This commit is contained in:
Maxime Gimeno 2016-08-18 13:55:47 +02:00 committed by Sébastien Loriot
parent 0f13cde758
commit 39e7b76902
2 changed files with 131 additions and 128 deletions

View File

@ -67,7 +67,7 @@ public:
Geometric_object object = object_from_id_map(id);
ids.push_back(id);
//compute the weight of a face
total_weight += to_double( compute_weight(object) );
total_weight += to_double(CGAL::approximate_sqrt(compute_weight(object)));
weights.push_back(total_weight);
}
//generate the first point

View File

@ -113,7 +113,6 @@ sample_triangles(const TriangleRange& triangles, double distance, OutputIterator
}
}
}
// sample triangles
BOOST_FOREACH(const Triangle_3& t, triangles)
out=internal::triangle_grid_sampling<Kernel>(t, distance, out);
@ -159,21 +158,117 @@ struct Distance_computation{
}
};
#endif
/// \todo test different strategies and put the better one in `approximated_Hausdorff_distance()`
/// for particular cases one can still use a specific sampling method together with `max_distance_to_triangle_mesh()`
enum Sampling_method{
RANDOM_UNIFORM =0, /**< points are generated in a random and uniform way, depending on the area of each triangle.*/
GRID,/**< points are generated in a grid, with a minimum of one point per vertex.*/
MONTE_CARLO /**< points are generated randomly in each triangle, proportionally to the face area with a minimum
* of 1 pt per triangle.*/
};
/** fills `sampled_points` with points taken on the mesh in a manner depending on `method`.
* @tparam TriangleMesh a model of the concept `FaceListGraph` that has an internal property map
* for `CGAL::vertex_point_t`
* @param m the triangle mesh that will be sampled
* @param precision the number of points per squared area unit. Must be greater than 1.
*
* @param method defines the method of sampling.
*
* @tparam Sampling_method defines the method of sampling.
* Possible values are `RANDOM_UNIFORM`,
* and `GRID` and `MONTE_CARLO.
*/
template<class Kernel, class TriangleMesh>
void sample_triangle_mesh(const TriangleMesh& m,
double precision,
std::vector<typename Kernel::Point_3>& sampled_points,
Sampling_method method = RANDOM_UNIFORM)
{
switch(method)
{
case RANDOM_UNIFORM:
{
std::size_t nb_points = std::ceil(
precision * PMP::area(m, PMP::parameters::geom_traits(Kernel())));
Random_points_in_triangle_mesh_3<TriangleMesh>
g(m);
CGAL::cpp11::copy_n(g, nb_points, std::back_inserter(sampled_points));
return;
}
case GRID:
{
//we take a unit square and grid sample it to approximate the distance between points
//knowing the points density.
CGAL_assertion_msg (precision >1,
"Precision must be greater than 1.");
double distance = 1.0/(sqrt(precision)-1);
typedef typename boost::property_map<TriangleMesh, CGAL::vertex_point_t>::type Pmap;
Pmap pmap = get(vertex_point, m);
std::vector<typename Kernel::Triangle_3> triangles;
BOOST_FOREACH(typename boost::graph_traits<TriangleMesh>::face_descriptor f, faces(m))
{
//create the triangles and store them
typename Kernel::Point_3 points[3];
typename TriangleMesh::Halfedge_around_face_circulator hc(halfedge(f,m), m);
for(int i=0; i<3; ++i)
{
points[i] = get(pmap, target(*hc, m));
++hc;
}
triangles.push_back(typename Kernel::Triangle_3(points[0], points[1], points[2]));
//sample a single point in all triangles(to have at least 1 pt/triangle)
}
sample_triangles<Kernel>(triangles, distance, std::back_inserter(sampled_points));
return;
}
case MONTE_CARLO:
std::size_t nb_points = std::ceil(precision * PMP::area(m,
PMP::parameters::geom_traits(Kernel())));
typedef typename boost::property_map<TriangleMesh, CGAL::vertex_point_t>::type Pmap;
Pmap pmap = get(vertex_point, m);
std::vector<typename Kernel::Triangle_3> triangles;
BOOST_FOREACH(typename boost::graph_traits<TriangleMesh>::face_descriptor f, faces(m))
{
//create the triangles and store them
typename Kernel::Point_3 points[3];
typename TriangleMesh::Halfedge_around_face_circulator hc(halfedge(f,m), m);
for(int i=0; i<3; ++i)
{
points[i] = get(pmap, target(*hc, m));
++hc;
}
triangles.push_back(typename Kernel::Triangle_3(points[0], points[1], points[2]));
//sample a single point in all triangles(to have at least 1 pt/triangle)
Random_points_in_triangle_3<typename Kernel::Point_3> g(points[0], points[1], points[2]);
CGAL::cpp11::copy_n(g, 1, std::back_inserter(sampled_points));
}
//sample the triangle range uniformly
Random_points_in_triangles_3<typename Kernel::Point_3 >
g(triangles);
CGAL::cpp11::copy_n(g, nb_points, std::back_inserter(sampled_points));
return;
}
}
template <class Concurrency_tag, class Kernel, class TriangleMesh, class VertexPointMap = typename boost::property_map<TriangleMesh,
CGAL::vertex_point_t>::type>
double approximated_Hausdorff_distance(
std::vector<typename Kernel::Point_3>& sample_points,
TriangleMesh& m,
std::size_t nb_sample_points)
const TriangleMesh& m,
double precision,
Sampling_method method = RANDOM_UNIFORM
)
{
typedef Point_3<Kernel> Point_3;
bool is_triangle = is_triangle_mesh(m);
CGAL_assertion_msg (is_triangle,
"Mesh is not triangulated. Distance computing impossible.");
/*
Random_points_in_triangle_mesh_3<TriangleMesh, VertexPointMap>
g(m);
CGAL::cpp11::copy_n(g, nb_sample_points, std::back_inserter(sample_points));
CGAL::cpp11::copy_n(g, nb_sample_points, std::back_inserter(sample_points));*/
sample_triangle_mesh<Kernel>(m, precision ,sample_points, method);
#ifdef CGAL_HAUSDORFF_DEBUG
std::cout << "Nb sample points " << sample_points.size() << "\n";
#endif
@ -221,16 +316,15 @@ template <class Concurrency_tag, class Kernel, class TriangleMesh,
class VertexPointMap2 = typename boost::property_map<TriangleMesh,
CGAL::vertex_point_t>::type>
double approximated_Hausdorff_distance(
TriangleMesh& m1,
TriangleMesh& m2,
int nb_points
const TriangleMesh& m1,
const TriangleMesh& m2,
double precision,
Sampling_method method = RANDOM_UNIFORM
)
{
std::vector<typename Kernel::Point_3> sample_points;
Random_points_in_triangle_mesh_3<TriangleMesh, VertexPointMap1>
g(m1);
CGAL::cpp11::copy_n(g, nb_points, std::back_inserter(sample_points));
return approximated_Hausdorff_distance<Concurrency_tag, Kernel, TriangleMesh, VertexPointMap2>(sample_points, m2,4000);
sample_triangle_mesh<Kernel>(m1, precision ,sample_points, method );
return approximated_Hausdorff_distance<Concurrency_tag, Kernel, TriangleMesh, VertexPointMap2>(sample_points, m2, precision, method );
}
template <class Concurrency_tag, class Kernel, class TriangleMesh, class VertexPointMap1 = typename boost::property_map<TriangleMesh,
@ -238,101 +332,18 @@ template <class Concurrency_tag, class Kernel, class TriangleMesh, class VertexP
class VertexPointMap2 = typename boost::property_map<TriangleMesh,
CGAL::vertex_point_t>::type>
double approximated_symmetric_Hausdorff_distance(
TriangleMesh& m1,
TriangleMesh& m2,
int nb_points
const TriangleMesh& m1,
const TriangleMesh& m2,
double precision
)
{
return (std::max)(
approximated_Hausdorff_distance<Concurrency_tag, Kernel, TriangleMesh, VertexPointMap1, VertexPointMap2>(m1, m2, nb_points),
approximated_Hausdorff_distance<Concurrency_tag, Kernel, TriangleMesh, VertexPointMap2, VertexPointMap1>(m2, m1, nb_points)
approximated_Hausdorff_distance<Concurrency_tag, Kernel, TriangleMesh, VertexPointMap1, VertexPointMap2>(m1, m2, precision),
approximated_Hausdorff_distance<Concurrency_tag, Kernel, TriangleMesh, VertexPointMap2, VertexPointMap1>(m2, m1, precision)
);
}
/// \todo test different strategies and put the better one in `approximated_Hausdorff_distance()`
/// for particular cases one can still use a specific sampling method together with `max_distance_to_triangle_mesh()`
enum Sampling_method{
RANDOM_UNIFORM =0, /**< points are generated in a random and uniform way, depending on the area of each triangle.*/
GRID,/**< points are generated in a grid, with a minimum of one point per triangle.*/
MONTE_CARLO /**< points are generated randomly in each triangle, proportionally to the face area with a minimum
* of 1 pt per triangle.*/
};
/** fills `sampled_points` with points taken on the mesh in a manner depending on `method`.
* @tparam TriangleMesh a model of the concept `FaceListGraph` that has an internal property map
* for `CGAL::vertex_point_t`
* @param m the triangle mesh that will be sampled
* @param precision depends on the value of `method` :
* case RANDOM_UNIFORM : the number of points per squared area unit
* case GRID : the distance between the points
* case MONTE_CARLO : the number of points per squared area unit
* @tparam method a Sampling_method.
* @tparam Sampling_method defines the method of sampling.
* Possible values are `RANDOM_UNIFORM`,
* and `GRID` and `MONTE_CARLO.
*/
template<class Kernel, class TriangleMesh>
void sample_triangle_mesh(const TriangleMesh& m,
double precision,
std::vector<typename Kernel::Point_3>& sampled_points,
Sampling_method method = RANDOM_UNIFORM)
{
switch(method)
{
case RANDOM_UNIFORM:
{
std::size_t nb_points = std::ceil(precision * PMP::area(m,
PMP::parameters::geom_traits(Kernel())));
Random_points_in_triangle_mesh_3<TriangleMesh>
g(m);
CGAL::cpp11::copy_n(g, nb_points, std::back_inserter(sampled_points));
return;
}
case GRID:
{
typedef typename boost::property_map<TriangleMesh, CGAL::vertex_point_t>::type Pmap;
Pmap pmap = get(vertex_point, m);
BOOST_FOREACH(typename boost::graph_traits<TriangleMesh>::face_descriptor f, faces(m))
{
typename Kernel::Point_3 points[3];
typename TriangleMesh::Halfedge_around_face_circulator hc(halfedge(f,m), m);
for(int i=0; i<3; ++i)
{
points[i] = get(pmap, target(*hc, m));
++hc;
}
internal::triangle_grid_sampling<Kernel>(points[0], points[1], points[2],precision, std::back_inserter(sampled_points));
}
return;
}
case MONTE_CARLO:
std::size_t nb_points = std::ceil(precision * PMP::area(m,
PMP::parameters::geom_traits(Kernel())));
typedef typename boost::property_map<TriangleMesh, CGAL::vertex_point_t>::type Pmap;
Pmap pmap = get(vertex_point, m);
std::vector<typename Kernel::Triangle_3> triangles;
BOOST_FOREACH(typename boost::graph_traits<TriangleMesh>::face_descriptor f, faces(m))
{
//create the triangles and store them
typename Kernel::Point_3 points[3];
typename TriangleMesh::Halfedge_around_face_circulator hc(halfedge(f,m), m);
for(int i=0; i<3; ++i)
{
points[i] = get(pmap, target(*hc, m));
++hc;
}
triangles.push_back(typename Kernel::Triangle_3(points[0], points[1], points[2]));
//sample a single point in all triangles(to have at least 1 pt/triangle)
Random_points_in_triangle_3<typename Kernel::Point_3> g(points[0], points[1], points[2]);
CGAL::cpp11::copy_n(g, 1, std::back_inserter(sampled_points));
}
//sample the triangle range uniformly
Random_points_in_triangles_3<typename Kernel::Point_3 >
g(triangles);
CGAL::cpp11::copy_n(g, nb_points, std::back_inserter(sampled_points));
return;
}
}
/// \todo add a plugin in the demo to display the distance between 2 meshes as a texture (if not complicated)
template< class Concurrency_tag,
@ -340,17 +351,13 @@ template< class Concurrency_tag,
class TriangleMesh,
class PMap1,
class PMap2>
double approximated_Hausdorff_distance( TriangleMesh& tm1,
TriangleMesh& tm2,
double approximated_Hausdorff_distance( const TriangleMesh& tm1,
const TriangleMesh& tm2,
double precision,
const PMap1&,
const PMap2&)
{
std::size_t nb_points = std::max(std::ceil(to_double(precision * PMP::area(tm1,
PMP::parameters::geom_traits(Kernel())))),
std::ceil(to_double(precision * PMP::area(tm2,
PMP::parameters::geom_traits(Kernel())))));
return approximated_Hausdorff_distance<Concurrency_tag,Kernel,TriangleMesh, PMap1, PMap2>(tm1, tm2, nb_points);
return approximated_Hausdorff_distance<Concurrency_tag,Kernel,TriangleMesh, PMap1, PMap2>(tm1, tm2, precision);
}
// documented functions
/**
@ -389,8 +396,8 @@ template< class Concurrency_tag,
class TriangleMesh,
class NamedParameters1,
class NamedParameters2>
double approximated_Hausdorff_distance( TriangleMesh& tm1,
TriangleMesh& tm2,
double approximated_Hausdorff_distance( const TriangleMesh& tm1,
const TriangleMesh& tm2,
double precision,
const NamedParameters1& np1,
const NamedParameters2& np2)
@ -424,8 +431,8 @@ template< class Concurrency_tag,
class NamedParameters1,
class NamedParameters2>
double approximated_symmetric_Hausdorff_distance(
TriangleMesh& tm1,
TriangleMesh& tm2,
const TriangleMesh& tm1,
const TriangleMesh& tm2,
double precision,
const NamedParameters1& np1,
const NamedParameters2& np2)
@ -436,8 +443,6 @@ double approximated_symmetric_Hausdorff_distance(
);
}
/// \todo document and implement me
/// \todo find a way to define precision through named parameters
/**
* \ingroup PMP_distance_grp
* computes the approximated Hausdorff distance between `points` and `tm`.
@ -448,7 +453,7 @@ template< class Concurrency_tag,
class PointRange,
class NamedParameters>
double max_distance_to_triangle_mesh(const PointRange& points,
TriangleMesh& tm,
const TriangleMesh& tm,
double precision,
const NamedParameters& np)
{
@ -458,13 +463,11 @@ double max_distance_to_triangle_mesh(const PointRange& points,
BOOST_FOREACH(typename PointRange::value_type point, points)
sample_points.push_back(point);
std::size_t nb_points = std::ceil(to_double(precision * PMP::area(tm,
PMP::parameters::geom_traits(Geom_traits()))));
return approximated_Hausdorff_distance<Concurrency_tag, Geom_traits, TriangleMesh/*,
choose_const_pmap(get_param(np, boost::vertex_point),
tm,
vertex_point)*/>
(sample_points,tm, nb_points);
vertex_point)>
(sample_points,tm, precision);
}
/// \todo document and implement me
@ -476,7 +479,7 @@ template< class Concurrency_tag,
class TriangleMesh,
class PointRange,
class NamedParameters>
double max_distance_to_point_set(TriangleMesh& tm,
double max_distance_to_point_set(const TriangleMesh& tm,
const PointRange& points,
const NamedParameters& np)
{
@ -488,8 +491,8 @@ double max_distance_to_point_set(TriangleMesh& tm,
template< class Concurrency_tag,
class TriangleMesh,
class NamedParameters1>
double approximated_Hausdorff_distance( TriangleMesh& tm1,
TriangleMesh& tm2,
double approximated_Hausdorff_distance( const TriangleMesh& tm1,
const TriangleMesh& tm2,
double precision,
const NamedParameters1& np1)
{
@ -499,8 +502,8 @@ double approximated_Hausdorff_distance( TriangleMesh& tm1,
template< class Concurrency_tag,
class TriangleMesh>
double approximated_Hausdorff_distance( TriangleMesh& tm1,
TriangleMesh& tm2,
double approximated_Hausdorff_distance( const TriangleMesh& tm1,
const TriangleMesh& tm2,
double precision)
{
return approximated_Hausdorff_distance<Concurrency_tag>(
@ -513,8 +516,8 @@ double approximated_Hausdorff_distance( TriangleMesh& tm1,
template< class Concurrency_tag,
class TriangleMesh,
class NamedParameters1>
double approximated_symmetric_Hausdorff_distance(TriangleMesh& tm1,
TriangleMesh& tm2,
double approximated_symmetric_Hausdorff_distance(const TriangleMesh& tm1,
const TriangleMesh& tm2,
double precision,
const NamedParameters1& np1)
{
@ -525,8 +528,8 @@ double approximated_symmetric_Hausdorff_distance(TriangleMesh& tm1,
template< class Concurrency_tag,
class TriangleMesh,
class NamedParameters1>
double approximated_symmetric_Hausdorff_distance(TriangleMesh& tm1,
TriangleMesh& tm2,
double approximated_symmetric_Hausdorff_distance(const TriangleMesh& tm1,
const TriangleMesh& tm2,
double precision)
{
return approximated_symmetric_Hausdorff_distance<Concurrency_tag>(