Errors in bibliography and incorrect usage of `\f[` command

- The `&` in the bibliography has to be escaped
- the doxygen command `\f[` should not be used to directly change the environment, for this the doxygen command `\f{` exists.
This commit is contained in:
albert-github 2024-12-02 15:48:48 +01:00
parent 98c944450a
commit 36f6a36dac
3 changed files with 4 additions and 6 deletions

View File

@ -1355,7 +1355,7 @@ Teillaud"
@article{cgal:lrt-ccm-22,
author = {Jacques-Olivier Lachaud and Pascal Romon and Boris Thibert},
journal = {Discrete & Computational Geometry},
journal = {Discrete \& Computational Geometry},
title = {Corrected Curvature Measures},
volume = {68},
pages = {477-524},

View File

@ -142522,7 +142522,7 @@ of geometric optics."
title = {{Fast and Robust QEF Minimization using Probabilistic Quadrics}},
author = {Trettner, Philip and Kobbelt, Leif},
year = {2020},
publisher = {The Eurographics Association and John Wiley & Sons Ltd.},
publisher = {The Eurographics Association and John Wiley \& Sons Ltd.},
ISSN = {1467-8659},
DOI = {10.1111/cgf.13933}
}

View File

@ -996,15 +996,13 @@ to derive new closed-form equations for the corrected curvature measures. These
curvature measures are the first step for computing the curvatures. For a triangle \f$ \tau_{ijk} \f$,
with vertices \a i, \a j, \a k:
\f[
\begin{align*}
\f{align*}{
\mu^{(0)}(\tau_{ijk}) = &\frac{1}{2} \langle \bar{\mathbf{u}} \mid (\mathbf{x}_j - \mathbf{x}_i) \times (\mathbf{x}_k - \mathbf{x}_i) \rangle, \\
\mu^{(1)}(\tau_{ijk}) = &\frac{1}{2} \langle \bar{\mathbf{u}} \mid (\mathbf{u}_k - \mathbf{u}_j) \times \mathbf{x}_i + (\mathbf{u}_i - \mathbf{u}_k) \times \mathbf{x}_j + (\mathbf{u}_j - \mathbf{u}_i) \times \mathbf{x}_k \rangle, \\
\mu^{(2)}(\tau_{ijk}) = &\frac{1}{2} \langle \mathbf{u}_i \mid \mathbf{u}_j \times \mathbf{u}_k \rangle, \\
\mu^{\mathbf{X},\mathbf{Y}}(\tau_{ijk}) = & \frac{1}{2} \big\langle \bar{\mathbf{u}} \big| \langle \mathbf{Y} | \mathbf{u}_k -\mathbf{u}_i \rangle \mathbf{X} \times (\mathbf{x}_j - \mathbf{x}_i) \big\rangle
-\frac{1}{2} \big\langle \bar{\mathbf{u}} \big| \langle \mathbf{Y} | \mathbf{u}_j -\mathbf{u}_i \rangle \mathbf{X} \times (\mathbf{x}_k - \mathbf{x}_i) \big\rangle,
\end{align*}
\f]
\f}
where \f$ \langle \cdot \mid \cdot \rangle \f$ denotes the usual scalar product,
\f$ \bar{\mathbf{u}}=\frac{1}{3}( \mathbf{u}_i + \mathbf{u}_j + \mathbf{u}_k )\f$.