diff --git a/Min_ellipse_2/doc_tex/Bounding_volumes_ref/Min_ellipse_2.tex b/Min_ellipse_2/doc_tex/Bounding_volumes_ref/Min_ellipse_2.tex index 594a8d63172..5e3b4f665e0 100644 --- a/Min_ellipse_2/doc_tex/Bounding_volumes_ref/Min_ellipse_2.tex +++ b/Min_ellipse_2/doc_tex/Bounding_volumes_ref/Min_ellipse_2.tex @@ -19,8 +19,7 @@ ellipse that contains all points of $P$. Note that $me(P)$ can be degenerate\lcTex{\ccIndexSubitem[t]{degeneracies}{\ccFont Min_ellipse_2}}, i.e.~$me(P)=\emptyset$ if $P=\emptyset$, $me(P)=\{p\}$ if $P=\{p\}$, -and $me(P) = \{ \mbox{\ccTexHtml{$(1-\lambda)p + \lambda q \mid 0 \leq - \lambda \leq 1$}{(1-l)p + l q | 0 <= l <= 1}} \}$ if $P=\{p,q\}$. +and $me(P) = \{ \mbox{ (1-\lambda)p + \lambda q \mid 0 \leq \lambda \leq 1 } \}$ if $P=\{p,q\}$. An inclusion-minimal subset $S$ of $P$ with $me(S)=me(P)$ is called a \emph{support set}\lcTex{\ccIndexSubitem[t]{support set}{\ccFont Min_ellipse_2}}, @@ -115,8 +114,7 @@ reconstructing $me(P)$ from a given support set\lcTex{\ccIndexSubitem[t]{support initializes \ccVar\ to $me(\{p,q\})$, \ccTexHtml{\\}{} the set - $\{ \mbox{\ccTexHtml{$(1-\lambda)p + \lambda q \mid - 0 \leq \lambda \leq 1$}{(1-l)p + l q | 0 <= l <= 1}} \}$. + $\{ \mbox{(1-\lambda)p + \lambda q \mid 0 \leq \lambda \leq 1} \}$. \ccPostcond \ccVar\ccc{.is_degenerate()} = \ccc{true}.} \ccConstructor{ Min_ellipse_2( const Point& p1,