49 +00:00
parent b843eefc3e
commit 30d99aaced
10 changed files with 726 additions and 95 deletions

1
.gitattributes vendored
View File

@ -1335,6 +1335,7 @@ Circular_kernel_3/demo/Circular_kernel_3/images/d_solid_b.gif -text svneol=unset
Circular_kernel_3/demo/Circular_kernel_3/images/d_wire_b.gif -text svneol=unset#image/gif
Circular_kernel_3/doc_tex/Circular_kernel_3/def_circles_extreme_pt.eps -text
Circular_kernel_3/doc_tex/Circular_kernel_3/def_circles_extreme_pt.pdf -text
Circular_kernel_3/doc_tex/Circular_kernel_3/def_meridian.eps -text
Circular_kernel_3/doc_tex/Circular_kernel_3/def_meridian.pdf -text
Circular_kernel_3/doc_tex/Circular_kernel_3/segment_sphere_intersection.png -text
Circular_kernel_3/doc_tex/Circular_kernel_3/segment_sphere_intersection_detail.png -text

View File

@ -40,7 +40,6 @@ fundamental functionalities like intersection, comparisons, inclusion,
etc. More might be provided in the future, as long as only algebraic
numbers of degree two are used.
{\color{cyan} %TAG SKOS
\paragraph{Functionalities relative to a sphere}~
%\label{section-def-on-sphere}
@ -70,9 +69,7 @@ $(\theta,z)$.
% the comparison of $\phi$-coordinates is totally equivalent to the
% comparison of $z$-coordinates, and that $z$-coordinates are already
% used for the general objects in 3D.
}%TAG SKOS
{\color{magenta} %TAG SKOS
\textbf{Definition of a meridian.}
Given a sphere and its associated cylindrical coordinate system, a meridian of that
sphere is a circular arc consisting of the points having the same theta-coordinate
@ -84,7 +81,6 @@ direction of $M$ and the two poles. The sense of $M$ disambiguates the choice am
pair of meridians thus defined.
On Fig.~\ref{fig-def-meridian}, the normal vectors $n_0$ and $n_1$ define
two meridians of $S$: the circular arcs $A_0$ and $A_1$ respectively.
}%TAG SKOS
\begin{ccTexOnly}
\begin{figure}[ht!]
@ -99,7 +95,6 @@ The $\theta$-coordinates of meridians $A_0$ and $A_1$ are $\theta_0$ and $\theta
\end{figure}
\end{ccTexOnly}
{\color{cyan} %TAG SKOS
\textbf{Types of circles on a sphere.}
Given a sphere, a circle on that sphere is termed
\textit{polar} if it goes through only one pole, \textit{bipolar} if
@ -166,7 +161,6 @@ circular arc on a threaded circle is always $\theta$-monotone, and an
arc on a polar or normal circle is $\theta$-monotone if it does not
contain a $\theta$-extremal point, unless it is an endpoint. No such
arc is defined on a bipolar circle.
}%TAG SKOS
\section{Software Design}
@ -213,14 +207,12 @@ The second example illustrates the use of a functor.
\ccIncludeExampleCode{Circular_kernel_3/functor_has_on_3.cpp}
{\color{cyan} %TAG SKOS
The third example illustrates the use of a functor on objects on the
same sphere. The intersection points of two circles on
the same sphere are computed and their cylindrical coordinates are
then compared.
\ccIncludeExampleCode{Circular_kernel_3/functor_compare_theta_3.cpp}
} %TAG SKOS
\section{Design and Implementation History}
@ -231,13 +223,11 @@ choices of design.
Julien Hazebrouck and Damien Leroy participated in a first
prototype.
{\color{cyan} %TAG SKOS
The first version of the package was co-authored by Pedro Machado
Manh\~{a}es de Castro and Monique Teillaud, and integrated in CGAL
3.4. Fr\'ed\'eric Cazals and S\'ebastien Loriot extended the
package by providing functionalities restricted on a given sphere
\cite{cclt-dc3sk-08}.
}%TAG SKOS
Sylvain Pion is acknowledged for helpful discussions.

View File

@ -0,0 +1,699 @@
%!PS-Adobe-3.0 EPSF-3.0
%%Creator: Ipelib 60030 (Ipe 6.0 preview 30)
%%CreationDate: D:20090625082013
%%LanguageLevel: 2
%%BoundingBox: 113 292 470 796
%%HiResBoundingBox: 113.08 292.494 469.156 795.814
%%DocumentSuppliedResources: font PJCRWE+CMR17
%%+ font EQHNIV+CMR12
%%+ font YBZUJS+CMMI12
%%EndComments
%%BeginProlog
%%BeginResource: procset ipe 6.0 60030
/ipe 40 dict def ipe begin
/np { newpath } def
/m { moveto } def
/l { lineto } def
/c { curveto } def
/h { closepath } def
/re { 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
neg 0 rlineto closepath } def
/d { setdash } def
/w { setlinewidth } def
/J { setlinecap } def
/j { setlinejoin } def
/cm { [ 7 1 roll ] concat } def
/q { gsave } def
/Q { grestore } def
/g { setgray } def
/G { setgray } def
/rg { setrgbcolor } def
/RG { setrgbcolor } def
/S { stroke } def
/f* { eofill } def
/f { fill } def
/ipeMakeFont {
exch findfont
dup length dict begin
{ 1 index /FID ne { def } { pop pop } ifelse } forall
/Encoding exch def
currentdict
end
definefont pop
} def
/ipeFontSize 0 def
/Tf { dup /ipeFontSize exch store selectfont } def
/Td { translate } def
/BT { gsave } def
/ET { grestore } def
/TJ { 0 0 moveto { dup type /stringtype eq
{ show } { ipeFontSize mul -0.001 mul 0 rmoveto } ifelse
} forall } def
end
%%EndResource
%%EndProlog
%%BeginSetup
ipe begin
%%BeginResource: font PJCRWE+CMR17
%!PS-AdobeFont-1.1: CMR17 1.0
%%CreationDate: 1991 Aug 20 16:38:24
% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
11 dict begin
/FontInfo 7 dict dup begin
/version (1.0) readonly def
/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
/FullName (CMR17) readonly def
/FamilyName (Computer Modern) readonly def
/Weight (Medium) readonly def
/ItalicAngle 0 def
/isFixedPitch false def
end readonly def
/FontName /PJCRWE+CMR17 def
/PaintType 0 def
/FontType 1 def
/FontMatrix [0.001 0 0 0.001 0 0] readonly def
/Encoding 256 array
0 1 255 {1 index exch /.notdef put} for
dup 101 /e put
dup 104 /h put
dup 108 /l put
dup 110 /n put
dup 111 /o put
dup 49 /one put
dup 112 /p put
dup 114 /r put
dup 115 /s put
dup 116 /t put
dup 117 /u put
dup 48 /zero put
readonly def
/FontBBox{-33 -250 945 749}readonly def
currentdict end
currentfile eexec
d9d66f633b846a97b686a97e45a3d0aa052a014267b7904eb3c0d3bd0b83d891
016ca6ca4b712adeb258faab9a130ee605e61f77fc1b738abc7c51cd46ef8171
9098d5fee67660e69a7ab91b58f29a4d79e57022f783eb0fbbb6d4f4ec35014f
d2decba99459a4c59df0c6eba150284454e707dc2100c15b76b4c19b84363758
469a6c558785b226332152109871a9883487dd7710949204ddcf837e6a8708b8
2bdbf16fbc7512faa308a093fe5f075ea0a10a15b0ed05d5039da41b32b16e95
a3ce9725a429b35bad796912fc328e3a28f96fcada20a598e247755e7e7ff801
bdb00e9b9b086bdbe6edcf841a3eafc6f5284fed3c634085ba4ee0fc6a026e96
96d55575481b007bf93ca452ee3f71d83faab3d9dedd2a8f96c5840eae5be5dc
9322e81dff5e250deb386e12a49fc9fbf9b4c25c3283f3cea74b8278a1b09da7
e9ae4fbaaf23edf5a3e07d39385d521547c3aaab8eb70549756eba8ef445af4a
497ca924accc3dd5456f8e2c7e36946a5bf14e2e959895f7c94f49137256be46
4a238684d52792234869eae1a6d8adf4e138b79472d2a90a6ca99e2394cc20cd
3841733046175b20cebe372327bf13428eed6a3e2fdf84c2dba4b0ad584ee9df
b51828d3b8f385846158c29c9ac3496cb9692dd10219697b2ed4d425c3957fd8
c4600d76e045c561216ef05d38177243c314877a69a1c22e3bec611a2ee5a216
9b7c264cf6d1839dbbd78a40610f2c0d7c2fe09ffa9822ff55035ad52546970f
83eed2d30eabb1f303091ebc11a5379b12bb3f405e371519a53ea9d66174ed25
a2e55463ec71a97be4c04b39e68112956117c8252db6fb14ab64534b4bcd568b
246db833982b38cde7268bbf74b6b0c18091e1b1f87d32d66f4dd023d1f10d2a
7736a960f72ac01f733a11023832cd68fb6288a5977743f781214d8fa9c0c3f7
80001321d4397771f728fd9ee57cfe7d9192b887ec883eb1505068261dc40089
7b7d2820f06515cd74513521f6397feab3ad3572d9a8269430e407e357422461
1785fc2782047f4c0339d79b16862d939f3a37f78e4e2174e4fbf132539cb760
207999ff86f6a3ebe48eb0a1ca635450fdeef79eb16d853f3bf4b41eb1d90e43
a8fd2ebd81eb1980071c0b0a0c9ca997dcd95ceba053b4aa7e54e0c1d8932f04
2592283eb81ec737f3d5a3279c4615eb6ac4bd25f9f185b1fdc3eee38658a343
37b49010d218f7b0a22a17ba17bcc2f0717a0a4a8d5e97d9fa4d37e1aad5abe4
9cc00416f48fd14badf1f910f5f2e688c1ac51486514bd2a514c281257278ccf
70efd7f4506e4e529946c91b84891d9a72e6f768ddd91caab48827680dc025b9
d87658d54e64adb0243b2f6b419fbfdfedab78131b37ef1b90bda141e0b5c988
082f3dbb539c47974fbae86ad2a06b9756afaf90b1099ac7bd6d9cfd4d9df036
09385a670fc5ee7ba438f5d0a11c8f75251e95c4deae9457fe7ea76c53ba62c3
1985d7aee06721d04e0346e5294de6309d2920588a2870f065a155aaa232dc5a
ea78cf8ced532fe2519a238ed0f0417eab183cda68ae2ef781d5430f88250948
ce3834867a11bda3fdf8ce9686629eb16ddc4b2f73aabeabcc50dedae5847875
16cf26fee1ac8aa4bec19e42591eca1746b9ceb46c130fa9f31ca5dcbf084f81
d1fa2f2428392857b3db463af073aad90f21e13b80d6c8ab9703d27ef20c19fb
955a5f5106a3c9a586e001b236c28360f6f4e73c1a346e75287ad1578ad80a08
009d441479f736c188bd4a6552b2badfad04d2ca2043c8a9eded080fe104f8c8
d349c2f61d5ffa4ca3b76dcef03097464390306e074c457a153159d0cadb2b93
b131aeb6cdf712bbc51b44250172d5169f2604237d26f7b568012cc038bb30db
93a2a953e6177e94948a1cc78579ee3b0fcb1bccbbde1f60fab5e6dbb157551c
73385509c153a1b292db15cd2ea55418f5228edb31251f056f891f42e5db3f93
4620584b88b4dbf3da891998266e55a46bc58d87381c05b15fd8ac54b9d9011a
d0df54d86c66d7b789ba0b49f694b30ce1e1351f5966ef00bb94612fd4efc0c7
135a758362ebb4efa2bd924a5ad3626c212d4b60d78d43e01f4a95f43a9cc864
61b23bc76e198d6cfeab63b7471f3d8f02f821e05cb54083f6434f96759696f4
97a71bc91f1b3469aadbbe6d8e1cc069791f415ca84c131cd40b536c11983f57
3ffc00b21c405ebe4a266d77139a6fb0cd39d30fda6527c335d424af9f747097
2662eea9ad26a116372cb7ce297378f14cd0e10b351ce6a06a7205212ab3bb0c
d0993282ac60f09fcde49ffee4217c1f591119d253274e29965e249ab7479a67
3330257b59f4e00a630c9d0352496efcc0eae25ecb767260082ab955d192d445
03a65d11cf0e9b31595bcd66270e5b2c8e00ae70721c07db4def8025a8523091
d8cbf68b108503d15bd01c5f6e327e226da1f1bcff2c317025fb27ab895f9fb1
f19a4d79350778e25f0b5ca3d8f177bbb8c7cea695de4e682ae3a50b70416232
7a7afc7cef57ea438b442c975633e4b1c36b6f133d0148f71605538d96fc5b25
ee361efe2b54aa96ac6954276ca8a491d7107adaaf7070733e74471b35af1a15
e9d6ecd1602498e3140e93df49a29094a8a1d0913f7b78999343a9023d522c05
d753b2eadfcf4a1725ad67ee94fae0ba4f9bd39a87bd13da2cd62a9d42c14bdf
157eab60793d8b9e8c39be2d4f446590c961d0cb7ad2dcf4ccbebd253c12d566
927543db1adf2540ae91c0cc8de7d6d1f39fc1513cbb72dc0de5031f202bed95
ec79eaf01299ff92ae3895507392301bb770abf01d460b799b6b270478107d42
5e6932638a23adb896bebff4877910f640b52a97ce6eed8f71ec60b59d206ee7
204e02313fac9da55db542051cd6ba0e857edf17346a37142ed3025fdd3fa6a7
078077253c6ebae3eec3f0fdc897518a863dabe868bfa9618e134b7e5b9eab64
05e501e1a1a0acd0d5ab1a7f590403db7fb5c73e4cd133c669b4d38ac00df90e
be37320af08e96610e00a3071bb51cd79d0b9165c83f8d92b3aa6dd9fcdd9f2b
f560ff0a8cebf14a7ce027380d933c625a63e65b11950bdbb9e71967db06038f
40f45d6055bcdd47a40ce8739c3ca42124a5810c7982c751e35d6ccd896da599
a6594037b011f6598554d702513a2f1a881facc5048a597abfa24434f14fbd3c
5992ad84d46b511e38d52190279da1f50b331d85583160187b5552650d87656b
dae65a10aedfa32a64f06113ea1b49be16d721c014bec286526addb30e5df713
5d81f263cd654e15b1ffdc0e016189208877af8dd2d0811c63308859dd5f5a19
545a2d20c4b86a0fb14bb8f1c45a91d4379abc2e8af22d02b7278b435db3b914
ed5081637eb36244ce39121bc44d6bf643b49c98ca20516ccda8137776bf3b55
258c11ec31066bcde69b8c3e51502f9419b4b8e08218eefdd20bd9995b4064b7
e1fab3d9dc7dd840bcdd131a05bb7bb9520682c361702c80390ca9218f1790e0
d6604f82ecbbdf98b3b4fdffe66084335f8738257fc30c9d00ee936e542e0d28
ed46a45a72f03746e9321233bdba24f89ca4d261175cae53cdc4fc009708dfe5
345bb6e0fa83c600e85780aca380a4432e0d52323b44694fbb5d30796fb3a485
ee9cda6adfa3b2c16927b0a66df8d8f92766f780002a24bfab46c066cc1dc7a8
00075fd69e19e6792b3cf03694d2e40268ad44b87c8a0b7f2b
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
cleartomark
%%EndResource
/F15 /PJCRWE+CMR17 findfont definefont pop
%%BeginResource: font EQHNIV+CMR12
%!PS-AdobeFont-1.1: CMR12 1.0
%%CreationDate: 1991 Aug 20 16:38:05
% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
11 dict begin
/FontInfo 7 dict dup begin
/version (1.0) readonly def
/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
/FullName (CMR12) readonly def
/FamilyName (Computer Modern) readonly def
/Weight (Medium) readonly def
/ItalicAngle 0 def
/isFixedPitch false def
end readonly def
/FontName /EQHNIV+CMR12 def
/PaintType 0 def
/FontType 1 def
/FontMatrix [0.001 0 0 0.001 0 0] readonly def
/Encoding 256 array
0 1 255 {1 index exch /.notdef put} for
dup 49 /one put
dup 48 /zero put
readonly def
/FontBBox{-34 -251 988 750}readonly def
currentdict end
currentfile eexec
d9d66f633b846a97b686a97e45a3d0aa052a014267b7904eb3c0d3bd0b83d891
016ca6ca4b712adeb258faab9a130ee605e61f77fc1b738abc7c51cd46ef8171
9098d5fee67660e69a7ab91b58f29a4d79e57022f783eb0fbbb6d4f4ec35014f
d2decba99459a4c59df0c6eba150284454e707dc2100c15b76b4c19b84363758
469a6c558785b226332152109871a9883487dd7710949204ddcf837e6a8708b8
2bdbf16fbc7512faa308a093fe5cf4e9d2405b169cd5365d6eced5d768d66d6c
68618b8c482b341f8ca38e9bb9bafcfaad9c2f3fd033b62690986ed43d9c9361
3645b82392d5cae11a7cb49d7e2e82dcd485cba04c77322eb2e6a79d73dc194e
59c120a2dabb9bf72e2cf256dd6eb54eecba588101abd933b57ce8a3a0d16b28
51d7494f73096df53bdc66bbf896b587df9643317d5f610cd9088f9849126f23
dde030f7b277dd99055c8b119cae9c99158ac4e150cdfc2c66ed92ebb4cc092a
aa078ce16247a1335ad332daa950d20395a7384c33ff72eaa31a5b89766e635f
45c4c068ad7ee867398f0381b07cb94d29ff097d59ff9961d195a948e3d87c31
821e9295a56d21875b41988f7a16a1587050c3c71b4e4355bb37f255d6b237ce
96f25467f70fa19e0f85785ff49068949ccc79f2f8ae57d5f79bb9c5cf5eed5d
9857b9967d9b96cdcf73d5d65ff75afabb66734018bae264597220c89fd17379
26764a9302d078b4eb0e29178c878fd61007eea2ddb119ae88c57ecfef4b71e4
140a34951ddc3568a84cc92371a789021a103a1a347050fda6ecf7903f67d213
1d0c7c474a9053866e9c88e65e6932ba87a73686eab0019389f84d159809c498
1e7a30ed942eb211b00dbff5bcc720f4e276c3339b31b6eabbb078430e6a09bb
377d3061a20b1eb98796b8607eecbc699445eaa866c38e02df59f5edd378303a
0733b90e7835c0aaf32ba04f1566d8161ea89cd4d14ddb953f8b910bfc8a7f03
5020f55ef8fc2640adada156f6cf8f2eb6610f7ee8874a26cbe7cd154469b9f4
ed76886b3fb679ffdeb59bb6c55af7087ba48b75ee2fb374b19bcc421a963e15
fe05ecaaf9eecdf4b2715010a320102e6f8ccaa342fa11532671cccc52875960
84cc1832a068f03077baa0c4cb6eb8a6acf53741914ad12120f8be6f0a9a65bf
0c099b28a58f40bcc782438962b9ef94fffd64b4825c08e2f64f1c494f2fe514
0206f432b586845dee85c5a0d896a89f2ee07b93cb341de53930f82aeaebdd18
5005d096e36bf691de22dba7f5d63f1552ae0bc8e675e2fb600691535bc72bfd
8ef2b5b1d9076592e540d76a56c21f61a5e1ecbc18ee7e8c8f0990685a38a4e4
81c19c4fad43b6ef537879e828101fe69ad179fb7cc15f0ee9069db29c6af70e
e394970a078d99cb082df51b9c3a31e1526a048fe477f3997e36ad2f35347039
69a74ab1d2628c6558105e71bb6c72688be5beaf2b23c36d3a55888c532a36f6
092870681f340fbd5d423afa2397b20555aa1afbe03502406375c7ee481a5e3c
34613f21902308bf1fdead4fdb076109f23871a698ce725652e1d5d77e34221b
a51a11f44332cdc79c72ecbc9619ae171dafdb333dbd89945282b9fc3b508932
f371f2420bd6a5d79632d5457202c7dceadbf8769717290f99487e129a387169
0d5fa2ef8aa2fa629a0759e0bfddcd68b8d686661203ecd52508da082505c743
b87c5d944c2b40
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
cleartomark
%%EndResource
/F16 /EQHNIV+CMR12 findfont definefont pop
%%BeginResource: font YBZUJS+CMMI12
%!PS-AdobeFont-1.1: CMMI12 1.100
%%CreationDate: 1996 Jul 27 08:57:55
% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
11 dict begin
/FontInfo 7 dict dup begin
/version (1.100) readonly def
/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
/FullName (CMMI12) readonly def
/FamilyName (Computer Modern) readonly def
/Weight (Medium) readonly def
/ItalicAngle -14.04 def
/isFixedPitch false def
end readonly def
/FontName /YBZUJS+CMMI12 def
/PaintType 0 def
/FontType 1 def
/FontMatrix [0.001 0 0 0.001 0 0] readonly def
/Encoding 256 array
0 1 255 {1 index exch /.notdef put} for
dup 65 /A put
dup 80 /P put
dup 83 /S put
dup 99 /c put
dup 110 /n put
dup 18 /theta put
dup 120 /x put
dup 121 /y put
dup 122 /z put
readonly def
/FontBBox{-30 -250 1026 750}readonly def
currentdict end
currentfile eexec
d9d66f633b846a97b686a97e45a3d0aa0529731c99a784ccbe85b4993b2eebde
3b12d472b7cf54651ef21185116a69ab1096ed4bad2f646635e019b6417cc77b
532f85d811c70d1429a19a5307ef63eb5c5e02c89fc6c20f6d9d89e7d91fe470
b72befda23f5df76be05af4ce93137a219ed8a04a9d7d6fdf37e6b7fcde0d90b
986423e5960a5d9fbb4c956556e8df90cbfaec476fa36fd9a5c8175c9af513fe
d919c2ddd26bdc0d99398b9f4d03d6a8f05b47af95ef28a9c561dbdc98c47cf5
5250011d19e9366eb6fd153d3a100caa6212e3d5d93990737f8d326d347b7edc
4391c9df440285b8fc159d0e98d4258fc57892dcc57f7903449e07914fbe9e67
3c15c2153c061eb541f66c11e7ee77d5d77c0b11e1ac55101da976ccacab6993
eed1406fbb7ff30eac9e90b90b2af4ec7c273ca32f11a5c1426ff641b4a2fb2f
4e68635c93db835737567faf8471cbc05078dcd4e40e25a2f4e5af46c234cf59
2a1ce8f39e1ba1b2a594355637e474167ead4d97d51af0a899b44387e1fd933a
323afda6ba740534a510b4705c0a15647afbf3e53a82bf320dd96753639be49c
2f79a1988863ef977b800c9db5b42039c23eb86953713f730e03ea22ff7bb2c1
d97d33fd77b1bdcc2a60b12cf7805cfc90c5b914c0f30a673df9587f93e47cea
5932dd1930560c4f0d97547bcd805d6d854455b13a4d7382a22f562d7c55041f
0fd294bdaa1834820f894265a667e5c97d95ff152531ef97258f56374502865d
a1e7c0c5fb7c6fb7d3c43feb3431095a59fbf6f61cec6d6dee09f4eb0fd70d77
2a8b0a4984c6120293f6b947944be23259f6eb64303d627353163b6505fc8a60
00681f7a3968b6cbb49e0420a691258f5e7b07b417157803fcbe9b9fb1f80fd8
ca0a265b570ba294792dd2fc75ce2c83dcc225b902551dbd11e687eac6e85d2b
02c28359a40ae66a6a6a8862cb17815b41e280313f0efaa9981755611f7f683d
35603984d60bb0c772054355a97a5e03c689e23b04da79080ce4579cc90ef38b
1a64cdd92b907ae83192c3c46c5fc40bb412f6656dc6349e6d29b5936dce94cb
98e3b465fff7574095f57bb3750f1a55f20456933fca64cc1b060e260782bef6
721d38bf65df1f1da5439dbc802b4a9d803bd635c05b9aca4d26c28195a1f4c4
cc623b30b076d4861e89b93e2cf26f6df07199c03ba5466fa3efbd7f77efe068
e55b7186855063934c5716edc3f5056bda963b6b933b546475bcff91c512f411
8d14b1c32c9735281e536f87adbf1ad9aa04d7de2096413ab8b3c9e8b1f6f338
3b80d637d761a7a992cf58188fb0a04fd6c6886a60f27ef31c45e92f4717d8fb
d4a0844a8d9036d5f2bbca2c170f3042f22deb8d151c7135ab91da289886604b
70b9f2a25a7d576fa1d70dc935cdd3e81915e9be11cb03c9fdcfde3700bddaae
d61cd52a78b075ff4fb8be949fcc4b04813776a3451fe65a47d57d7b66499e99
b97c5141d2e05ba86c59535c34ba975381f96a4ec47ea032c6beef9f2e6565a0
0712528976cd8fd94e2f8f2607fee1b55382a62b35fa16c62707f8018b3ff765
2dfb5b836bfa9050042921c72b8d032bdf6c594ccbd796bb15e26398dd34fab2
4dca5fdef424cfb1800057e4cd4218c88daee1bccca10dc115c33e05d53c5f04
2e512b2e4af08b012316e7524910c4111563abb27ab6e746cebf9ce816b349ce
7e2f102c920c27726380fbd329d29addf290883487ca36c1d3a270530780eea0
8aec4786551b7514afdf162c9c8eeda068246f367e88835e166a90fb1a389a34
26422e91ed9d4d51006c846969e9b525242a68394bfbc38bcb99bb5f798d9782
6bb8f3c16da712d11ad17b0d534bfb5a95b4502a2f9b8bf5dbc9a1ace3dc493e
e923986220f71d9ce2fd051d0d196a00e890c9fb0d32dea39359080d5e698e69
3282576eb2c5844299830e89c2d21f0aa3da71a56c2b147f19bbb3f9fd6304e6
b23210adb86c90a4b2cd8b3fc3a1c99e61cdf790e939cd05517bc66464827499
2aeb291af588a2f96475c0be4b98018cae0fcae4344c90f0986a9c4777f335cd
e8507b685e7864d46c27d188f9423122b4cc122a135e7ee9ca3a21909eb7265e
77497fe4f00bff4075453a293d20edaad948a865a6d3ccace3b01d8823ed4ee1
017a4b24ac518973adbbd2bd1cf4bd375c3606c7d92beef4eb807a86449ea8bf
5af49683eec93800b70a9631eb5621b24b3d19ae3a0a476d6c1f25cbcb9de42c
deb124a48dc1128df9620eecd74dd582f1bb65ffb5a03c5d1312cb9cb3971e95
7225ec21990e2cc936aff9be7edb2efa484a7aa1cbab97d27141867ad49ae7d0
c83b134e3b1101fb5a70d28383ac7070fff1548a23734a0900ef05fef6b857a7
e5038ebd0a7dd3e339165a3a5be0fab92dcef434b42dca9122d619824828e002
4db266b4159f080149981fce236e433dbb54e4b3c7a96704ef741ab4293b0474
ea43c1c8eaf264449c6d626d1656a69cbea0e092a6c50ebe4ec3b477b54ae076
a8953d30efe731d5f1ac0ae7fc28206e72eb60ca169484267f15ce701721b6a2
9856d60022551c852e57ac5a84c4c96dce931eab7197e252b627d8089291d06e
54a5802986e126ef89065bbbf7a7a05e2fd300c045492daafaeed468de6a636b
24e6be3405eb90b401d193a35a753ee678a33e8db9c0c13df9edc7ad096545c0
79b5626c5761c001e8168a0bda150fd3be119e4eb56c9e3b0c44d83f5041b379
c00e50e904fad495700cc5f4558be4410fd9773b80d0d91c46796cf9f724d4d2
65d3e3b40bc92e31e9630a84dc053e52516cae5a681f79ddabefe6688db3950b
c5e0dfc1e45b2944bf437215f912be2e887f85eb89f4f782204b7b84c371b7ff
07f0d0c7f327f2c47f870f2cc2d6f541e8ffb58a71e49ce5b76daa3916fcaa0b
e7a84fbee19a5a664b8dfd24caf109314d3f9347e0bd0b71c45532510e1c9570
9df22d72c66c94b928295da9f404a7d5f0ffc902fa8a1865a443a72350e33a35
ab4ac01ef59d22a80a13c73681278c5d3925da7483980daf81ddbadf2cd5f240
32aff86717f448040c905872a3e12a4aa1a0a9d9a4bd5cf7ae00723a33a5ab3d
15c8aea5a42e474050e4b7380c53873fc744ba7464781435e8c34cb642467211
93f2354cbcd9df0fb1e588c9b9770f7c08bd73a4b191557a415662b82ae70b80
00d400d88281b124cfac743d910ae031d5019ba6ff5c91c7027f8dba33558fa5
3929b7360316aae3d45e64ac4b997046fbc75f4b9ac2c5e956828187c6563432
ee8abc9072c829de10ad11d6162081a63c4bf97da09c92019b8b1f3d56cafe55
0d5bcc60ddf903fba881f1aff7717b1399ad5fe510278db286840957070a2813
f186763f42155d68c9bf72c4632f59b5308b288ab8a9cbebb7e02ca7f45dd28d
b4f37c7145f3e80c05fd39bfc66f808a9a12f5fecc06cd03ac8a1861796841fb
e4c3426790d1f98f5f7bb2c4793ca96374be9f28cc009f94d185aa3f86777935
48825ffd349698dfda23a0bd8e8de0840b056ceab1ebf79c51b480e212da080b
57714a16eedc39f0e4a320937f916dbc0cfd47594a04ee2b8ef8d8bf5821829a
be95f300a6a08fd6803e413ff65d5e4f39d7b3dcbf333a01723f3303efa9269e
91e7e5396288e779e7115a4cd5dad1df059f367b2d03607add3f510ca14bb629
414ac7f7db92cef2046cf0b576a9028ed1806250af0aa91d6813f10e2c8457db
f15658b9b000e47af952cb4e8b576fc679581537220c227fd61a15a80b066a75
b16ad907b1bbf2704750ace7be1003658226aabed380382e4bb5de25e9aad53d
7e0c490bccb1f1720dc9149c626daa89a1a9d518e3580792b0b797c35dcae6c2
9cf55c2c5f58434fe88e42d84221c89b1e6c545f05ed6fcd9fa9a4f399aaae62
63cdc463453868024023113c930dec63ce66370f5b6a6b7e0cd6cb7788483722
f2fed4d5c5f5de67056879d00a44ed9113a05606714a1bbe5eae33244c099e17
606a88c0e1f455048aa47680aa6bd236226e55c380281fdcbfef5b807a948155
ce8a1ad32261a45fd186fe0e7c3d92b2a17821f6521d5dc8f7617da4f16478be
b61e58315b6d784b8f917896d109b55d6815f8d416185925abb6d39cda33c48b
aa3a0af87a983471a31fa3c5ee7af5a286f435ec48b88f9f364912cc2a5d8a8e
394a154899754344d0718738eca506f97eb4ece276dd14f8775f0c6712864dec
c8b292003303b1445ec68b1fa076a80d3aa02e259027764f1de62dc7df87b4b8
35b3435eaad159ef1d119f8a3aae2f0f300936044ec1c570cb9cb44d8e69e51b
fb3abd7e32cfb75deee2dd823e89c3ace7b41353c9c6cdb052f8bc15cb2a8e04
8a1ea281ed56e6dfe27caee077652d369a29fadc1582ae8f22c71a717046c41d
acfbe99722507b8b408b50d21ef5a9532a4a378d0f3250cd3cbc6171833fdd46
9fa6ff3d65f437481ed4a2b438461b7e3a0b6a78c6e22fba6fb7262ae20bb1d2
3ec65b96078fdf2f1fff178455610fb3d0a6e5d3ad69af79e521ea3b28400b5c
f92bd8d499f22422a9a85223888f1125f0503cd27ef1bfd71d6de8265ca8a231
8082c62f0f2f50545f40fc4f95959e335d9f3f207f599215b2decbbb99ce983e
e284d6b4d8a1f0ed366c198eacba7e9388e10efe3fb2cebbca53cf1204192cc2
59fa322030b9a5d47af73d94c7768ae061392660ef0fea251bf9fed8a0b86a10
2dfa4ba5833a5d6de97d292404a221347f50422d624f8047094145f85a4b17d2
b6c048eb32fc9972c57623fe30b09d9d1622
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
cleartomark
%%EndResource
/F17 /YBZUJS+CMMI12 findfont definefont pop
%%EndSetup
0 J 1 j
q 1 0 0 1 222.315 728.875 cm 1 0 0 1 0 0 cm 0 g
0 G
1 0 0 1 0 -776.696 cm
BT
/F15 17.2154 Tf 0 780.045 Td [(north)-302(p)-26(ole)]TJ
ET
Q
q 1 0 0 1 299.167 359.022 cm 1 0 0 1 0 0 cm 0 g
0 G
1 0 0 1 0 -776.696 cm
BT
/F15 17.2154 Tf 0 780.045 Td [(south)-302(p)-26(ole)]TJ
ET
Q
q 0.4 w
170.998 642.274 m
170.998 292.897 l
S
Q
q 0.4 w
170.997 642.274 m
397.994 795.414 l
S
Q
q [4] 0 d
0.4 w
302.943 383.159 m
337.752 391.226 363.538 473.643 360.538 567.243 c
357.553 660.352 327.194 729.551 292.546 722.216 c
S
Q
q 0.4 w
292.546 722.217 m
257.716 714.843 231.703 632.943 234.445 539.286 c
237.187 445.629 267.645 375.682 302.475 383.055 c
302.631 383.088 302.787 383.122 302.943 383.159 c
S
Q
q 2 w
301.759 381.834 m
396.385 386.787 469.08 467.511 464.128 562.137 c
459.175 656.763 378.451 729.458 283.825 724.506 c
189.199 719.553 116.504 638.829 121.457 544.203 c
123.66 502.096 141.292 462.275 170.987 432.34 c
S
Q
q [4] 0 d
2 w
170.987 432.34 m
205.398 397.652 252.965 379.281 301.759 381.834 c
S
Q
q 0.4 w
397.995 795.414 m
397.995 688.677 l
S
Q
q [4] 0 d
0.4 w
397.995 688.677 m
397.995 446.036 l
S
Q
q 0.4 w
170.999 292.894 m
302.961 381.919 l
S
Q
q [4] 0 d
0.4 w
302.961 381.919 m
397.996 446.032 l
S
Q
q 1 w
304.542 379.541 m
304.542 380.922 303.422 382.041 302.042 382.041 c
300.661 382.041 299.542 380.922 299.542 379.541 c
299.542 378.16 300.661 377.041 302.042 377.041 c
303.422 377.041 304.542 378.16 304.542 379.541 c
h q f* Q S
Q
q 1 w
292.075 722.378 m
292.075 723.759 290.956 724.878 289.575 724.878 c
288.194 724.878 287.075 723.759 287.075 722.378 c
287.075 720.998 288.194 719.878 289.575 719.878 c
290.956 719.878 292.075 720.998 292.075 722.378 c
h q f* Q S
Q
q 1 0 0 1 113.08 400.842 cm 1 0 0 1 0 0 cm 0 g
0 G
1 0 0 1 0 -782.005 cm
BT
/F17 17.2154 Tf 0 784.587 Td [(n)]TJ/F16 11.9552 Tf 10.062 -2.582 Td [(0)]TJ
ET
Q
q 1 0 0 1 439.443 718.082 cm 1 0 0 1 0 0 cm 0 g
0 G
1 0 0 1 0 -782.005 cm
BT
/F17 17.2154 Tf 0 784.587 Td [(n)]TJ/F16 11.9552 Tf 10.062 -2.582 Td [(1)]TJ
ET
Q
q 1 0 0 1 452.786 463.493 cm 1 0 0 1 0 0 cm 0 g
0 G
1 0 0 1 0 -775.062 cm
BT
/F17 24.7871 Tf 0 775.062 Td [(S)]TJ
ET
Q
q 1 0 0 1 143.374 296.509 cm 1 0 0 1 0 0 cm 0 g
0 G
1 0 0 1 0 -775.062 cm
BT
/F17 24.7871 Tf 0 775.062 Td [(P)]TJ
ET
Q
q 1 0 0 1 207.405 493.73 cm 1 0 0 1 0 0 cm 0 g
0 G
1 0 0 1 0 -770.281 cm
BT
/F17 24.7871 Tf 0 775.063 Td [(A)]TJ/F15 20.6625 Tf 18.194 -4.782 Td [(0)]TJ
ET
Q
q 1 0 0 1 354.741 632.19 cm 1 0 0 1 0 0 cm 0 g
0 G
1 0 0 1 0 -770.281 cm
BT
/F17 24.7871 Tf 0 775.063 Td [(A)]TJ/F15 20.6625 Tf 18.194 -4.782 Td [(1)]TJ
ET
Q
q 0.4 w
292.792 609.512 m
292.792 553.285 l
S
q 292.792 609.512 m
289.459 599.512 l
296.125 599.512 l
h q f* Q S
Q
Q
q 1 0 0 1 223.17 546.152 cm 1 0 0 1 0 0 cm 0 g
0 G
1 0 0 1 0 -784.588 cm
BT
/F17 17.2154 Tf 0 784.588 Td [(x)]TJ
ET
Q
q 1 0 0 1 333.639 505.775 cm 1 0 0 1 0 0 cm 0 g
0 G
1 0 0 1 0 -781.24 cm
BT
/F17 17.2154 Tf 0 784.587 Td [(y)]TJ
ET
Q
q 1 0 0 1 287.703 615.133 cm 1 0 0 1 0 0 cm 0 g
0 G
1 0 0 1 0 -784.588 cm
BT
/F17 17.2154 Tf 0 784.588 Td [(z)]TJ
ET
Q
q 1 w
295.292 553.17 m
295.292 554.551 294.173 555.67 292.792 555.67 c
291.411 555.67 290.292 554.551 290.292 553.17 c
290.292 551.789 291.411 550.67 292.792 550.67 c
294.173 550.67 295.292 551.789 295.292 553.17 c
h q f* Q S
Q
q 1 0 0 1 283.558 555.187 cm 1 0 0 1 0 0 cm 0 g
0 G
1 0 0 1 0 -784.588 cm
BT
/F17 17.2154 Tf 0 784.588 Td [(c)]TJ
ET
Q
q 0.4 w
292.793 553.172 m
330.802 517.98 l
S
q 330.802 517.98 m
325.729 527.22 l
321.199 522.328 l
h q f* Q S
Q
Q
q 0.4 w
292.791 553.168 m
237.638 550.475 l
S
q 237.638 550.475 m
247.789 547.633 l
247.464 554.292 l
h q f* Q S
Q
Q
q [1 3] 0 d
0.4 w
170.997 470.585 m
397.994 623.725 l
S
Q
q 0.4 w
302.697 559.232 m
317.263 557.975 324.637 554.241 319.167 550.893 c
313.697 547.545 297.455 545.85 282.888 547.107 c
273.492 547.918 266.682 549.817 265.012 552.092 c
S
q 302.697 559.232 m
309.47 556.305 l
309.871 560.955 l
h q f* Q S
Q
Q
q 1 0 0 1 252.44 532.604 cm 1 0 0 1 0 0 cm 0 g
0 G
1 0 0 1 0 -777.463 cm
BT
/F17 17.2154 Tf 0 780.045 Td [(\022)]TJ/F16 11.9552 Tf 7.855 -2.582 Td [(0)]TJ
ET
Q
q 1 0 0 1 321.375 553.994 cm 1 0 0 1 0 0 cm 0 g
0 G
1 0 0 1 0 -777.463 cm
BT
/F17 17.2154 Tf 0 780.045 Td [(\022)]TJ/F16 11.9552 Tf 7.855 -2.582 Td [(1)]TJ
ET
Q
q 0.4 w
279.331 544.351 m
269.624 545.876 262.14 548.279 259.301 550.781 c
S
q 279.331 544.351 m
272.779 547.743 l
272.054 543.133 l
h q f* Q S
Q
Q
q 0.4 w
117.544 367.958 m
170.998 404.019 l
S
q 117.544 367.958 m
127.698 370.787 l
123.97 376.314 l
h q f* Q S
Q
Q
q 0.4 w
397.996 722.854 m
451.449 758.915 l
S
q 451.449 758.915 m
441.295 756.086 l
445.023 750.559 l
h q f* Q S
Q
Q
showpage
%%BeginIpeXml: /FlateDecode
%GhVOegMYb8&:Ml+/;UrR]eb!g@KQX7Zj$;&[''K;b+^I3Z7&P.'Be\.L:UJfjHrVo[LWOnGf@kO
%R@TaeB)&60<U.;5f6+F4/:oV-'^E93b-#G3MdLH[BVSUFF^J2l'lI?kH;cJ8Ra!Y=m'?EV#<'R8
%PG.'CUI*coZhgQUhod@N2i/!s6;=B&Vp")2D,saQ(UDeq>'CL8$Hn?[p&CAnjmo-nBKgNQ<N[g)
%cY'GEj$GV?I9Rr17No?%D0]2GhRki%D,oFnlF*g-lhWCYUJPe#X]i.!?S!"oH.fs`k<sf8]t:Ag
%l`RsOnl/\=l8DH*+'Nl*o,\E:(Zk=:,YZn!2:@'j!%LlD>FulaZ<:*oeuTc,?ue=*W-l`K)L0dq
%XK]a>S5tP7IB7);r3D-SX\"58=7tsn_j5t">bPc[8o@l">c@O?;;^@mVG5Z"GM&iGQg:-<]doug
%m.aDZ!O;Cu\$pkbr)7UCCt`b:'T;8$Kt+J\l30D8dqj&*'=LAc1tI_8G!FPKN[$bh-*Fo=#;PP7
%POe8l90=\+?&G<ZZGWNq(QMhXaU^kn&ftC&Z"3`uXCrF'L5dddZc.bu2O`<uM+t(8NQ3s1H#9Zb
%+TiB*(q)G?Dk`+LB]n/IlUEt.A(nMo!Q81'/[hrM@BC"L-Ts!33-G&3RN4ccNjYdd*$oGmc@B`\
%30DIOgU0NY7,sO+?5o+MhU#ZMh>n+d4=Ai-Hqu='KQlM,5^^2&R3]]nB2UW2:>h3CV@O'1kY9_2
%PpIZoJH0JPaBQK7Udn__4)C56^dlG&6Ia+=>gD'VW*IhAY(&C1'6-1NG\h7'`%V$,LiGc8Ga!!Z
%[m?QfW@-j3Z6C!61\jGt"cAcH[d`e#%QOqlrF%%fQMLhE2jGJtG/Q`KYVn46lKr)P@Xi9+Fc6ps
%9K$Q+^8QEi3ClF>Y\Q.[2iNX?"PI2DZ;5,Ar\a_:/VAaR2^)9<I0(S36S*Fmqu0%'&@02f:+V%B
%d\HGc?4ADMeARH"ot2!`i#TQcb4`8iMXFrHa_8&@SA>>s^&),o6Y$csL"o:$ARq6dZni"\pGb3L
%]MQmf>pPNDoT;4@N;2Z3Z3\`J#I7I7X$s_'N^WC0nh9T\P`A\N3[Ja=#J\9.*\NG)bM`$2,,-'1
%MoPB0!%_TkD`a'<2XLO70g3Q1+-7UHYQ#RIINl.fTMlNDWDakgr?5nP:n/-smpk=/#c*rXA?U&b
%56a;!9d(Upc[5F^a7Kf^]H*R2khfiib"7l<r*SsOTE;ja8j\g![Q3W>KW`ZI,SPLU+K9<N=DE`&
%bI27OmeH/6<AH%-OY\OTH6O\gipS"iL94o<ah&(5E59BTTV8\UT0>@kI`tTuJktOs1IUbI>aPV^
%Rh1`R*CNE;`8OPAVC+T]qV5oX%+p??S>JHV=_.VHo/NiNE0;,fXIgSsT$l's&G4O.!sj3mMJ#s_
%aFqJ<J*fOhd!?7A)YN1Y1K,PEh1(4Gf7V6V_#1A'qXjt:@SL5a,,X9`8!S9tF\g=ZqC"n$2%j'C
%jQuA=dR';L(<L/?9Pc7`o83,2hN((A*\M`+N5W,KSuL:fV`d7fQXIZDh<"HEg_cbZG62Aci)am6
%US`VQR/I)HKucF'NI+&1RrXZh&oYjJ!YMl^ET?2!*A'<f1pKo(Bf+AMShfHX#^K2'jDlfJ@]W;<
%f@CM=$Y(Z:j:b3LqMl1YG$sdMH.A0iAJ>Ke/gkA7,8:)]W!>qm!?/6m8:I3Za1pC_.9IPcX!HuV
%2BeJBGG;#qV?&[j0O'Z5&st23*^auqBmGJ2-A_TXY9V/OgZH'En4pWP:b*F2-]E+'O^Du-c8K1(
%7`:%'i2AnWK'WY-)M@-<^><`lk[(t!)g`g"EW~>
%%EndIpeXml
%%Trailer
end
%%EOF

View File

@ -130,7 +130,6 @@ and $z$-coordinates.}
\end{ccRefFunctionObjectConcept}
{\color{cyan} %TAG SKOS
\begin{ccRefFunctionObjectConcept}{SphericalKernel::CompareTheta_3}
\ccCreationVariable{fo}
@ -143,13 +142,11 @@ An object \ccVar\ of this type must provide:
\ccMemberFunction{Comparison_result operator()
(const SphericalKernel::Circular_arc_point_3 &p,
const SphericalKernel::Circular_arc_point_3 &q );}
{Compares the $\theta$-coordinates of $p$ and $q$ in the cylindrical coordinate system relative to {\color{magenta} the context sphere used by the function \ccc{SphericalKernel::compare_theta_3_object}.}%TAG SKOS
\ccPrecond{\ccc{p} and \ccc{q} lie on {\color{magenta} the context sphere used by the function \ccc{SphericalKernel::compare_theta_3_object}}, but do not coincide with its poles.}
{Compares the $\theta$-coordinates of $p$ and $q$ in the cylindrical coordinate system relative to the context sphere used by the function \ccc{SphericalKernel::compare_theta_3_object}.
\ccPrecond{\ccc{p} and \ccc{q} lie on the context sphere used by the function \ccc{SphericalKernel::compare_theta_3_object}, but do not coincide with its poles.}
}
{\color{magenta} %TAG SKOS
\ccMemberFunction{Comparison_result operator()
(const SphericalKernel::Circular_arc_point_3 &p,
const SphericalKernel::Vector_3 &m );}
@ -167,7 +164,6 @@ An object \ccVar\ of this type must provide:
in the cylindrical coordinate system relative to the context sphere used by the function \ccc{SphericalKernel::compare_theta_3_object}.
$m1 \neq (0,0,0)$, $m2 \neq (0,0,0)$ and the $z$-coordinate of $m1$ and $m2$ is $0$.}
} %TAG SKOS
\ccSeeAlso
@ -197,8 +193,8 @@ An object \ccVar\ of this type must provide:
(const SphericalKernel::Circular_arc_point_3 &p,
const SphericalKernel::Circular_arc_point_3 &q );}
{Compares $p$ and $q$ according to the lexicographic ordering on $\theta$- and $z$-coordinates
in the cylindrical coordinate system relative to {\color{magenta} the context sphere used by the function \ccc{SphericalKernel::compare_theta_z_3_object}.}%TAG SKOS
\ccPrecond{\ccc{p} and \ccc{q} lie on {\color{magenta} the context sphere used by the function \ccc{SphericalKernel::compare_theta_z_3_object}}, but do not coincide with its poles.}
in the cylindrical coordinate system relative to the context sphere used by the function \ccc{SphericalKernel::compare_theta_z_3_object}.
\ccPrecond{\ccc{p} and \ccc{q} lie on the context sphere used by the function \ccc{SphericalKernel::compare_theta_z_3_object}, but do not coincide with its poles.}
}
\ccSeeAlso
@ -224,7 +220,6 @@ An object \ccVar\ of this type must provide:
% {Constructs a functor \ccVar\ to compare the position of objects lying on \ccc{sphere} along a given meridian.}
{\color{magenta} %TAG SKOS
\ccMemberFunction{Comparison_result operator()
( const SphericalKernel::Circular_arc_3& a0,
const SphericalKernel::Circular_arc_3& a1,
@ -232,18 +227,18 @@ An object \ccVar\ of this type must provide:
{
compares the $z$-coordinates of the two intersections points of $a0$ and $a1$ with the meridian defined by $m$ (see section \ref{section-SK-objects}).
\ccPrecond{
\ccc{a0} and \ccc{a1} lie on {\color{magenta} the context sphere used by the function \ccc{SphericalKernel::compare_z_at_theta_3_object}.} %TAG SKOS
\ccc{a0} and \ccc{a1} lie on the context sphere used by the function \ccc{SphericalKernel::compare_z_at_theta_3_object}.
$m \neq (0,0,0)$ and the $z$-coordinate of $m$ is $0$.
Arcs $a0$ and $a1$ are $\theta$-monotone and both intersected by the meridian defined by $m$ (see section \ref{section-SK-objects}).}}
} %TAG SKOS
\ccMemberFunction{Comparison_result operator()
( const SphericalKernel::Circular_arc_point_3& p,
const SphericalKernel::Circular_arc_3& a);}
{given a meridian anchored at the poles of {\color{magenta} the context sphere used by the function \ccc{SphericalKernel::compare_z_at_theta_3_object}}, and passing through point $p$,
{given a meridian anchored at the poles of the context sphere used by the function \ccc{SphericalKernel::compare_z_at_theta_3_object}, and passing through point $p$,
compares the $z$-coordinate of point $p$ and that of the intersection of the meridian with $a$.
\ccPrecond{\ccc{a} and \ccc{p} lie on {\color{magenta} the context sphere used by the function \ccc{SphericalKernel::compare_z_at_theta_3_object}},
\ccPrecond{\ccc{a} and \ccc{p} lie on the context sphere used by the function \ccc{SphericalKernel::compare_z_at_theta_3_object},
arc $a$ is $\theta$-monotone and the meridian passing through $p$ intersects arc $a$.}}
\ccSeeAlso
@ -267,10 +262,10 @@ An object \ccVar\ of this type must provide:
const SphericalKernel::Circular_arc_3& a1,
const SphericalKernel::Circular_arc_point_3 &p);}
{Compares the $z$-coordinates of the intersection points of both arcs
with a meridian anchored at the poles of {\color{magenta} the context sphere used by the function \ccc{SphericalKernel::compare_z_to_right_3_object}}, at a $\theta$-coordinate
with a meridian anchored at the poles of the context sphere used by the function \ccc{SphericalKernel::compare_z_to_right_3_object}, at a $\theta$-coordinate
infinitesimally greater that the $\theta$-coordinate of point $p$.
\ccPrecond{
\ccc{a0} and \ccc{a1} lie on {\color{magenta} the context sphere used by the function \ccc{SphericalKernel::compare_z_to_right_3_object}},
\ccc{a0} and \ccc{a1} lie on the context sphere used by the function \ccc{SphericalKernel::compare_z_to_right_3_object},
\ccc{a0} and \ccc{a1} are $\theta$-monotone, $p$ lies on \ccc{a0} and \ccc{a1} and is not a $\theta$-extremal
point of the supporting circle of \ccc{a0} or \ccc{a1}.}}
@ -281,6 +276,6 @@ point of the supporting circle of \ccc{a0} or \ccc{a1}.}}
\ccRefIdfierPage{SphericalKernel::CompareZAtTheta_3}
\end{ccRefFunctionObjectConcept}
} %TAG SKOS

View File

@ -20,7 +20,6 @@ A model \ccVar\ of this type must provide:
\end{ccRefFunctionObjectConcept}
{\color{cyan} %TAG SKOS
\begin{ccRefFunctionObjectConcept}{SphericalKernel::MakeThetaMonotone_3}
\ccCreationVariable{fo}
@ -37,13 +36,13 @@ A model \ccVar\ of this concept must provide:
(const SphericalKernel::Circular_arc_3 &a,OutputIterator res);}
{
Copies in the output iterator the results of the split of arc $a$ at the $\theta$-extremal
point(s) of its supporting circle relatively to {\color{magenta} the context sphere used by the function \ccc{SphericalKernel::make_theta_monotone_3_object}} % TAG SKOS.
point(s) of its supporting circle relatively to the context sphere used by the function \ccc{SphericalKernel::make_theta_monotone_3_object}
(Refer to section~\ref{section-SK-objects} for the definition of these points.)
The output iterator may contain no arc (if the supporting circle is a bipolar circle),
one arc (if $a$ is already $\theta$-monotone), two arcs (if only one $\theta$-extremal point is on $a$), or
three arcs (if two $\theta$-extremal points are on $a$).
\ccPrecond{\ccc{a} lies on {\color{magenta} the context sphere used by the function \ccc{SphericalKernel::make_theta_monotone_3_object}},
and the supporting circle of \ccc{a} is not bipolar. } % TAG SKOS
\ccPrecond{\ccc{a} lies on the context sphere used by the function \ccc{SphericalKernel::make_theta_monotone_3_object},
and the supporting circle of \ccc{a} is not bipolar. }
}
@ -52,7 +51,7 @@ and the supporting circle of \ccc{a} is not bipolar. } % TAG SKOS
OutputIterator operator()
(const SphericalKernel::Circle_3 &c,OutputIterator res);}
{Copies in the output iterator the results of the split of circle $c$ at its $\theta$-extremal
point(s) relatively to {\color{magenta} the context sphere used by the function \ccc{SphericalKernel::make_theta_monotone_3_object}.} % TAG SKOS
point(s) relatively to the context sphere used by the function \ccc{SphericalKernel::make_theta_monotone_3_object}.
(Refer to section~\ref{section-SK-objects} for the definition of these points.)
The output iterator may contain no arc (if the circle is bipolar),
one arc (if the circle is polar or threaded), or two arcs (if the circle is normal).
@ -69,8 +68,8 @@ $(a>0) || (a==0) \&\& (b>0) || (a==0)\&\&(b==0)\&\&(c>0)$.
For a threaded circle, the arc returned the one built using the full circle.
For a polar circle, the arc returned is the full circle, the source and target correspond to the pole the circle goes through.
\ccPrecond{\ccc{c} lies on {\color{magenta} the context sphere used by the function \ccc{SphericalKernel::make_theta_monotone_3_object}},
and \ccc{c} is not bipolar.} % TAG SKOS
\ccPrecond{\ccc{c} lies on the context sphere used by the function \ccc{SphericalKernel::make_theta_monotone_3_object},
and \ccc{c} is not bipolar.}
}
\ccSeeAlso
@ -78,7 +77,7 @@ and \ccc{c} is not bipolar.} % TAG SKOS
\ccRefIdfierPage{SphericalKernel::IsThetaMonotone_3}
\end{ccRefFunctionObjectConcept}
}%TAG SKOS

View File

@ -179,7 +179,6 @@ An object \ccVar\ of this type must provide:
\end{ccRefFunctionObjectConcept}
{\color{cyan}%TAG SKOS
\begin{ccRefFunctionObjectConcept}{SphericalKernel::IsThetaMonotone_3}
\ccCreationVariable{fo}
@ -192,11 +191,11 @@ An object \ccVar\ of this type must provide:
\ccMemberFunction{bool operator()
(const SphericalKernel::Circular_arc_3 &a);}
{Tests whether the arc $a$ is $\theta$-monotone, i.e. the intersection of
any meridian anchored at the poles of {\color{magenta} the context sphere used by the function \ccc{SphericalKernel::is_theta_monotone_3_object}} % TAG SKOS
any meridian anchored at the poles of the context sphere used by the function \ccc{SphericalKernel::is_theta_monotone_3_object}
and the arc $a$ is reduced to at most one point in general, and two points if a pole of that sphere is
an endpoint of \ccc{a}. Note that a bipolar circle has no such arcs.
\ccPrecond{\ccc{a} lies on {\color{magenta} the context sphere used by the function \ccc{SphericalKernel::is_theta_monotone_3_object}},
and the supporting circle of \ccc{a} is not bipolar.} % TAG SKOS
\ccPrecond{\ccc{a} lies on the context sphere used by the function \ccc{SphericalKernel::is_theta_monotone_3_object},
and the supporting circle of \ccc{a} is not bipolar.}
}
@ -206,4 +205,3 @@ and the supporting circle of \ccc{a} is not bipolar.} % TAG SKOS
\end{ccRefFunctionObjectConcept}
}%TAG SKOS

View File

@ -65,8 +65,6 @@ constructions and other functionalities.
\ccGlue
\ccNestedType{Compare_xyz_3}{Model of \ccc{SphericalKernel::CompareXYZ_3}.}
\ccGlue
{%TAG SKOS
\color{cyan}
\ccNestedType{Compare_theta_3}{Model of \ccc{SphericalKernel::CompareTheta_3}.}
\ccGlue
\ccNestedType{Compare_theta_z_3}{Model of \ccc{SphericalKernel::CompareThetaZ_3}.}
@ -74,7 +72,7 @@ constructions and other functionalities.
\ccNestedType{Compare_z_at_theta_3}{Model of \ccc{SphericalKernel::CompareZAtTheta_3}.}
\ccGlue
\ccNestedType{Compare_z_to_right_3}{Model of \ccc{SphericalKernel::CompareZToRight_3}.}
}%TAG SKOS
\ccNestedType{Equal_3}{Model of \ccc{SphericalKernel::Equal_3}.}
@ -90,10 +88,7 @@ constructions and other functionalities.
\ccGlue
\ccNestedType{Has_on_unbounded_side_3}{Model of \ccc{SphericalKernel::HasOnUnboundedSide_3}.}
{%TAG SKOS
\color{cyan}
\ccNestedType{Is_theta_monotone_3}{Model of \ccc{SphericalKernel::IsThetaMonotone_3}.}
}%TAG SKOS
\ccHeading{Constructions}
@ -125,10 +120,7 @@ constructions and other functionalities.
\ccNestedType{Split_3}{Model of \ccc{SphericalKernel::Split_3}.}
{%TAG SKOS
\color{cyan}
\ccNestedType{Make_theta_monotone_3}{Model of \ccc{SphericalKernel::MakeThetaMonotone_3}.}
}%TAG SKOS
\ccHeading{Computations}
@ -159,8 +151,6 @@ must exist:
\ccCreationVariable{sk}
\ccMethod{Construct_circular_arc_3 construct_circular_arc_3_object() const;}{}
{%TAG SKOS
\color{magenta}
For operations on a given sphere, a \textit{context} sphere must be provided to the following functions:
\ccMethod{Compare_theta_3 compare_theta_3_object(const Sphere_3& sphere) const;}{}
@ -169,7 +159,6 @@ For operations on a given sphere, a \textit{context} sphere must be provided to
\ccMethod{Compare_z_to_right_3 compare_z_to_right_3_object(const Sphere_3& sphere) const;}{}
\ccMethod{Make_theta_monotone_3 make_theta_monotone_3_object(const Sphere_3& sphere) const;}{}
\ccMethod{Is_theta_monotone_3 is_theta_monotone_3_object(const Sphere_3& sphere) const;}{}
}%TAG SKOS
\ccSeeAlso

View File

@ -1,5 +1,3 @@
{%TAG SKOS
\color{cyan}
\begin{ccRefFunction}{is_theta_monotone}
\ccInclude{CGAL/global_functions_spherical_kernel_3.h}
@ -27,8 +25,6 @@ Note that a bipolar circle has no such arcs.
}
{\color{magenta} %TAG SKOS
\ccFunction{Comparison_result
compare_theta(const SphericalKernel::Circular_arc_point_3 &p,
const SphericalKernel::Vector_3 &m, const SphericalKernel::Sphere_3& sphere );}
@ -40,8 +36,6 @@ in the cylindrical coordinate system relative to \ccc{sphere} .
\ccFunction{Comparison_result
compare_theta(const SphericalKernel::Vector_3 &m,const SphericalKernel::Circular_arc_point_3 &p);}{Same as previous, with opposite result.}
} %TAG SKOS
@ -85,7 +79,7 @@ in the cylindrical coordinate system relative to \ccc{sphere}.
\ccRefIdfierPage{CGAL::compare_theta} \\
\end{ccRefFunction}
}%TAG SKOS
@ -142,8 +136,6 @@ in the cylindrical coordinate system relative to \ccc{sphere}.
\end{ccRefFunction}
{%TAG SKOS
\color{cyan}
\begin{ccRefFunction}{theta_extremal_point}
\ccInclude{CGAL/global_functions_spherical_kernel_3.h}
@ -158,7 +150,6 @@ relative to \ccc{sphere}, and that has the smallest (resp. largest)
}
\end{ccRefFunction}
}%TAG SKOS
@ -233,8 +224,6 @@ relative to \ccc{sphere}, and that has the smallest (resp. largest)
\end{ccRefFunction}
{%TAG SKOS
\color{cyan}
\begin{ccRefFunction}{theta_extremal_points}
\ccInclude{CGAL/global_functions_spherical_kernel_3.h}
@ -271,9 +260,6 @@ relative to \ccc{sphere}, and that has the smallest (resp. largest)
\end{ccRefFunction}
}%TAG SKOS

View File

@ -32,13 +32,11 @@
\ccRefConceptPage{SphericalKernel::CompareZ_3}\\
\ccRefConceptPage{SphericalKernel::CompareXY_3}\\
\ccRefConceptPage{SphericalKernel::CompareXYZ_3}\\
{%TAG SKOS
\color{cyan}
\ccRefConceptPage{SphericalKernel::CompareTheta_3}\\
\ccRefConceptPage{SphericalKernel::CompareThetaZ_3}\\
\ccRefConceptPage{SphericalKernel::CompareZAtTheta_3}\\
\ccRefConceptPage{SphericalKernel::CompareZToRight_3}
}%TAG SKOS
\ccRefConceptPage{SphericalKernel::Equal_3}
@ -48,10 +46,8 @@
\ccRefConceptPage{SphericalKernel::DoIntersect_3}
{%TAG SKOS
\color{cyan}
\ccRefConceptPage{SphericalKernel::IsThetaMonotone_3}
}%TAG SKOS
\ccRefConceptPage{SphericalKernel::BoundedSide_3}\\
\ccRefConceptPage{SphericalKernel::HasOnBoundedSide_3}\\
@ -61,10 +57,7 @@
\ccRefConceptPage{SphericalKernel::Split_3}
{%TAG SKOS
\color{cyan}
\ccRefConceptPage{SphericalKernel::MakeThetaMonotone_3}
}%TAG SKOS
\ccRefConceptPage{SphericalKernel::ComputeCircularX_3}\\
\ccRefConceptPage{SphericalKernel::ComputeCircularY_3}\\
@ -92,11 +85,9 @@
\ccRefIdfierPage{CGAL::Line_arc_3<SphericalKernel>}\\
\ccRefIdfierPage{CGAL::Circular_arc_3<SphericalKernel>}\\
{%TAG SKOS
\color{cyan}
\subsubsection*{Constants and Enumerations}
\ccRefIdfierPage{CGAL::Circle_type}
}%TAG SKOS
\section{Geometric Global Functions}
@ -105,36 +96,21 @@
\ccRefIdfierPage{CGAL::compare_z}\\
\ccRefIdfierPage{CGAL::compare_xy}\\
\ccRefIdfierPage{CGAL::compare_xyz}\\
{%TAG SKOS
\color{cyan}
\ccRefIdfierPage{CGAL::compare_theta}\\
\ccRefIdfierPage{CGAL::compare_theta_z}
}%TAG SKOS
{%TAG SKOS
\color{cyan}
\ccRefIdfierPage{CGAL::is_theta_monotone}
}%TAG SKOS
{%TAG SKOS
\color{cyan}
\ccRefIdfierPage{CGAL::classify}
}%TAG SKOS
\ccRefIdfierPage{CGAL::x_extremal_point}\\
\ccRefIdfierPage{CGAL::y_extremal_point}\\
\ccRefIdfierPage{CGAL::z_extremal_point}\\
{%TAG SKOS
\color{cyan}
\ccRefIdfierPage{CGAL::theta_extremal_point}\\
}%TAG SKOS
\ccRefIdfierPage{CGAL::x_extremal_points}\\
\ccRefIdfierPage{CGAL::y_extremal_points}\\
\ccRefIdfierPage{CGAL::z_extremal_points}\\
{%TAG SKOS
\color{cyan}
\ccRefIdfierPage{CGAL::theta_extremal_points}
}%TAG SKOS
\ccRefIdfierPage[Kernel::do_intersect]{CGAL::do_intersect}\\
\ccRefIdfierPage[Kernel::intersection]{CGAL::intersection}

View File

@ -18,9 +18,7 @@
\input{Circular_kernel_3_ref/CircularArc_3}
\input{Circular_kernel_3_ref/Circular_arc_3}
{\color{cyan} %TAG SKOS
\input{Circular_kernel_3_ref/Circle_on_sphere_type_3}
}%TAG SKOS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% geometric functors